Synthesis of Polyvinyl Alcohol-Chitosan Composite Film using Nanocellulose from Coconut Fibers (Cocos nucifera)

Document Type : Original Article

Authors

1 Department of Chemistry, Universitas Negeri Jakarta, Jakarta, Indonesia

2 Research Center for Metallurgy - National Research and Innovation Agency, Serpong, Indonesia

3 Department of Mechanical Engineering, Universitas Negeri Jakarta, Jakarta, Indonesia

Abstract

In this research, polyvinyl alcohol (PVA)-chitosan composite films were produced using nanocellulose from coconut fibers (Cocos nucifera) in an Indonesian plantation in order to enhance mechanical properties and biodegradability. The process began by separating lignin and hemicellulose by delignification, bleaching, and then cellulose hydrolysis to produce nanocellulose. The PVA was mixed with chitosan with specific compositions and added the nanocellulose in 0%, 1%, 3%, and 5% concentrations, respectively. A tensile test was conducted to obtain tensile strength and elongation break. Biodegradability test was also carried out to determine the level of mass losses. Based on SEM observations, addition of nanocellulose appears to increase the reactivity of the formation of PVA-chitosan composite films, which are characterized by a reduction in film thickness. Addition of 5% nanocellulose resulted in a high quality of nano-composite. The tensile strength, fracture elongation and biodegradability of the composite film were 31.50 MPa, 39.9% and 9.04%, respectively.

Keywords

Main Subjects


  1. Wyrwa, J., and Barska, A. “Innovations in the food packaging market: active packaging.” European Food Research and Technology, Vol. 243, No. 10, (2017), 1681-1692. https://doi.org/10.1007/s00217-017-2878-2
  2. Senthil Kumar, P., Bharathikumar, M., Prabhakaran, C., Vijayan, S., and Ramakrishnan, K. “Conversion of waste plastics into low-emissive hydrocarbon fuels through catalytic depolymerization in a new laboratory scale batch reactor.” International Journal of Energy and Environmental Engineering, Vol. 8, No. 2, (2017), 167-173. https://doi.org/10.1007/s40095-015-0167-z
  3. Yang, X. G., Wen, P. P., Yang, Y. F., Jia, P. P., Li, W. G., and Pei, D. S. “Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects.” Frontiers in Microbiology, Vol. 13, (2023). https://doi.org/10.3389/fmicb.2022.1001750
  4. Sheikh, K., and Shahrajabian, H. “Experimental study on mechanical, thermal and antibacterial properties of hybrid nanocomposites of PLA/CNF/Ag.” International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 2, (2021), 500-507. https://doi.org/10.5829/IJE.2021.34.02B.23
  5. Ashok, A., Abhijith, R., and Rejeesh, C. R. “Material characterization of starch derived bio degradable plastics and its mechanical property estimation.” In Materials Today: Proceedings (Vol. 5, pp. 2163-2170). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2017.09.214
  6. Furutate, S., Kamoi, J., Nomura, C. T., Taguchi, S., Abe, H., and Tsuge, T. “Superior thermal stability and fast crystallization behavior of a novel, biodegradable α-methylated bacterial polyester.” NPG Asia Materials, Vol. 13, No. 1, (2021). https://doi.org/10.1038/s41427-021-00296-x
  7. Gasti, T., Dixit, S., Sataraddi, S. P., Hiremani, V. D., Masti, S. P., Chougale, R. B., and Malabadi, R. B. “Physicochemical and Biological Evaluation of Different Extracts of Edible Solanum nigrum L. Leaves Incorporated Chitosan/Poly (Vinyl Alcohol) Composite Films.” Journal of Polymers and the Environment, Vol. 28, No. 11, (2020), 2918-2930. https://doi.org/10.1007/s10924-020-01832-6
  8. Haque, A. N. M. A., and Naebe, M. “Flexible water-resistant semi-transparent cotton gin trash/poly (vinyl alcohol) bio-plastic for packaging application: Effect of plasticisers on physicochemical properties.” Journal of Cleaner Production, Vol. 303, (2021), 126983. https://doi.org/10.1016/j.jclepro.2021.126983
  9. Liu, Y., Wang, S., and Lan, W. “Fabrication of antibacterial chitosan-PVA blended film usingelectrospray technique for food packaging applications.” International Journal of Biological Macromolecules, Vol. 107, (2018), 848-854. https://doi.org/10.1016/j.ijbiomac.2017.09.044
  10. Priyadarshi, R., and Rhim, J. W. “Chitosan-based biodegradable functional films for food packaging applications.” Innovative Food Science and Emerging Technologies, Vol. 62, (2020), 102346. https://doi.org/10.1016/j.ifset.2020.102346
  11. Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., and Nasri, M. “Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films.” Environmental Science and Pollution Research, Vol. 23, No. 15, (2016), 15310-15320. https://doi.org/10.1007/s11356-016-6699-9
  12. Jacob, J., and Gopi, S. Isolation and physicochemical characterization of biopolymers. Biopolymers and their Industrial Applications. https://doi.org/10.1016/b978-0-12-819240-5.00003-1
  13. Yu, Z., Li, B., Chu, J., and Zhang, P. “Silica in situ enhanced PVA/chitosan biodegradable films for food packages.” Carbohydrate Polymers, Vol. 184, (2018), 214-220. https://doi.org/10.1016/j.carbpol.2017.12.043
  14. Abbas, W. A., Sharafeldin, I. M., Omar, M. M., and Allam, N. K. “Novel mineralized electrospun chitosan/PVA/TiO2 nanofibrous composites for potential biomedical applications: Computational and experimental insights.” Nanoscale Advances, Vol. 2, No. 4, (2020), 1512-1522. https://doi.org/10.1039/d0na00042f
  15. Collazo-Bigliardi, S., Ortega-Toro, R., and Chiralt Boix, A. “Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk.” Carbohydrate Polymers, Vol. 191, (2018), 205-215. https://doi.org/10.1016/j.carbpol.2018.03.022
  16. Oracion, J. P. L., Rosa, L. B. D. La, Budlayan, M. L. M., Rodriguez, M. J. D., Manigo, J. P., Patricio, J. N., Arco, S. D., Austria, E. S., Alguno, A. C., Deocaris, C. C., and Capangpangan, R. Y. “Simple one-pot in situ synthesis of gold and silver nanoparticles on bacterial cellulose membrane using polyethyleneimine.” Journal of Applied Science and Engineering (Taiwan), Vol. 24, No. 3, (2021), 351-357. https://doi.org/10.6180/jase.202106_24(3).0010
  17. Lakshumu Naidu, A., and Kona, S. “Experimental Study of the Mechanical Properties of Banana Fiber and Groundnut Shell Ash Reinforced Epoxy Hybrid Composite.” International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 4, (2018), 659-665. https://doi.org/10.5829/ije.2018.31.04a.18
  18. Ramakrishnan, A., Ravishankar, K., and Dhamodharan, R. “Preparation of nanofibrillated cellulose and nanocrystalline cellulose from surgical cotton and cellulose pulp in hot-glycerol medium.” Cellulose, Vol. 26, No. 5, (2019), 3127-3141. https://doi.org/10.1007/s10570-019-02312-4
  19. Ahmad Khorairi, A. N. S., Sofian-Seng, N. S., Othaman, R., Abdul Rahman, H., Mohd Razali, N. S., Lim, S. J., and Wan Mustapha, W. A. “A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications.” Food Reviews International, Vol. 39, No. 2, (2021), 663-688. https://doi.org/10.1080/87559129.2021.1926478
  20. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., and Guan, G. “Nanocellulose: Extraction and application.” Carbon Resources Conversion, Vol. 1, No. 1, (2018), 32-43. https://doi.org/10.1016/j.crcon.2018.05.004
  21. Zaaba, N. F., Jaafar, M., and Ismail, H. “Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced PLA bionanocomposites: A review.” Polymer Engineering and Science, Vol. 61, No. 1, (2021), 22-38. https://doi.org/10.1002/pen.25560
  22. Norfarhana, A. S., Ilyas, R. A., and Ngadi, N. “A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment.” Carbohydrate Polymers, Vol. 291, , (2022), 119563. https://doi.org/10.1016/j.carbpol.2022.119563
  23. Xu, T., Du, H., Liu, H., Liu, W., Zhang, X., Si, C., Liu, P., and Zhang, K. “Advanced Nanocellulose‐Based Composites for Flexible Functional Energy Storage Devices.” Advanced Materials, Vol. 33, No. 48, (2021), 2101368. https://doi.org/https://doi.org/10.1002/adma.202101368
  24. Arun, R., Shruthy, R., Preetha, R., and Sreejit, V. “Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging.” Chemosphere, Vol. 291, (2022), 132786. https://doi.org/10.1016/j.chemosphere.2021.132786
  25. Ismail, N. F., Sulong, A. B., Muhamad, N., Tholibon, D., MdRadzi, M. K. F., and WanIbrahim, W. A. S. “Review of the Compression Moulding of Natural Fiber-Reinforced Thermoset Composites: Material Processing and Characterisations.” Pertanika Journal of Tropical Agricultural Science, Vol. 38, No. 4, (2015), 533-547.
  26. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., and Imam, S. H. “Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior.” Carbohydrate Polymers, Vol. 81, No. 1, (2010), 83-92. https://doi.org/10.1016/j.carbpol.2010.01.059
  27. Wu, J., Du, X., Yin, Z., Xu, S., Xu, S., and Zhang, Y. “Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films.” Carbohydrate Polymers, Vol. 211, (2019), 49-56. https://doi.org/10.1016/j.carbpol.2019.01.093
  28. Wang, S., Zou, Q., Zhang, L., Zheng, W., Huang, X., and Zhang, J. “A new nanocellulose prepared from waste coconut shell fibers based on a novel ultrasonic - Active agent combination method: Preparation principle and performances in cement matrix.” Industrial Crops and Products, Vol. 197, (2023), 116607. https://doi.org/10.1016/j.indcrop.2023.116607
  29. Li, G., Luo, H., Xia, W., Xu, X., and Zhang, Y. “Preparation and properties of nano coir cellulose whiskers enhanced cs/pva composite film.” Materials Science Forum, Vol. 999, (2020), 145-154. https://doi.org/10.4028/www.scientific.net/MSF.999.145
  30. Poornachandhra, C., Jayabalakrishnan, R. M., Balasubramanian, G., Lakshmanan, A., Selvakumar, S., Maheswari, M., and John, J. E. “Coconut Husk Fiber: A Low-Cost Bioresource for the Synthesis of High-Value Nanocellulose.” Biointerface Research in Applied Chemistry, Vol. 13, No. 6, (2023), 1-25. https://doi.org/10.33263/BRIAC136.504
  31. Nurdiana, O., Sam, S. T., and Faiq, A. M. “Optimization of the product of nanocrystalline cellulose from coconut husks.” In International Conference on Advanced Manufacturing and Industry Applications (Vol. 429, 012041). IOP Conf. Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/429/1/012041
  32. Silviana, S., and Dzulkarom, M. C. “Synthesis of Cassava Bagasse Starch-Based Biocomposite Reinforced Woven Bamboo Fibre with Lime Juice as Crosslinker and Epoxidized Waste Cooking Oil (EWCO) as Bioplasticizer.” In The 3rd International Conference of Chemical and Materials Engineering (Vol. 1295, 012076). IOP Conf. Series: Journal of Physics: Conf. Series. https://doi.org/10.1088/1742-6596/1295/1/012076
  33. Van Hai, L., Pham, D. H., and Kim, J. “Effect of Bleaching and Hot-Pressing Conditions on Mechanical Properties of Compressed Wood.” Polymers, Vol. 14, No. 14, (2022). https://doi.org/10.3390/polym14142901
  34. Sun, B., Zhang, M., Hou, Q., Liu, R., Wu, T., and Si, C. “Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers.” Cellulose, Vol. 23, No. 1, (2016), 439-450. https://doi.org/10.1007/s10570-015-0803-z
  35. Wulandari, W. T., Rochliadi, A., and Arcana, I. M. “Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse.” In 10th Joint Conference on Chemistry (Vol. 107, 012045). IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/107/1/012045
  36. Azhar, O., Jahan, Z., Sher, F., Niazi, M. B. K., Kakar, S. J., and Shahid, M. “Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility.” Materials Science and Engineering C, Vol. 126, (2021), 112127. https://doi.org/10.1016/j.msec.2021.112127
  37. Ntshangase, N. C., Sadare, O. O., and Daramola, M. O. “Effect of silica sodalite functionalization and pva coating on performance of sodalite infused psf membrane during treatment of acid mine drainage.” Membranes, Vol. 11, No. 5, (2021), 1-16. https://doi.org/10.3390/membranes11050315
  38. Ramaswamy, S., Dwarampudi, L. P., Kadiyala, M., Kuppuswamy, G., Veera Venkata Satyanarayana Reddy, K., Kumar, C. K. A., and Paranjothy, M. “Formulation and characterization of chitosan encapsulated phytoconstituents of curcumin and rutin nanoparticles.” International Journal of Biological Macromolecules, Vol. 104, , (2017), 1807-1812. https://doi.org/10.1016/j.ijbiomac.2017.06.112
  39. de Lima, G. F., de Souza, A. G., and Rosa, D. dos S. “Nanocellulose as Reinforcement in Carboxymethylcellulose Superabsorbent Nanocomposite Hydrogels.” Macromolecular Symposia, Vol. 394, No. 1, (2020), 1-9. https://doi.org/10.1002/masy.202000126
  40. Li, H. Z., Chen, S. C., and Wang, Y. Z. “Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan.” Composites Science and Technology, Vol. 115, (2015), 60-65. https://doi.org/10.1016/j.compscitech.2015.05.004
  41. Gulati, K., Lal, S., Diwan, P. K., and Arora, S. “Investigation of Thermal, Mechanical, Morphological and Optical Properties of Polyvinyl alcohol Films Reinforced with Buddha Coconut (Sterculia alata) Leaf Fiber.” International Journal of Applied Engineering Research, Vol. 14, No. 1, (2019), 170-179.
  42. Nissa, R. C., Fikriyyah, A. K., Abdullah, A. H. D., and Pudjiraharti, S. “Preliminary study of biodegradability of starch-based bioplastics using ASTM G21-70, dip-hanging, and Soil Burial Test methods.” In 3rd International Symposium on Green Technology for Value Chains 2018 (Vol. 277, p. 012007). IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/277/1/012007
  43. Md Salim, R., Asik, J., and Sarjadi, M. S. “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark.” Wood Science and Technology, Vol. 55, No. 2, (2021), 295-313. https://doi.org/10.1007/s00226-020-01258-2
  44. Su, G., Zhou, T., Liu, X., and Zhang, Y. “Two-step volume phase transition mechanism of poly(N-vinylcaprolactam) hydrogel online-tracked by two-dimensional correlation spectroscopy.” Physical Chemistry Chemical Physics, Vol. 19, No. 40, (2017), 27221-27232. https://doi.org/10.1039/c7cp04571a
  45. Yao, S. F., Chen, X. T., and Ye, H. M. “Investigation of Structure and Crystallization Behavior of Poly(butylene succinate) by Fourier Transform Infrared Spectroscopy.” Journal of Physical Chemistry B, Vol. 121, No. 40, (2017), 9476-9485. https://doi.org/10.1021/acs.jpcb.7b07954
  46. Julie Chandra, C. S., George, N., and Narayanankutty, S. K. “Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.” Carbohydrate Polymers, Vol. 142, , (2016), 158-166. https://doi.org/10.1016/j.carbpol.2016.01.015
  47. Scholtzová, E., Kucková, L., Kožíšek, J., and Tunega, D. “Structural and spectroscopic characterization of ettringite mineral-combined DFT and experimental study.” Journal of Molecular Structure, Vol. 1100, (2015), 215-224. https://doi.org/10.1016/j.molstruc.2015.06.075
  48. Bakri, B., Putra, A. E. E., Mochtar, A. A., Renreng, I., and Arsyad, H. “Sodium Bicarbonate Treatment on Mechanical and Morphological Properties of Coir Fibres.” International Journal of Automotive and Mechanical Engineering, Vol. 15, No. 3, (2018), 5562-5572. https://doi.org/https://doi.org/10.15282/ijame.15.3.2018.12.0427
  49. Moosavinejad, S. M., Madhoushi, M., Vakili, M., and Rasouli, D. “Evaluation of degradation in chemical compounds of wood in historical buildings using Ft-Ir And Ft-Raman vibrational spectroscopy.” Maderas: Ciencia y Tecnologia, Vol. 21, No. 3, (2019), 381-392. https://doi.org/10.4067/S0718-221X2019005000310
  50. Chen, C., Luo, J., Qin, W., and Tong, Z. “Elemental analysis, chemical composition, cellulose crystallinity, and FT-IR spectra of Toona sinensis wood.” Monatshefte Fur Chemie, Vol. 145, No. 1, (2014), 175-185. https://doi.org/10.1007/s00706-013-1077-5
  51. Bose, S., and Das, C. “Sawdust: From wood waste to pore-former in the fabrication of ceramic membrane.” Ceramics International, Vol. 41, No. 3, (2015), 4070-4079. https://doi.org/10.1016/j.ceramint.2014.11.101
  52. Ling, Z., Chen, S., Zhang, X., and Xu, F. “Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis.” Bioresource Technology, Vol. 224, (2017), 611-617. https://doi.org/10.1016/j.biortech.2016.10.064
  53. Turki, A., El Oudiani, A., Msahli, S., and Sakli, F. “Investigation of OH bond energy for chemically treated alfa fibers.” Carbohydrate Polymers, Vol. 186, (2018), 226-235. https://doi.org/10.1016/j.carbpol.2018.01.030
  54. Han, D., Lu, D., and Meng, F. “Dielectric and photoluminescence properties of fine-grained BaTiO3 ceramics co-doped with amphoteric Sm and valence-variable Cr.” RSC Advances, Vol. 9, No. 8, (2019), 4469-4479. https://doi.org/10.1039/c8ra09326a
  55. Heperkan, D., and Gökmen, E. “Application of fourier transform infrared (FTIR) spectroscopy for rapid detection of fumonisin B2 in raisins.” Journal of AOAC International, Vol. 99, No. 4, (2016), 899-905. https://doi.org/10.5740/jaoacint.16-0156
  56. Chang, J. K. W., Duret, X., Berberi, V., Zahedi-Niaki, H., and Lavoie, J. M. “Two-step thermochemical cellulose hydrolysis with partial neutralization for glucose production.” Frontiers in Chemistry, Vol. 6, (2018), 117. https://doi.org/10.3389/fchem.2018.00117
  57. Lu, H., Gui, Y., Zheng, L., and Liu, X. “Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue.” Food Research International, Vol. 50, No. 1, (2013), 121-128. https://doi.org/10.1016/j.foodres.2012.10.013
  58. Pereira, A. L. S., Nascimento, D. M. D., Souza Filho, M. D. S. M., Morais, J. P. S., Vasconcelos, N. F., Feitosa, J. P. A., Brígida, A. I. S., and Rosa, M. D. F. “Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems.” Carbohydrate Polymers, Vol. 112, (2014), 165-172. https://doi.org/10.1016/j.carbpol.2014.05.090
  59. Ogundare, S. A., Moodley, V., and van Zyl, W. E. “Nanocrystalline cellulose isolated from discarded cigarette filters.” Carbohydrate Polymers, Vol. 175, (2017), 273-281. https://doi.org/10.1016/j.carbpol.2017.08.008
  60. Gan, P. G., Sam, S. T., Bin Abdullah, M. F., Bin Zulkepli, N. N., and Yeong, Y. F. “Characterization of nanocrystalline cellulose isolated from empty fruit bunch using acid hydrolysis.” Solid State Phenomena, Vol. 264, (2017), 9-12. https://doi.org/10.4028/www.scientific.net/SSP.264.9
  61. Yang, X., Han, F., Xu, C., Jiang, S., Huang, L., Liu, L., and Xia, Z. “Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk.” Industrial Crops and Products, Vol. 109, (2017), 241-247. https://doi.org/10.1016/j.indcrop.2017.08.032
  62. Chen, Y. W., Lee, H. V., and Hamid, S. B. A. “Preparation of nanostructured cellulose via Cr(III)- and Mn(II)-transition metal salt catalyzed acid hydrolysis approach.” BioResources, Vol. 11, No. 3, (2016), 7224-7241. https://doi.org/10.15376/biores.11.3.7224-7241
  63. Kouadri, I., and Satha, H. “Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds.” Industrial Crops and Products, Vol. 124, (2018), 787-796. https://doi.org/10.1016/j.indcrop.2018.08.051
  64. Sampath, U. G. T. M., Ching, Y. C., Chuah, C. H., Singh, R., and Lin, P. C. “Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel.” Cellulose, Vol. 24, No. 5, (2017), 2215-2228. https://doi.org/10.1007/s10570-017-1251-8
  65. Gan, P. G., Sam, S. T., Abdullah, M. F. bin, and Omar, M. F. “Thermal properties of nanocellulose-reinforced composites: A review.” Journal of Applied Polymer Science, Vol. 137, No. 11, (2020). https://doi.org/10.1002/app.48544
  66. Malgas, S., Kwanya Minghe, V. M., and Pletschke, B. I. “The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Trichoderma reesei to cellulose.” Cellulose, Vol. 27, No. 2, (2020), 781-797. https://doi.org/10.1007/s10570-019-02848-5
  67. Ioelovich, M. “Preparation, characterization and application of amorphized cellulose—a review.” Polymers, Vol. 13, No. 24, (2021). https://doi.org/10.3390/polym13244313
  68. Shi, S. C., and Liu, G. T. “Cellulose nanocrystal extraction from rice straw using a chlorine-free bleaching process.” Cellulose, Vol. 28, No. 10, (2021), 6147-6158. https://doi.org/10.1007/s10570-021-03889-5
  69. M. Kamal, Abdelrazek, E. M., Sellow, N. M., and Abdelghany, A. M. “Synthesis and optimization of Novel Chitosan/Cellulose Acetate Natural Polymer Membrane for water treatment.” Energies, Vol. 6, No. 1, (2018), 1-8. https://doi.org/https://doi.org/10.24297/jap.v14i1.7183
  70. Mallakpour, S., and Rashidimoghadam, S. “Preparation, characterization, and in vitro bioactivity study of glutaraldehyde crosslinked chitosan/poly(vinyl alcohol)/ascorbic acid-MWCNTs bionanocomposites.” International Journal of Biological Macromolecules, Vol. 144, (2020), 389-402. https://doi.org/10.1016/j.ijbiomac.2019.12.073
  71. Zhang, Y., Luo, B., and Sun, Y. “Properties of Ultraviolet-Shielding Composite Film Prepared from Cellulose Acetate with Eu(III) Complex.” Chemistry Select, Vol. 5, No. 5, (2020), 1688-1693. https://doi.org/10.1002/slct.201903237
  72. Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., and Rocha, H. A. O. “Does the use of chitosan contribute to oxalate kidney stone formation?” Marine Drugs, Vol. 13, No. 1, (2015), 141-158. https://doi.org/10.3390/md13010141
  73. Adel, A. M., El-Shafei, A. M., Ibrahim, A. A., and Al-Shemy, M. T. “Chitosan/nanocrystalline cellulose biocomposites based on date palm (Phoenix dactylifera L.) sheath fibers.” Journal of Renewable Materials, Vol. 7, No. 6, (2019), 567-582. https://doi.org/10.32604/jrm.2019.00034
  74. Kong, L., Stapleton, J. J., and Ziegler, G. R. “Characterization of macromolecular orientation in κ-carrageenan fibers using polarized Fourier-transform infrared spectroscopy.” Vibrational Spectroscopy, Vol. 94, (2018), 61-65. https://doi.org/10.1016/j.vibspec.2017.12.004
  75. Hu, D., Qiang, T., and Wang, L. “Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application.” Wound Medicine, Vol. 16, , (2017), 15-21. https://doi.org/10.1016/j.wndm.2016.12.003
  76. Tabarsa, M., You, S. G., Dabaghian, E. H., and Surayot, U. “Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities.” Journal of Food and Drug Analysis, Vol. 26, No. 2, (2018), 599-608. https://doi.org/10.1016/j.jfda.2017.07.016
  77. Shankar, S., and Rhim, J. W. “Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.” Carbohydrate Polymers, Vol. 135, (2016), 18-26. https://doi.org/10.1016/j.carbpol.2015.08.082
  78. Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., and Liou, N. S. “Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber.” Materials, Vol. 9, No. 8, (2016), 1-16. https://doi.org/10.3390/ma9080644
  79. Yudhanto, F., Jamasri, Rochardjo, H. S. B., and Kusumaatmaja, A. “Experimental study of polyvinyl alcohol nanocomposite film reinforced by cellulose nanofibers from agave cantala.” International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 4, (2021), 987-998. https://doi.org/10.5829/ije.2021.34.04a.25
  80. Perumal, A. B., Sellamuthu, P. S., Nambiar, R. B., and Sadiku, E. R. “Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw.” Applied Surface Science, Vol. 449, (2018), 591-602. https://doi.org/10.1016/j.apsusc.2018.01.022
  81. Abdolrahimi, M., Seifi, M., and Ramezanzadeh, M. H. “Study the effect of acetic acid on structural, optical and mechanical properties of PVA/chitosan/MWCNT films.” Chinese Journal of Physics, Vol. 56, No. 1, (2018), 221-230. https://doi.org/10.1016/j.cjph.2017.12.018
  82. Mandal, A., and Chakrabarty, D. “Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse.” Journal of Industrial and Engineering Chemistry, Vol. 20, No. 2, (2014), 462-473. https://doi.org/10.1016/j.jiec.2013.05.003
  83. Su, J., and Zhang, J. “Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO 3 with different polar surface tension.” Applied Surface Science, Vol. 388, , (2016), 531-538. https://doi.org/10.1016/j.apsusc.2015.10.156
  84. Rhim, J. W., Wang, L. F., and Hong, S. I. “Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity.” Food Hydrocolloids, Vol. 33, No. 2, (2013), 327-335. https://doi.org/10.1016/j.foodhyd.2013.04.002
  85. Boldt, R., Gohs, U., Wagenknecht, U., and Stamm, M. “Effect of electron-induced reactive processing on morphology and structural properties of high-density polyethylene.” Polymer, Vol. 95, (2016), 1-8. https://doi.org/10.1016/j.polymer.2016.04.044
  86. AlMaadeed, M. A., Nógellová, Z., Mičušík, M., Novák, I., and Krupa, I. “Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder.” Materials and Design, Vol. 53, (2014), 29-37. https://doi.org/10.1016/j.matdes.2013.05.093
  87. Zhou, P., Luo, Y., Lv, Z., Sun, X., Tian, Y., and Zhang, X. “Melt-processed poly (vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties.” International Journal of Biological Macromolecules, Vol. 183, (2021), 1903-1910. https://doi.org/10.1016/j.ijbiomac.2021.06.011
  88. Syafri, E., Sudirman, Mashadi, Yulianti, E., Deswita, Asrofi, M., Abral, H., Sapuan, S. M., Ilyas, R. A., and Fudholi, A. “Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites.” Journal of Materials Research and Technology, Vol. 8, No. 6, (2019), 6223-6231. https://doi.org/10.1016/j.jmrt.2019.10.016
  89. Van Nguyen, S., and Lee, B. K. “Polyvinyl alcohol/cellulose nanocrystals/alkyl ketene dimer nanocomposite as a novel biodegradable food packing material.” International Journal of Biological Macromolecules, Vol. 207, (2022), 31-39. https://doi.org/10.1016/j.ijbiomac.2022.02.184
  90. Luzi, F., Fortunati, E., Jiménez, A., Puglia, D., Pezzolla, D., Gigliotti, G., Kenny, J. M., Chiralt, A., and Torre, L. “Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres.” Industrial Crops and Products, Vol. 93, (2016), 276-289. https://doi.org/10.1016/j.indcrop.2016.01.045