Design of a Printed Circuit Board for Real-time Monitoring and Control of Pipeline’s Cathodic Protection System via IoT and a Cloud Platform

Document Type : Original Article

Authors

1 Institute of maintenance and Industrial Safety, University of Oran 2 Mohamed Ben Ahmed, B.P 170, El M’Naouer, Oran, Algeria

2 Laboratoire d’Ingénierie en Sécurité Industrielle et Développement Durable (LISIDD), University of Oran 2 Mohamed Ben Ahmed, Algeria

Abstract

The integration of Internet of Things (IoT) and cloud-based cathodic protection (CP) systems is an innovative approach that can lead to improve pipeline protection from corrosion. Using a printed circuit board (PCB) to measure and control current and voltage makes it possible to monitor PC systems in real time. The web interface that is connected to the PCB circuit through IoT technology provides a platform for instant evaluation of the data obtained, thereby enabling early detection of potential problems. One of the key benefits of real-time monitoring is improved data management and security. The data obtained can be stored on a cloud server, making it easier to access and analyze. This eliminates the need for manual inspections, which can be time-consuming and error-prone. Additionally, real-time monitoring can reduce downtime, as problems can be detected and resolved quickly, preventing the need for lengthy manual inspections and maintenance. This innovative approach has tremendous potential for the future of pipeline protection and corrosion control. The developed PCB circuit features a mobile UART that provides program protection, and the interface can control multiple PCB cards and relays independently. The monitoring system can be updated without interrupting data acquisition. The use of open-source software, database hosting, and low-cost PCB development facilitates commercialization. This study could inspire new applications in asset management and monitoring.

Keywords

Main Subjects


  1. Ma, Q., Tian, G., Zeng, Y., Li, R., Song, H., Wang, Z., Gao, B. and Zeng, K., "Pipeline in-line inspection method, instrumentation and data management", Sensors, Vol. 21, No. 11, (2021), 3862. doi: https://doi.org/10.3390/s21113862.
  2. Mattsson, E., "Basic corrosion technology for scientists and engineers, CRC Press, (2023).
  3. Bai, X., Zhao, Y. and Xu, L., "Study on corrosion prevention and treatment in long-distance oil and gas pipeline", in IOP Conference Series: Earth and Environmental Science, IOP Publishing. Vol. 384, No. 1, (2019), 012178. doi: 10.1088/1755-1315/384/1/012178.
  4. Fayomi, O., Akande, I. and Odigie, S., "Economic impact of corrosion in oil sectors and prevention: An overview", Journal of Physics: Conference Series, Vol. 1378, No. 2, (2019), 022037. doi: 10.1088/1742-6596/1378/2/022037.
  5. Ahmad, F. and Faisal, M., Challenges generated by the integration of cloud and iot, in Cloud iot. 2022, Chapman and Hall/CRC: New York.3-23.
  6. Ali, Z.H., Ali, H.A. and Badawy, M.M., "Internet of things (iot): Definitions, challenges and recent research directions", International Journal of Computer Applications, Vol. 128, No. 1, (2015), 37-47. doi: 10.5120/ijca2015906430.
  7. Ramchand, K., Chhetri, M.B. and Kowalczyk, R., "Enterprise adoption of cloud computing with application portfolio profiling and application portfolio assessment", Journal of Cloud Computing, Vol. 10, (2021), 1-18. doi: https://doi.org/10.1186/s13677-020-00210-w.
  8. Singh, P., Elmi, Z., Lau, Y.-y., Borowska-Stefańska, M., Wiśniewski, S. and Dulebenets, M.A., "Blockchain and ai technology convergence: Applications in transportation systems", Vehicular Communications, (2022), 100521. doi: https://doi.org/10.1016/j.vehcom.2022.100521.
  9. Singh, P., Dulebenets, M.A., Pasha, J., Gonzalez, E.D.S., Lau, Y.-Y. and Kampmann, R., "Deployment of autonomous trains in rail transportation: Current trends and existing challenges", IEEE Access, Vol. 9, (2021), 91427-91461. doi: https://doi.org/10.1109/ACCESS.2021.3091550..
  10. Singh, P., Elmi, Z., Meriga, V.K., Pasha, J. and Dulebenets, M.A., "Internet of things for sustainable railway transportation: Past, present, and future", Cleaner Logistics and Supply Chain, Vol. 4, (2022), 100065. doi: https://doi.org/10.1016/j.clscn.2022.100065.
  11. Dave, B., Kubler, S., Främling, K. and Koskela, L., "Opportunities for enhanced lean construction management using internet of things standards", Automation in Construction, Vol. 61, (2016), 86-97. doi: https://doi.org/10.1016/j.autcon.2015.10.009.
  12. Orumwense, E.F. and Abo-Al-Ez, K., "Internet of things for smart energy systems: A review on its applications, challenges and future trends", AIMS Electronics and Electrical Engineering, Vol. 7, No. 1, (2023), 50-74. doi: https://doi.org/10.3934/electreng.2023004.
  13. Mazhar, T., Irfan, H.M., Haq, I., Ullah, I., Ashraf, M., Shloul, T.A., Ghadi, Y.Y. and Elkamchouchi, D.H., "Analysis of challenges and solutions of iot in smart grids using ai and machine learning techniques: A review", Electronics, Vol. 12, No. 1, (2023), 242. doi: https://doi.org/10.3390/electronics12010242.
  14. Rayan, R.A., Zafar, I. and Tsagkaris, C., "Iot technologies for smart healthcare", Advances in Data Science and Analytics: Concepts and Paradigms, (2023), 181-202. doi: https://doi.org/10.1002/9781119792826.ch8.
  15. Hemdan, E.E.-D., Essa, Y.M., Shouman, M., El-Sayed, A. and Moustafa, A.N., "An efficient iot based smart water quality monitoring system", Multimedia Tools and Applications, (2023), 1-25. doi: https://doi.org/10.1007/s11042-023-14504-z.
  16. Mahor, V., Bijrothiya, S., Rawat, R., Kumar, A., Garg, B. and Pachlasiya, K., Iot and artificial intelligence techniques for public safety and security, in Smart urban computing applications. 2023, River Publishers: New York.111.
  17. Bhosale, S.A., Artificial intelligence and iot for smart cities, in Smart Urban Computing Applications. 2023, River Publishers: New York.207.
  18. Khaleghi Abbasabadi, M., Esmaili Zand, H.R., Khodabakhshi, S., Gholami, P. and Rashidi, A., "Synthesis of new functionalized reduced graphene oxide quantum dot composite for high-performance NO2 gas sensor", Research on Chemical Intermediates, Vol. 47, (2021), 2279-2296. doi: https://doi.org/10.1007/s11164-020-04393-4.
  19. Gheibi, M., Taghavian, H., Moezzi, R., Waclawek, S., Cyrus, J., Dawiec-Lisniewska, A., Koci, J. and Khaleghiabbasabadi, M., "Design of a decision support system to operate a NO2 gas sensor using machine learning, sensitive analysis and conceptual control process modelling", Chemosensors, Vol. 11, No. 2, (2023), 126. doi: https://doi.org/10.3390/chemosensors11020126.
  20. Kiyan, A., Gheibi, M., Akrami, M., Moezzi, R. and Behzadian, K., "A comprehensive platform for air pollution control system operation in smart cities of developing countries: A case study of tehran", Environmental Industry Letters, Vol. 1, No. 1, (2023), 10-27. doi: https://doi.org/10.15157/EIL.2023.1.1.10-27.
  21. Gholami, P., Rashidi, A., Khaleghi Abbasabadi, M., Pourkhalil, M., Jahangiri, M. and Izadi, N., "Synthesis and characterization of zno-functionalized multiwall carbon nanotubes nanocomposite as NO x gas sensor", Research on Chemical Intermediates, Vol. 46, (2020), 3911-3927. doi: https://doi.org/10.1007/s11164-020-04181-0.
  22. Kiyan, A., Gheibi, M., Akrami, M., Moezzi, R., Behzadian, K. and Taghavian, H., "The operation of urban water treatment plants: A review of smart dashboard frameworks", Environmental Industry Letters, Vol. 1, No. 1, (2023), 28-45. doi: https://doi.org/10.15157/EIL.2023.1.1.28-45.
  23. Kiyan, A., Gheibi, M., Moezzi, R. and Behzadian, K., "Smart dashboard of water distribution network operation: A case study of tehran", Environmental Industry Letters, Vol. 1, No. 1, (2023), 46-63. doi: http://dx.doi.org/10.15157/EIL.2023.1.1.46-63.
  24. Kia, G. and Hassanzadeh, A., "Hyrep: A hybrid low-power protocol for wireless sensor networks", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 4, (2019), 519-527. doi: https://doi.org/10.5829/ije.2019.32.04a.09.
  25. Kodali, R.K. and Soratkal, S., "Mqtt based home automation system using esp8266", in 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), IEEE. (2016), 1-5. doi: 10.1109/R10-HTC.2016.7906845.
  26. Mononen, T. and Mattila, J., "A low-cost cloud-extended sensor network for supervisory control", in 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), IEEE. (2017), 502-507. doi: 10.1109/ICCIS.2017.8274827.
  27. Medrano, K., Altuve, D., Belloso, K. and Bran, C., "Development of scada using a rtu based on iot controller", in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), IEEE. (2018), 1-6. doi: 10.1109/ICA-ACCA.2018.8609700.
  28. Kara, A., Al Imran, M.A. and Karadag, K., "Linear wireless sensor networks for cathodic protection monitoring of pipelines", in 2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), Bali, Indonesia, IEEE. (2019 of Conference), 233-236. doi: https://doi.org/10.1109/MoRSE48060.2019.8998664.
  29. Li, L. and Wang, Y., "Sensing terminal for big data oil and gas pipeline corrosion monitoring", in 2020 International Conference on Computer Network, Electronic and Automation (ICCNEA), IEEE. (2020), 279-283. doi: 10.1109/ICCNEA50255.2020.00064.
  30. Singh, R., Baz, M., Narayana, C.L., Rashid, M., Gehlot, A., Akram, S.V., Alshamrani, S.S., Prashar, D. and AlGhamdi, A.S., "Zigbee and long-range architecture based monitoring system for oil pipeline monitoring with the internet of things", Sustainability, Vol. 13, No. 18, (2021), 10226. doi: https://doi.org/10.3390/su131810226.
  31. Aba, E.N., Olugboji, O.A., Nasir, A., Olutoye, M. and Adedipe, O., "Petroleum pipeline monitoring using an internet of things (iot) platform", SN Applied Sciences, Vol. 3, (2021), 1-12. doi: https://doi.org/10.1007/s42452-021-04225-z.
  32. Puviarasi, R., Dineshkumar, T., Babu, V.S. and Partheeban, P., "Design and development of smart portable system for underground pipeline leakage monitoring based on iot", in Journal of Physics: Conference Series, IOP Publishing. Vol. 1964, No. 6, (2021), 062065. doi: 10.1088/1742-6596/1964/6/062065.
  33. Priyanka, E.B., Maheswari, C. and Thangavel, S., "A smart‐integrated iot module for intelligent transportation in oil industry", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 34, No. 3, (2021), e2731. doi: 10.1002/jnm.2731.
  34. Chavala, L.N., Singh, R. and Gehlot, A., "Performance evaluation of lora based sensor node and gateway architecture for oil pipeline management", International Journal of Electrical and Computer Engineering, Vol. 12, No. 1, (2022), 974. doi: 10.11591/ijece.v12i1.pp974-982.
  35. Yas, A.K. and Al Qassab, A., "Oil and gas pipelines monitoring using iot platform", Iraqi Journal of Information and Communication Technology, Vol. 6, No. 1, (2023), 9-27. doi: https://doi.org/10.31987/ijict.6.1.209.
  36. Li, W., Ye, Z., Wang, Y., Yang, H., Yang, S., Gong, Z. and Wang, L., "Development of a distributed mr-iot method for operations and maintenance of underground pipeline network", Tunnelling and Underground Space Technology, Vol. 133, (2023), 104935. doi: https://doi.org/10.1016/j.tust.2022.104935.
  37. Wu, Q., Chen, X., Yu, H., Liu, Q. and Yang, Y., "Real-time data visualization method for oil pipeline monitoring based on internet of things", IOP Conference Series: Materials Science and Engineering, Vol. 768, No. 5, (2020), 052124. doi: 10.1088/1757-899X/768/5/052124.
  38. Mansouri, N., "An efficient task scheduling based on seagull optimization algorithm for heterogeneous cloud computing platforms", International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 2, (2022), 433-450. doi: https://doi.org/10.5829/ije.2022.35.02b.20.
  39. Datasheet. Electronic components datasheet search. 2023; Available from: https://www.alldatasheet.com/.
  40. Ismail, M.F.H., May, Z., Asirvadam, V.S. and Nayan, N.A., "Machine-learning-based classification for pipeline corrosion with monte carlo probabilistic analysis", Energies, Vol. 16, No. 8, (2023), 3589. doi: https://doi.org/10.3390/en16083589.
  41. Ferreira, A.D.M., Afonso, S.M., Willmersdorf, R.B. and Lyra, P.R., "Multiresolution analysis and deep learning for corroded pipeline failure assessment", Advances in Engineering Software, Vol. 162, (2021), 103066. doi: https://doi.org/10.1016/j.advengsoft.2021.103066.
  42. Li, Y.-T., He, X.-N. and Shuai, J., "Risk analysis and maintenance decision making of natural gas pipelines with external corrosion based on bayesian network", Petroleum Science, Vol. 19, No. 3, (2022), 1250-1261. doi: https://doi.org/10.1016/j.petsci.2021.09.016.
  43. Zhang, J., Ai, Z., Guo, L. and Cui, X., "Reliability evaluation of a disaster airflow emergency control system based on bayesian networks", International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 11, (2020), 2416-2424. doi: https://doi.org/10.5829/ije.2020.33.11b.32.
  44. Liu, X., Zheng, J., Fu, J., Nie, Z. and Chen, G., "Optimal inspection planning of corroded pipelines using bn and ga", Journal of Petroleum Science and Engineering, Vol. 163, (2018), 546-555. doi: https://doi.org/10.1016/j.petrol.2018.01.030.
  45. Seghier, M.E.A.B., Keshtegar, B., Tee, K.F., Zayed, T., Abbassi, R. and Trung, N.T., "Prediction of maximum pitting corrosion depth in oil and gas pipelines", Engineering Failure Analysis, Vol. 112, (2020), 104505. doi: https://doi.org/10.1016/j.engfailanal.2020.104505.
  46. Gong, C. and Zhou, W., "Multi-objective maintenance strategy for in-service corroding pipelines using genetic algorithms", Structure and Infrastructure Engineering, Vol. 14, No. 11, (2018), 1561-1571. doi: https://doi.org/10.1080/15732479.2018.1459744.
  47. Khussanov, Z., Prokhorov, O., Prokhorov, V., Tevyashev, A., Turdybekova, D. and Shatalov, O., "Adaptive intelligent system for monitoring and control the parameters of pipelines electrochemical corrosion protection", in 2022 International Conference on Smart Information Systems and Technologies (SIST), IEEE. (2022), 1-7. doi: https://doi.org/10.1109/SIST54437.2022.9945734.
  48. Zhao, H. and Zhang, C., "An online-learning-based evolutionary many-objective algorithm", Information Sciences, Vol. 509, (2020), 1-21. doi: https://doi.org/10.1016/j.ins.2019.08.069.
  49. Kavoosi, M., Dulebenets, M.A., Abioye, O., Pasha, J., Theophilus, O., Wang, H., Kampmann, R. and Mikijeljević, M., "Berth scheduling at marine container terminals: A universal island-based metaheuristic approach", Maritime Business Review, Vol. 5, No. 1, (2019), 30-66. doi: https://doi.org/10.1108/MABR-08-2019-0032.
  50. Pasha, J., Nwodu, A.L., Fathollahi-Fard, A.M., Tian, G., Li, Z., Wang, H. and Dulebenets, M.A., "Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings", Advanced Engineering Informatics, Vol. 52, (2022), 101623. doi: https://doi.org/10.1016/j.aei.2022.101623.
  51. Dulebenets, M.A., "An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal", Information Sciences, Vol. 565, (2021), 390-421. doi: https://doi.org/10.1016/j.ins.2021.02.039.
  52. Sumi, L. and Ranga, V., "Intelligent traffic management system for prioritizing emergency vehicles in a smart city", International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 2, (2018), 278-283. doi: 10.5829/ije.2018.31.02b.11.
  53. Rabbani, M., Oladzad-Abbasabady, N. and Akbarian-Saravi, N., "Ambulance routing in disaster response considering variable patient condition: Nsga-ii and mopso algorithms", Journal of Industrial and Management Optimization, Vol. 18, No. 2, (2022), 1035-1062. doi: 10.3934/JIMO.2021007.
  54. Gholizadeh, H., Fazlollahtabar, H., Fathollahi-Fard, A.M. and Dulebenets, M.A., "Preventive maintenance for the flexible flowshop scheduling under uncertainty: A waste-to-energy system", Environmental Science and Pollution Research, (2021), 1-20. doi: https://doi.org/10.1007/s11356-021-16234-x.