Development of Steel Yielding Seismic Dampers Used to Improve Seismic Performance of Structures: A Comprehensive Review

Document Type : Original Article

Authors

Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Seismic excitation can cause significant energy to be released within structures. By using special devices, this energy can be consumed and dissipated without deforming structural members significantly. Due to this, structural damage is minimized, casualties are prevented during earthquakes, and structures are extended in their useful life. Over the past five decades, it has been widely acknowledged that steel yielding dampers are among the best energy dissipation devices. It has been stated that the hysteretic behavior of steel yielding dampers could vary slightly depending on their geometry. From a practical point of view, they are suitable for the improvement of seismic safety in new and existing structures. The purpose of this paper is to present a review related to steel yielding dampers, their development, various types, and applications, in order to help understand the role of these dampers in improving the seismic performance of structures. In terms of their shape, steel yielding dampers can be categorized as steel plate dampers, pipe dampers, curved dampers, and slit dampers. The most common use of steel plate, such as ADAS and TADAS, and pipe dampers is within braced frames, whereas U-shaped, J-shaped, and S-shaped dampers are mostly seen in frames with chevron bracing. Steel curved dampers with a 60° angle in a steel-braced frame, on the other hand, provide the best energy dissipation and frame strength. In this direction, until today, steel slit dampers have been found to be the most commonly used steel yielding dampers.

Keywords

Main Subjects


  1. Ghaedi, K. and Ibrahim, Z., "Earthquake prediction", Earthquakes-Tectonics, Hazard and Risk Mitigation, (2017), 205-227. doi: 10.5772/65511.
  2. Javanmardi, A., Ibrahim, Z., Ghaedi, K., Benisi Ghadim, H. and Hanif, M.U., "State-of-the-art review of metallic dampers: Testing, development and implementation", Archives of Computational Methods in Engineering, Vol. 27, No. 2, (2019), 455-478. doi: 10.1007/s11831-019-09329-9.
  3. Boardman, P., Wood, B. and Carr, A., "Union house: A cross braced structure with energy dissipators", Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 16, No. 2, (1983), 83-97.
  4. Martinez-Romero, E., "Experiences on the use of supplementary energy dissipators on building structures", Earthquake Spectra, Vol. 9, No. 3, (1993), 581-625. doi: 10.1193/1.1585731.
  5. Perry, C.L., Fierro, E.A., Sedarat, H. and Scholl, R.E., "Seismic upgrade in san francisco using energy dissipation devices", Earthquake Spectra, Vol. 9, No. 3, (1993), 559-579. doi: 10.1193/1.1585730.
  6. Soong, T. and Spencer Jr, B., "Supplemental energy dissipation: State-of-the-art and state-of-the-practice", Engineering Structures, Vol. 24, No. 3, (2002), 243-259. doi: 10.1016/S0141-0296(01)00092-X.
  7. Saaed, T.E., Nikolakopoulos, G., Jonasson, J.-E. and Hedlund, H., "A state-of-the-art review of structural control systems", Journal of Vibration and Control, Vol. 21, No. 5, (2015), 919-937. doi: 10.1177/1077546313478294.
  8. Pourzangbar, A., Vaezi, M., Mousavi, S. and Saber, A., "Effects of brace-viscous damper system on the dynamic response of steel frames", International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 5, (2020), 720-731. doi: 10.5829/ije.2020.33.05b.02.
  9. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T., Spencer, B. and Yao, J.T., "Structural control: Past, present, and future", Journal of Engineering Mechanics, Vol. 123, No. 9, (1997), 897-971. doi: 10.1061/(ASCE)0733-9399(1997)123:9(897).
  10. Symans, M., Charney, F., Whittaker, A., Constantinou, M., Kircher, C., Johnson, M. and McNamara, R., "Energy dissipation systems for seismic applications: Current practice and recent developments", Journal of Structural Engineering, Vol. 134, No. 1, (2008), 3-21. doi: 10.1061/(ASCE)0733-9445(2008)134:1(3).
  11. Li, H. and Huo, L., "Advances in structural control in civil engineering in china", Mathematical Problems in Engineering, Vol. 2010, (2010). doi: 10.1155/2010/936081.
  12. Fisco, N. and Adeli, H., "Smart structures: Part i—active and semi-active control", Scientia Iranica, Vol. 18, No. 3, (2011), 275-284. doi: 10.1016/j.scient.2011.05.034.
  13. Fisco, N. and Adeli, H., "Smart structures: Part ii—hybrid control systems and control strategies", Scientia Iranica, Vol. 18, No. 3, (2011), 285-295. doi: 10.1016/j.scient.2011.05.035.
  14. Korkmaz, S., "A review of active structural control: Challenges for engineering informatics", Computers & Structures, Vol. 89, No. 23-24, (2011), 2113-2132. doi: 10.1016/j.compstruc.2011.07.010.
  15. Ghaedi, K., Ibrahim, Z., Adeli, H. and Javanmardi, A., "Invited review: Recent developments in vibration control of building and bridge structures", Journal of Vibroengineering, Vol. 19, No. 5, (2017), 3564-3580. doi: 10.21595/jve.2017.18900.
  16. Dargush, G. and Sant, R., "Evolutionary aseismic design and retrofit of structures with passive energy dissipation", Earthquake Engineering & Structural Dynamics, Vol. 34, No. 13, (2005), 1601-1626.
  17. Symans, M.D. and Constantinou, M.C., "Semi-active control systems for seismic protection of structures: A state-of-the-art review", Engineering Structures, Vol. 21, No. 6, (1999), 469-487. doi: 10.1016/S0141-0296(97)00225-3.
  18. Momeni, Z. and Bagchi, A., "Intelligent control methodology for smart highway bridge structures using optimal replicator dynamic controller", Civil Engineering Journal, Vol. 9, No. 1, (2023), 1-16. doi: 10.28991/CEJ-2023-09-01-01.
  19. Abdul Aziz, M., Muhtasim, S. and Ahammed, R., "State-of-the-art recent developments of large magnetorheological (mr) dampers: A review", Korea-Australia Rheology Journal, (2022), 1-32. doi: 10.1007/s13367-022-00021-2.
  20. Saravanan, M., Goswami, R. and Palani, G., "Replaceable fuses in earthquake resistant steel structures: A review", International Journal of Steel Structures, Vol. 18, No. 3, (2018), 868-879. doi: 10.1007/s13296-018-0035-9.
  21. Mousavi, H., Sabbagh Yazdi, S. and Almohammad-Albakkar, M., "A novel method for efficient design of frame structures equipped with nonlinear viscous dampers by using computational results of cylindrical friction damper", Australian Journal of Structural Engineering, (2022), 1-17. doi: 10.1080/13287982.2022.2088055.
  22. Vaseghi, A.J. and Esmaeiltabar, N.P., "Response modification factor of chevron braced frame with pall friction damper", (2013). doi: 10.5829/idosi.ije.2013.26.02b.03.
  23. Chan, R.W. and Albermani, F., "Experimental study of steel slit damper for passive energy dissipation", Engineering Structures, Vol. 30, No. 4, (2008), 1058-1066. doi: 10.1016/j.engstruct.2007.07.005.
  24. Mcnamara, R.J. and Taylor, D.P., "Fluid viscous dampers for high‐rise buildings", The Structural Design of Tall and Special Buildings, Vol. 12, No. 2, (2003), 145-154. doi: 10.1002/tal.218.
  25. Lin, W.H. and Chopra, A.K., "Earthquake response of elastic sdf systems with non‐linear fluid viscous dampers", Earthquake Engineering & Structural Dynamics, Vol. 31, No. 9, (2002), 1623-1642. doi: 10.1061/(ASCE)0733-9399(2003)129:6(597).
  26. De Domenico, D., Ricciardi, G. and Takewaki, I., "Design strategies of viscous dampers for seismic protection of building structures: A review", Soil Dynamics and Earthquake Engineering, Vol. 118, (2019), 144-165. doi: 10.1016/j.soildyn.2018.12.024.
  27. Meshkat Rouhani, V., Zamani Ahari, G. and Saeedmonir, H., "Experimental and numerical study on a new double-walled tuned liquid damper", International Journal of Engineering, Transactions A: Basics, Vol. 35, No. 1, (2022), 29-44. doi: 10.5829/ije.2022.35.01a.04.
  28. Ashasi-Sorkhabi, A., Malekghasemi, H., Ghaemmaghami, A. and Mercan, O., "Experimental investigations of tuned liquid damper-structure interactions in resonance considering multiple parameters", Journal of Sound and Vibration, Vol. 388, (2017), 141-153. doi: 10.1016/j.jsv.2016.10.036.
  29. Zhang, C., Li, L. and Ou, J., "Swinging motion control of suspended structures: Principles and applications", Structural Control and Health Monitoring, Vol. 17, No. 5, (2010), 549-562. doi: 10.1002/stc.331.
  30. Zhang, R.-H. and Soong, T., "Seismic design of viscoelastic dampers for structural applications", Journal of Structural Engineering, Vol. 118, No. 5, (1992), 1375-1392. doi: 10.1061/(ASCE)0733-9445(1992)118:5(1375).
  31. Mahmoodi, P. and Keel, C.J., "Performance of viscoelastic structural dampers for the columbia center building", in Building motion in wind, ASCE., (1986), 83-106.
  32. Skinner, R.I., Kelly, J.M. and Heine, A., "Hysteretic dampers for earthquake‐resistant structures", Earthquake Engineering & Structural Dynamics, Vol. 3, No. 3, (1974), 287-296. doi: 10.1002/eqe.4290030307.
  33. Skinner, R., Tyler, R., Heine, A. and Robinson, W., "Hysteretic dampers for the protection of structures from earthquakes", Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 13, No. 1, (1980), 22-36. doi: 10.5459/bnzsee.13.1.22-36.
  34. Aghlara, R., Tahir, M.M. and Adnan, A.B., "Experimental study of pipe-fuse damper for passive energy dissipation in structures", Journal of Constructional Steel Research, Vol. 148, (2018), 351-360. doi: 10.1016/j.jcsr.2018.06.004.
  35. Sarwar, W. and Sarwar, R., "Vibration control devices for building structures and installation approach: A review", Civil and Environmental Engineering Reports, Vol. 29, No. 2, (2019), 74-100. doi: 10.2478/ceer-2019-0018.
  36. Amiri, H.A., Najafabadi, E.P. and Estekanchi, H.E., "Experimental and analytical study of block slit damper", Journal of Constructional Steel Research, Vol. 141, (2018), 167-178. doi: 10.1016/j.jcsr.2017.11.006.
  37. Soong, T.T. and Dargush, G.F., "* passive energy dissipation systems in structural engineering, Wiley, (1997).
  38. Christopoulos, C. and Filiatrault, A., "Principles of passive supplemental damping and seismic, IUSS Press, Pavia, Italy, (2006).
  39. Almohammad-Albakkar, M. and Behnamfar, F., "Numerical investigation of grooved gusset plate damper for using in cross-braced frames", Journal of Constructional Steel Research, Vol. 196, (2022), 107434. doi: 10.1016/j.jcsr.2022.107434.
  40. Behnamfar, F. and Soltanabadi, R., "Analytical studies on a combined rubber-steel damper for repairable steel moment connections", Journal of Earthquake Engineering, Vol. 24, No. 1, (2020), 37-58. doi: 10.1080/13632469.2017.1387618.
  41. Soltanabadi, R. and Behnamfar, F., "Experimental studies on a combined damper for repairable steel moment connections", International Journal of Steel Structures, Vol. 18, No. 1, (2018), 211-224. doi: 10.1007/s13296-018-0317-2.
  42. Fukumoto, T., "A study on steel damper with honeycomb shaped-openings", in Annual Meeting (Summaries of AIJ). (1989).
  43. Naoki, T., "A study on steel plate d. With honeycomb-s. Openings s. To low cycle f", AIJ, Vol. 37, (1991). doi: 10003272681.
  44. Kobori, T., Miura, Y., Fukusawa, E., Yamada, T., Arita, T., Takenake, Y., Miyagawa, N., Tanaka, N. and Fukumoto, T., "Development and application of hysteresis steel dampers", in Proceedings of the 10th World conference on earthquake engineering. Vol. 2341, (1992), 2346.
  45. Wada, A., Huang, Y., Yamada, T., Ono, Y., Sugiyama, S., Baba, M. and Miyabara, T., "Actual size and real time speed tests for hysteretic steel damper", Proceedings of STESSA, Vol. 97, No., (1997), 778-785.
  46. Sugiyama, S., "Development and application of t-shaped elasto-plastic damper", in " Symposium on a new direction in seismic design" Tokyo. (1995). doi: 10003272680.
  47. Amadeo, B.C., OH, S.-H. and Akiyama, H., "Ultimate energy absorption capacity of slit-type steel plates subjected to shear deformations", Journal of Structural and Construction Engineering (Transactions of AIJ), Vol. 63, No. 503, (1998), 139-147. doi: 10.3130/aijs.63.139_1.
  48. Kelly, J.M., Skinner, R. and Heine, A., "Mechanisms of energy absorption in special devices for use in earthquake resistant structures", Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 5, No. 3, (1972), 63-88. doi: 10.5459/bnzsee.5.3.63-88.
  49. Tyler, R., "Tapered steel energy dissipators for earthquake resistant structures", Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 11, No. 4, (1978), 282-294. doi: 10.5459/bnzsee.11.4.282-294.
  50. Bergman, D.M. and Goel, S.C., "Evaluation of cyclic testing of steel-plate devices for added damping and stiffness", Department of Civil Engineering, University of Michigan, (1987).
  51. WHITTAKER, A., "Earthquake simulat0r testing 0f steel plate added damping", Earthquake Engineering, (1989). doi: 10.13140/RG.2.1.1455.3207.
  52. Tsai, K.-C. and Chou, C., "Plasticity models and seismic performance of steel plate energy dissipators", Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 8, No. 1, (1996), 45-54. doi: 246246/133915.
  53. Tsai, K.-C. and Hong, C., "Steel triangular plate energy absorber for earthquake resistant buildings", (1992). doi: 10.1193/1.1585727.
  54. Tsai, K.-C., Chen, H.-W., Hong, C.-P. and Su, Y.-F., "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthquake Spectra, Vol. 9, No. 3, (1993), 505-528. doi: 10.1193/1.1585727.
  55. Tsai, K., Li, J., Hong, C., Chen, H. and Su, Y., "Welded steel triangular plate device for seismic energy dissipation", Proceedings, ATC-17-1 Semi-nar on Seismic Isolation, Passive Energy Dissipation and Active Control, (1993).
  56. Dargush, G. and Soong, T., "Behavior of metallic plate dampers in seismic passive energy dissipation systems", Earthquake Spectra, Vol. 11, No. 4, (1995), 545-568. doi: 10.1193/1.1585827.
  57. Gray, M., Christopoulos, C. and Packer, J., "Full-scale testing of the cast steel yielding brace system", in Proceedings of the 7th International Conference STESSA., (2012).
  58. Reddy, N.O. and Manchalwar, A., "Performance of moment resisting rc building equipped with x-plate damper under seismic and blast loading", International Journal of Innovative Technology and Exploring Engineering (IJITEE), (2019). doi: 10.35940/ijitee.B6614.129219.
  59. Manchalwar, A. and Bakre, S., "Performance of rc structures equipped with steel and aluminium x-plate dampers", Journal of The Institution of Engineers (India): Series A, Vol. 97, No. 4, (2016), 415-425. doi: 10.1007/s40030-016-0180-0.
  60. Chou, C.C. and Tsai, K.C., "Plasticity‐fibre model for steel triangular plate energy dissipating devices", Earthquake Engineering & Structural Dynamics, Vol. 31, No. 9, (2002), 1643-1655. doi: 10.1002/eqe.180.
  61. Ming-Hsiang, S., Wen-pei, S. and Cheer-Germ, G., "Investigation of newly developed added damping and stiffness device with low yield strength steel", Journal of Zhejiang University-Science A, Vol. 5, No. 3, (2004), 326-334. doi: 10.1007/BF02841018.
  62. Shih, M.-H. and Sung, W.-P., "A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness", Computers & Structures, Vol. 83, No. 12-13, (2005), 895-908. doi: 10.1016/j.compstruc.2004.11.012.
  63. Li, H.-N. and Li, G., "Experimental study of structure with “dual function” metallic dampers", Engineering Structures, Vol. 29, No. 8, (2007), 1917-1928. doi: 10.1016/j.engstruct.2006.10.007.
  64. Pujari, N.N. and Bakre, S., "Optimum placement of x-plate dampers for seismic response control of multistoried buildings", International Journal of Earth Sciences and Engineering, Vol. 4, No. 6, (2011), 481-485.
  65. Mohammadi, R.K., Nasri, A. and Ghaffary, A., "Tadas dampers in very large deformations", International Journal of Steel Structures, Vol. 17, No. 2, (2017), 515-524. doi: 10.1007/s13296-017-6011-y.
  66. Gray, M.G., Christopoulos, C. and Packer, J.A., "Cast steel yielding brace system for concentrically braced frames: Concept development and experimental validations", Journal of Structural Engineering, Vol. 140, No. 4, (2014), 04013095. doi: 10.1061/(ASCE)ST.1943-541X.0000910.
  67. Gray, M., Christopoulos, C., Packer, J. and Lignos, D., "Development, validation, and modeling of the new cast steel yielding brace system", in 20th analysis and computation specialty conference. , (2012), 71-82.
  68. Gray, M.G., Christopoulos, C. and Packer, J.A., "Design and full-scale testing of a cast steel yielding brace system in a braced frame", Journal of Structural Engineering, Vol. 143, No. 4, (2017), 04016210. doi: 10.1061/(ASCE)ST.1943-541X.0001692.
  69. Zibasokhan, H., Behnamfar, F. and Azhari, M., "Experimental study of a new pure bending yielding dissipater", Bulletin of Earthquake Engineering, Vol. 17, No. 7, (2019), 4389-4410. doi: 10.1007/s10518-019-00616-1.
  70. Labibi, H., Gerami, M. and Hosseini, M., "Sensitivity analysis of behavior of simple trapezoidal steel plates to introduce a new yielding damper", International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 10, (2021), 2302-2312. doi: 10.5829/IJE.2021.34.10A.11.
  71. Ghandil, M., Riahi, H.T. and Behnamfar, F., "Introduction of a new metallic-yielding pistonic damper for seismic control of structures", Journal of Constructional Steel Research, Vol. 194, (2022), 107299. doi: 10.1016/j.jcsr.2022.107299.
  72. Yadav, D. and Sahoo, D.R., "Experimental and analytical investigations of steel shear buckling-inhibited energy dissipation devices", Journal of Constructional Steel Research, Vol. 196,  (2022), 107436. doi: 10.1016/j.jcsr.2022.107436.
  73. Hossain, M.R., Ashraf, M. and Albermani, F., "Numerical modelling of yielding shear panel device for passive energy dissipation", Thin-Walled Structures, Vol. 49, No. 8, (2011), 1032-1044. doi: 10.1016/j.tws.2011.03.003.
  74. Chen, Z., Ge, H. and Usami, T., "Hysteretic model of stiffened shear panel dampers", Journal of Structural Engineering-New York-, Vol. 132, No. 3, (2006), 478. doi: 10.1061/(ASCE)0733-9445(2006)132:3(478).
  75. Kasai, A., Watanabe, T., Amano, M. and Usami, T., "Strength and ductility evaluation of stiffened steel plates subjected to cyclic shear loading", Journal of Structural Engineering, Vol. 47, No. 2, (2001), 761-770.
  76. Chen, Z., Ge, H. and Usami, T., "Hysteretic performance of shear panel dampers", in Fourth International Conference on Advances in Steel Structures, Elsevier. (2005), 1223-1228.
  77. Chan, R.W., Albermani, F. and Williams, M.S., "Evaluation of yielding shear panel device for passive energy dissipation", Journal of Constructional Steel Research, Vol. 65, No. 2, (2009), 260-268. doi: 10.1016/j.jcsr.2008.03.017.
  78. Aoki, T., Liu, Y., Takaku, T. and Fukumoto, Y., "A new type of shear panel dampers for highway bridge bearings", in Proceedings of the 5th European Conference on Steel and Composite Structures., (2008).
  79. Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., Konomi, S., Akazawa, T. and Saburi, K., "Energy dissipation behaviour of shear panels made of low yield steel", Earthquake Engineering & Structural Dynamics, Vol. 23, No. 12, (1994), 1299-1313. doi: 10.1002/eqe.4290231203.
  80. Zirakian, T. and Zhang, J., "Structural performance of unstiffened low yield point steel plate shear walls", Journal of Constructional Steel Research, Vol. 112, (2015), 40-53. doi: 10.1016/j.jcsr.2015.04.023.
  81. Xu, L.-Y., Nie, X. and Fan, J.-S., "Cyclic behaviour of low-yield-point steel shear panel dampers", Engineering Structures, Vol. 126, (2016), 391-404. doi: 10.1016/j.engstruct.2016.08.002.
  82. Nakashima, M., "Strain-hardening behavior of shear panels made of low-yield steel. I: Test", Journal of Structural Engineering, Vol. 121, No. 12, (1995), 1742-1749. doi: 10.1061/(ASCE)0733-9445(1995)121:12(1742).
  83. Takahashi, Y. and Shinabe, Y., "Experimental study on restoring force characteristics of shear yielding thin steel plate elements", Journal of Structural and Construction Engineering (Transactions of AIJ), No. 494, (1997), 107-114. doi: 10.3130/aijs.62.107_3.
  84. Tanaka, K. and Sasaki, Y., "Study on energy absorbing performance of seismic control panel-dampers using low-yield-point steel under static loading; kyokutei kofukutenko wo mochiita seishin panel damper no seiteki rireki gensui seino ni kansuru kenkyu", Nippon Kenchiku Gakkai Kozo-kei Ronbunshu, (1998). doi: 10.3130/aijs.63.159_1.
  85. Tanaka, K., Torii, T., Sasaki, Y., Miyama, T., Kawai, H., Iwata, M. and Wada, A., "Practical application of damage tolerant structures with seismic control panel using low yield point steel to a high-rise steel building", Proceedings, Structural Engineering World Wide, Elsevier, CD-ROM, Paper T190-4, (1998). doi: 10.3130/aijt.3.126.
  86. Tanaka, K. and Sasaki, Y., "Hysteretic performance of shear panel dampers of ultra low yield-strength steel for seismic response control of buildings", in 12th World Conference on Earthquake Engineering, WCEE. New Zealand., (2000).
  87. De Matteis, G., Landolfo, R. and Mazzolani, F., "Seismic response of mr steel frames with low-yield steel shear panels", Engineering Structures, Vol. 25, No. 2, (2003), 155-168. doi: 10.1016/S0141-0296(02)00124-4.
  88. Liu, Y. and Aoki, T., "The strain measurement by image processing technique for shear panel damper made of low yield steel", in Fifth international conference on Thin-Walled Structures Brisbane, Australia, (2008).
  89. Liu, Y., Aoki, T., Takaku, T. and Fukumoto, Y., "Cyclic loading tests of shear panel damper made of low yield steel", Journal of Structure Construction Engineering A, Vol. 53, (2007), 560-567.
  90. Dusicka, P., Itani, A.M. and Buckle, I.G., "Cyclic response of plate steels under large inelastic strains", Journal of Constructional Steel Research, Vol. 63, No. 2, (2007), 156-164. doi: 10.1016/j.jcsr.2006.03.006.
  91. Aoki, T., Chaofeng, Z. and Huihui, Y., "Dynamic loading test of shear panel damper", (2012).
  92. Aoki, T., Dang, J., Zhang, C., Takaku, T. and Fukumoto, Y., Dynamic shear tests of low-yield steel panel dampers for bridge bearing: T. Aoki, j. Dang & c. Zhang t. Takaku, in Behaviour of steel structures in seismic areas. 2009, CRC Press.665-670.
  93. Zhang, C., Zhang, Z. and Zhang, Q., "Static and dynamic cyclic performance of a low-yield-strength steel shear panel damper", Journal of Constructional Steel Research, Vol. 79, (2012), 195-203. doi: 10.1016/j.jcsr.2012.07.030.
  94. Zhang, C., Zhang, Z. and Shi, J., "Development of high deformation capacity low yield strength steel shear panel damper", Journal of Constructional Steel Research, Vol. 75, (2012), 116-130. doi: 10.1016/j.jcsr.2012.03.014.
  95. Narayanan, R. and Chow, F., "Experiments on perforated plates subjected to shear", The Journal of Strain Analysis for Engineering Design, Vol. 20, No. 1, (1985), 23-34. doi: 10.1243/03093247V201023.
  96. Narayanan, R. and Der-Avanessian, N.G.V., "Analysis of plate girders with perforated webs", Thin-Walled Structures, Vol. 4, No. 5, (1986), 363-380. doi: 10.1016/0263-8231(86)90030-3.
  97. Chan, R.W., Albermani, F. and Kitipornchai, S., "Experimental study of perforated yielding shear panel device for passive energy dissipation", Journal of Constructional Steel Research, Vol. 91, (2013), 14-25. doi: 10.1016/j.jcsr.2013.08.013.
  98. Liu, Y. and Shimoda, M., "Shape optimization of shear panel damper for improving the deformation ability under cyclic loading", Structural and Multidisciplinary Optimization, Vol. 48, No. 2, (2013), 427-435. doi: 10.1007/s00158-013-0909-6.
  99. Deng, K., Pan, P., Sun, J., Liu, J. and Xue, Y., "Shape optimization design of steel shear panel dampers", Journal of Constructional Steel Research, Vol. 99, (2014), 187-193. doi: 10.1016/j.jcsr.2014.03.001.
  100. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A., "Cyclic behavior of shear-and-flexural yielding metallic dampers", Journal of Constructional Steel Research, Vol. 114, (2015), 247-257. doi: 10.1016/j.jcsr.2015.08.006.
  101. Zhu, B., Wang, T. and Zhang, L., "Quasi-static test of assembled steel shear panel dampers with optimized shapes", Engineering Structures, Vol. 172, (2018), 346-357. doi: 10.1016/j.engstruct.2018.06.004.
  102. Shi, J.-X., Kozono, S., Shimoda, M., Takino, M., Wada, D. and Liu, Y., "Non-parametric shape design optimization of elastic-plastic shear panel dampers under cyclic loading", Engineering Structures, Vol. 189, (2019), 48-61. doi: 10.1016/j.engstruct.2019.03.049.
  103. Lin, Y., Yang, S., Guan, D. and Guo, Z., "Modified strip model for indirect buckling restrained shear panel dampers", Journal of Constructional Steel Research, Vol. 175, (2020), 106371. doi: 10.1016/j.jcsr.2020.106371.
  104. Yao, Z., Wang, W. and Zhu, Y., "Experimental evaluation and numerical simulation of low-yield-point steel shear panel dampers", Engineering Structures, Vol. 245, (2021), 112860. doi: 10.1016/j.engstruct.2021.112860.
  105. De Matteis, G., Sarracco, G. and Brando, G., "Experimental tests and optimization rules for steel perforated shear panels", Journal of Constructional Steel Research, Vol. 123, (2016), 41-52. doi: 10.1016/j.jcsr.2016.04.025.
  106. Lin, X., Wu, K., Skalomenos, K.A., Lu, L. and Zhao, S., "Development of a buckling-restrained shear panel damper with demountable steel-concrete composite restrainers", Soil Dynamics and Earthquake Engineering, Vol. 118, (2019), 221-230. doi: 10.1016/j.soildyn.2018.12.015.
  107. Zhang, C., Zhu, J., Wu, M., Yu, J. and Zhao, J., "The lightweight design of a seismic low-yield-strength steel shear panel damper", Materials (Basel), Vol. 9, No. 6, (2016), 424. doi: 10.3390/ma9060424.
  108. Chaofeng, Z., Youchun, W., Longfei, W. and Meiping, W., "Hysteretic mechanical property of low-yield strength shear panel dampers in ultra-large plastic strain", Engineering Structures, Vol. 148, (2017), 11-22. doi: 10.1016/j.engstruct.2017.06.028.
  109. Zhang, C., Wang, L., Sun, C. and Wu, M., "Feasibility of the evaluation of the deformation capacity of the shear panel damper by fem", Journal of Constructional Steel Research, Vol. 147, (2018), 433-443. doi: 10.1016/j.jcsr.2018.04.033.
  110. Koike, Y., Yanaka, T., Usami, T., Ge, H., Oshita, S., Sagou, D. and Uno, Y., "An experimental study on developing high-performance stiffened shear panel dampers", Journal of Structural Engineering, JSCE, Vol. 54, (2008), 372-381. doi: 10.11532/structcivil.54a.372.
  111. Deng, K., Pan, P., Li, W. and Xue, Y., "Development of a buckling restrained shear panel damper", Journal of Constructional Steel Research, Vol. 106, (2015), 311-321. doi: 10.1016/j.jcsr.2015.01.004.
  112. Quan, C., Wang, W., Li, Y. and Lu, Z., "Cyclic behaviour of demountable metallic corrugated shear panel dampers", Journal of Building Engineering, Vol. 61, (2022), 105228. doi: 10.1016/j.jobe.2022.105228.
  113. Quan, C., Wang, W. and Li, Y., "Hysteretic model and resilient application of corrugated shear panel dampers", Thin-Walled Structures, Vol. 178, (2022), 109477. doi: 10.1016/j.tws.2022.109477.
  114. Zhao, J.-Z., Zhuang, L.-D. and Tao, M.-X., "Development of bent shear panel dampers for eccentrically braced composite frames", Journal of Constructional Steel Research, Vol. 193, (2022), 107292. doi: 10.1016/j.jcsr.2022.107292.
  115. Zhao, J.-Z., Tao, M.-X., Wu, Z.-H. and Zhuang, L.-D., "Experimental and numerical study on bent shear panel damper made of bly160 steel", Engineering Structures, Vol. 260, (2022), 114229. doi: 10.1016/j.engstruct.2022.114229.
  116. Vian, D., Bruneau, M., Tsai, K.-C. and Lin, Y.-C., "Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation", Journal of Structural Engineering, Vol. 135, No. 3, (2009), 211-220. doi: 10.1061/(ASCE)0733-9445(2009)135:3(211).
  117. Purba, R. and Bruneau, M., "Finite-element investigation and design recommendations for perforated steel plate shear walls", Journal of Structural Engineering, Vol. 135, No. 11, (2009), 1367-1376. doi: 10.1061/(ASCE)ST.1943-541X.0000061.
  118. Valizadeh, H., Sheidaii, M. and Showkati, H., "Experimental investigation on cyclic behavior of perforated steel plate shear walls", Journal of Constructional Steel Research, Vol. 70, (2012), 308-316. doi: 10.1016/j.jcsr.2011.09.016.
  119. Choi, I.-R. and Park, H.-G., "Hysteresis model of thin infill plate for cyclic nonlinear analysis of steel plate shear walls", Journal of Structural Engineering, Vol. 136, No. 11, (2010), 1423-1434. doi: 10.1061/(ASCE)ST.1943-541X.0000244.
  120. Frosch, R.J., "Shear transfer between concrete elements using steel pipe connection", Structural Journal, Vol. 96, No. 6, (1999), 1003-1008. doi: 10.14359/776.
  121. Deam, B.L., Fragiacomo, M. and Buchanan, A.H., "Connections for composite concrete slab and lvl flooring systems", Materials and Structures, Vol. 41, No. 3, (2008), 495-507. doi: 10.1617/s11527-007-9261-x.
  122. Kafi, M., "Experimental research of the effect of steel pipes on concentric braced frame", Ph. D. thesis. University of Science and Technology, Department of Civil, (2009),
  123. Maleki, S. and Bagheri, S., "Pipe damper, part i: Experimental and analytical study", Journal of Constructional Steel Research, Vol. 66, No. 8-9, (2010), 1088-1095. doi: 10.1016/j.jcsr.2010.03.010.
  124. Maleki, S. and Mahjoubi, S., "Dual-pipe damper", Journal of Constructional Steel Research, Vol. 85, (2013), 81-91. doi: 10.1016/j.jcsr.2013.03.004.
  125. Maleki, S. and Mahjoubi, S., "Infilled-pipe damper", Journal of Constructional Steel Research, Vol. 98, (2014), 45-58. doi: 10.1016/j.jcsr.2014.02.015.
  126. Javanmardi, A., Ghaedi, K., Ibrahim, Z. and Muthu, K.U., "Seismic pounding mitigation of an existing cable-stayed bridge using metallic dampers", in IABSE Conf.–Eng. Dev. World, International Association for Bridge and Structural Engineering, Kuala Lumpur, Malaysia., (2018), 617-623. doi: 10.2749/kualalumpur.2018.0617.
  127. Guo, W., Wang, X., Yu, Y., Chen, X., Li, S., Fang, W., Zeng, C., Wang, Y. and Bu, D., "Experimental study of a steel damper with x-shaped welded pipe halves", Journal of Constructional Steel Research, Vol. 170, (2020), 106087. doi: 10.1016/j.jcsr.2020.106087.
  128. Cheraghi, A. and Zahrai, S.M., "Innovative multi-level control with concentric pipes along brace to reduce seismic response of steel frames", Journal of Constructional Steel Research, Vol. 127, (2016), 120-135. doi: 10.1016/j.jcsr.2016.07.024.
  129. Cheraghi, A. and Zahrai, S.M., "Cyclic testing of multilevel pipe in pipe damper", Journal of Earthquake Engineering, Vol. 23, No. 10, (2019), 1695-1718. doi: 10.1080/13632469.2017.1387191.
  130. Zahrai, S.M. and Cheraghi, A., "Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe", Structural Engineering and Mechanics, Vol. 64, No. 2, (2017), 195-204. doi: 10.12989/sem.2017.64.2.195.
  131. Zahrai, S.M. and Cheraghi, A., "Reducing seismic vibrations of typical steel buildings using new multi-level yielding pipe damper", International Journal of Steel Structures, Vol. 17, No. 3, (2017), 983-998. doi: 10.1007/s13296-017-9010-0.
  132. Bincy, V. and Usha, S., "Seismic performance evaluation of steel building frames with modified dual-pipe damper", in IOP Conference Series: Materials Science and Engineering, IOP Publishing. Vol. 1114, (2021), 012004. doi: 10.1088/1757-899X/1114/1/012004.
  133. Mahboubi, B., Zohari, A. and Abdollahiparsa, S., "Seismic behavior of braced steel frames with pipe damper (pd)", Authorea Preprints, (2020). doi: 10.1177/1369433220981653.
  134. Abbasnia, R., Vetr, M., Ahmadi, R. and Kafi, M., "Experimental and analytical investigation on the steel ring ductility", Sharif Journal of Science Technology, Vol. 52, (2008), 41-48.
  135. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M., "Experimental investigation of the ductility and performance of steel rings constructed from plates", Journal of Constructional Steel Research, Vol. 103, (2014), 77-88. doi: 10.1016/j.jcsr.2014.07.016.
  136. Azandariani, M.G., Abdolmaleki, H. and Azandariani, A.G., "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDS)", Thin-Walled Structures, Vol. 151, No., (2020), 106751. doi: 10.1016/j.tws.2020.106751.
  137. Azandariani, M.G., Azandariani, A.G. and Abdolmaleki, H., "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDS)", Journal of Constructional Steel Research, Vol. 172, (2020), 106145. doi: 10.1016/j.jcsr.2020.106145.
  138. Behnamfar, F., Arman, S. and Zibasokhan, H., "Steel rings as seismic fuses for enhancing ductility of cross braced frames", Earthquake Engineering and Engineering Vibration, Vol. 21, No. 4, (2022), 1103-1117. doi: 10.1007/s11803-022-2135-y.
  139. Abed, D., Al Thawabteh, J., Alzubi, Y., Assbeihat, J. and Al-Sahawneh, E., "Influence of earthquake parameters on the bi-directional behavior of base isolation systems", Civil Engineering Journal, Vol. 8, No. 10, (2022), 2038-2052. doi: 10.28991/CEJ-2022-08-10-02.
  140. Skinner, R.I., "An introduction to seismic isolation/r. Ivan skinner, william h. Robinson, and graeme h. Mcverry, (1993).
  141. Yoshikawa, H., Saeki, E., Watanabe, A. and Suzuki, K., "Experimental study of u-shaped steel damper (part 2: Test of u-shaped dampers with rubber bearings)", in Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, B-2, Structure II., (1999), 667-668.
  142. Schultz, A. and Magana, R., "Seismic behavior of connections in precast concrete walls", Special Publication, Vol. 162, (1996), 273-312.
  143. Suzuki, K., Watanabe, A. and Saeki, E., "Development of u-shaped steel damper for seismic isolation system", Nippon Steel Technical Report, Vol. 92, (2005), 56-61.
  144. Kishiki, S., Ohkawara, Y., Yamada, S. and Wada, A., "Experimental evaluation of cyclic deformation capacity of u-shaped steel dampers for base-isolated structures", Journal of Structural and Construction Engineering, Vol. 73, No. 624, (2008), 333-340. doi: 10.3130/aijs.73.333.
  145. Oh, S.-H., Song, S.-H., Lee, S.-H. and Kim, H.-J., "Seismic response of base isolating systems with u-shaped hysteretic dampers", International Journal of Steel Structures, Vol. 12, No. 2, (2012), 285-298. doi: 10.1007/s13296-012-2011-0.
  146. Oh, S.-H., Song, S.-H., Lee, S.-H. and Kim, H.-J., "Experimental study of seismic performance of base-isolated frames with u-shaped hysteretic energy-dissipating devices", Engineering Structures, Vol. 56, (2013), 2014-2027. doi: 10.1016/j.engstruct.2013.08.011.
  147. Iwasaki, A., Takeuchi, I., Inoue, K., Suita, K., Koetaka, Y. and Uno, N., "Study on damping mechanism for h-section beam-to-column connections", Proceedings of AIJ Kinki Branch, (2002), 197-200.
  148. Tagawa, H. and Gao, J., "Evaluation of vibration control system with u-dampers based on quasi-linear motion mechanism", Journal of Constructional Steel Research, Vol. 70, (2012), 213-225. doi: 10.1016/j.jcsr.2011.09.004.
  149. Deng, K., Pan, P. and Wang, C., "Development of crawler steel damper for bridges", Journal of Constructional Steel Research, Vol. 85, (2013), 140-150. doi: 10.1016/j.jcsr.2013.03.009.
  150. Deng, K., Pan, P., Su, Y. and Xue, Y., "Shape optimization of u-shaped damper for improving its bi-directional performance under cyclic loading", Engineering Structures, Vol. 93, (2015), 27-35. doi: 10.1016/j.engstruct.2015.03.006.
  151. Atasever, K., Celik, O.C. and Yuksel, E., "Development and cyclic behavior of u-shaped steel dampers with perforated and nonparallel arm configurations", International Journal of Steel Structures, Vol. 18, No. 5, (2018), 1741-1753. doi: 10.1007/s13296-018-0074-2.
  152. Atasever, K., "Modelling hysteretic behaviour of u-shaped steel dampers and using such dampers with low damping rubber bearings as seismic isolator", Istanbul Technical University, (2015).
  153. Qu, B., Dai, C., Qiu, J., Hou, H. and Qiu, C., "Testing of seismic dampers with replaceable u-shaped steel plates", Engineering Structures, Vol. 179, (2019), 625-639. doi: 10.1016/j.engstruct.2018.11.016.
  154. Taiyari, F., Mazzolani, F.M. and Bagheri, S., "A proposal for energy dissipative braces with u-shaped steel strips", Journal of Constructional Steel Research, Vol. 154, (2019), 110-122. doi: 10.1016/j.jcsr.2018.11.031.
  155. Yu, Q.-Q., Wu, J.-Y., Gu, X.-L. and Zhou, F.-Y., "Experimental study on effects of u-shape dampers on earthquake responses of a base-isolated lng inner tank", Engineering Structures, Vol. 269, (2022), 114841. doi: 10.1016/j.engstruct.2022.114841.
  156. Özkaynak, H., "Model proposal for steel cushions for use in reinforced concrete frames", KSCE Journal of Civil Engineering, Vol. 21, No. 7, (2017), 2717-2727. doi: 10.1007/s12205-017-0477-1.
  157. Kato, S., Ohya, T., Okamaoto, T. and Takayama, H., "Efficiency of steel hysteresis dampers to suppress earthquake responses of spatial structure", in Proceedings of IASS symposium., (2002), 583-590.
  158. Kato, S., Kim, Y.-B., Nakazawa, S. and Ohya, T., "Simulation of the cyclic behavior of j-shaped steel hysteresis devices and study on the efficiency for reducing earthquake responses of space structures", Journal of Constructional Steel Research, Vol. 61, No. 10, (2005), 1457-1473. doi: 10.1016/j.jcsr.2005.03.006.
  159. Kato, S. and Kim, Y.-B., "A finite element parametric study on the mechanical properties of j-shaped steel hysteresis devices", Journal of Constructional Steel Research, Vol. 62, No. 8, (2006), 802-811. doi: 10.1016/j.jcsr.2005.11.014.
  160. Zhai, Z., Guo, W., Yu, Z., He, C. and Zeng, Z., "Experimental and numerical study of s-shaped steel plate damper for seismic resilient application", Engineering Structures, Vol. 221, (2020), 111006. doi: 0.1016/j.engstruct.2020.111006.
  161. Wang, W., Song, J.-l., Su, S.-q., Cai, H.-l. and Zhang, R.-f., "Experimental and numerical studies of an axial tension-compression corrugated steel plate damper", Thin-Walled Structures, Vol. 163, (2021), 107498. doi: 10.1016/j.tws.2021.107498.
  162. Kim, Y.-C., Mortazavi, S.J., Farzampour, A., Hu, J.-W., Mansouri, I. and Awoyera, P.O., "Optimization of the curved metal damper to improve structural energy dissipation capacity", Buildings, Vol. 12, No. 1, (2022), 67. doi: 10.3390/buildings12010067.
  163. Hsu, H.-L. and Halim, H., "Improving seismic performance of framed structures with steel curved dampers", Engineering Structures, Vol. 130, (2017), 99-111. doi: 10.1016/j.engstruct.2016.09.063.
  164. Hsu, H.-L. and Halim, H., "Brace performance with steel curved dampers and amplified deformation mechanisms", Engineering Structures, Vol. 175, (2018), 628-644. doi: 10.1016/j.engstruct.2018.08.052.
  165. Zheng, J., Zhang, C. and Li, A., "Experimental investigation on the mechanical properties of curved metallic plate dampers", Applied Sciences, Vol. 10, No. 1, (2019), 269. doi: 10.3390/app10010269
  166. Ghabussi, A., Marnani, J.A. and Rohanimanesh, M.S., "Improving seismic performance of portal frame structures with steel curved dampers", in Structures, Elsevier. Vol. 24, (2020), 27-40. doi: 10.1016/j.istruc.2019.12.025.
  167. Ghabussi, A., Marnani, J.A. and Rohanimanesh, M.S., "Seismic performance assessment of a novel ductile steel braced frame equipped with steel curved damper", in Structures, Elsevier. Vol. 31, (2021), 87-97. doi: 10.1016/j.istruc.2021.01.073.
  168. Shojaeifar, H., Maleki, A. and Lotfollahi-Yaghin, M.A., "Performance evaluation of curved-tadas damper on seismic response of moment resisting steel frame", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 1, (2020), 55-67. doi: 10.5829/ije.2020.33.01a.07.
  169. Fathizadeh, S., Dehghani, S., Yang, T., Farsangi, E.N., Vosoughi, A., Hajirasouliha, I., Takewaki, I., Málaga-Chuquitaype, C. and Varum, H., "Trade-off pareto optimum design of an innovative curved damper truss moment frame considering structural and non-structural objectives", in Structures, Elsevier. Vol. 28, (2020), 1338-1353. doi: 10.1016/j.istruc.2020.09.060.
  170. Dehghani, S., Fathizadeh, S., Yang, T., Farsangi, E.N., Vosoughi, A., Hajirasouliha, I., Málaga-Chuquitaype, C. and Takewaki, I., "Performance evaluation of curved damper truss moment frames designed using equivalent energy design procedure", Engineering Structures, Vol. 226, (2021), 111363. doi: 10.1016/j.engstruct.2020.111363.
  171. Fathizadeh, S., Dehghani, S., Yang, T., Vosoughi, A., Farsangi, E.N. and Hajirasouliha, I., "Seismic performance assessment of multi-story steel frames with curved dampers and semi-rigid connections", Journal of Constructional Steel Research, Vol. 182, (2021), 106666. doi: 10.1016/j.jcsr.2021.106666.
  172. Lee, M.-H., Oh, S.-H., Huh, C., Oh, Y.-S., Yoon, M.-H. and Moon, T.-S., "Ultimate energy absorption capacity of steel plate slit dampers subjected to shear force", Steel Structures, Vol. 2, No. 2, (2002), 71-79.
  173. Oh, S.-H., Kim, Y.-J. and Ryu, H.-S., "Seismic performance of steel structures with slit dampers", Engineering Structures, Vol. 31, No. 9, (2009), 1997-2008. doi: 10.1016/j.engstruct.2009.03.003.
  174. Shahri, S.F. and Mousavi, S.R., "Seismic behavior of beam-to-column connections with elliptic slit dampers", Steel Composite and Structures, Vol. 26, No. 3, (2018), 289-301. doi: 10.12989/scs.2018.26.3.289.
  175. Lor, H.A., Izadinia, M. and Memarzadeh, P., "Experimental and numerical study of i-shape slit dampers in connections", Latin American Journal of Solids and Structures, Vol. 15, (2018). doi: 10.1590/1679-78254416.
  176. Karavasilis, T.L., Kerawala, S. and Hale, E., "Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings", Journal of Constructional Steel Research, Vol. 70, (2012), 358-367. doi: 10.1016/j.jcsr.2011.10.010.
  177. Hedayat, A.A., "Prediction of the force displacement capacity boundary of an unbuckled steel slit damper", Journal of Constructional Steel Research, Vol. 114, (2015), 30-50. doi: 10.1016/j.jcsr.2015.07.003.
  178. Zheng, J., Li, A. and Guo, T., "Analytical and experimental study on mild steel dampers with non-uniform vertical slits", Earthquake Engineering and Engineering Vibration, Vol. 14, No. 1, (2015), 111-123. doi: 10.1007/s11803-015-0010-9.
  179. Benavent-Climent, A., "A brace-type seismic damper based on yielding the walls of hollow structural sections", Engineering Structures, Vol. 32, No. 4, (2010), 1113-1122. doi: 10.1016/j.engstruct.2009.12.037.
  180. Ghabraie, K., Chan, R., Huang, X. and Xie, Y.M., "Shape optimization of metallic yielding devices for passive mitigation of seismic energy", Engineering Structures, Vol. 32, No. 8, (2010), 2258-2267. doi: 10.1016/j.engstruct.2010.03.028.
  181. Vaseghi, A.J., Mirza, G.R.A. And Shafiei, S.H., "Effect of the height increasing on steel buildings retrofitted by buckling restrained bracing systems and ttd damper", (2013). doi: 10.5829/idosi.ije.2013.26.10a.05.
  182. Askariani, S.S., Garivani, S. and Aghakouchak, A.A., "Application of slit link beam in eccentrically braced frames", Journal of Constructional Steel Research, Vol. 170, (2020), 106094. doi: 10.1016/j.jcsr.2020.106094.
  183. Zhao, B., Lu, B., Zeng, X. and Gu, Q., "Experimental and numerical study of hysteretic performance of new brace type damper", Journal of Constructional Steel Research, Vol. 183, (2021), 106717. doi: 10.1016/j.jcsr.2021.106717.
  184. Miller, D.K., "Lessons learned from the northridge earthquake", Engineering Structures, Vol. 20, No. 4-6, (1998), 249-260. doi: 10.1016/S0141-0296(97)00031-X.
  185. Nakashima, M., Inoue, K. and Tada, M., "Classification of damage to steel buildings observed in the 1995 hyogoken-nanbu earthquake", Engineering Structures, Vol. 20, No. 4-6, (1998), 271-281. doi: 10.1016/S0141-0296(97)00019-9.
  186. Tremblay, R., Filiatrault, A., Timler, P. and Bruneau, M., "Performance of steel structures during the 1994 northridge earthquake", Canadian Journal of Civil Engineering, Vol. 22, No. 2, (1995), 338-360. doi: 10.1139/l95-046.
  187. Japan, A.I.o., "Reconnaissance report on damage to steel building structures observed from the 1995 hyogoken-nanbu (hanshin/awaji) earthquake", (1997).
  188. Engelhardt, M.D., "Experimental investigation of dogbone monent connections", Engineering Journal, Vol. 35, No. 4, (1999), 128-139. doi: 10012570852.
  189. Suita, K., Tamura, T., Morita, S., Nakashima, M. and Engelhardt, M.D., "Plastic rotation capacity of steel beam-to-column connections using a reduced beam section and no weld access hole design-full scale tests for improved steel beam-to-column subassemblies-part 1", Journal of Structure and Construction Engineering, Vol. 526, (1999), 177-184. doi: 10.3130/aijs.64.177_3.
  190. Oh, S.-H., Kim, Y.-J. and Moon, T.-S., "Cyclic performance of existing moment connections in steel retrofitted with a reduced beam section and bottom flange reinforcements", Canadian Journal of Civil Engineering, Vol. 34, No. 2, (2007), 199-209. doi: 10.1139/l06-125.
  191. Venture, S.J. and Committee, G.D., "Recommended seismic design criteria for new steel moment-frame buildings", Federal Emergency Management Agency Washington, DC, USA, Vol. 350,  (2000).
  192. Kim, Y.-J. and Oh, S.-H., "Effect of the moment transfer efficiency of a beam web on deformation capacity at box column-to-h beam connections", Journal of Constructional Steel Research, Vol. 63, No. 1, (2007), 24-36. doi: 10.1016/j.jcsr.2006.02.009.
  193. Hedayat, A. and Celikag, M., "Fracture moment and ductility of welded connections", Proceedings of the Institution of Civil Engineers-Structures and Buildings, Vol. 162, No. 6, (2009), 405-418. doi: 10.1680/stbu.2009.162.6.405.
  194. Mahin, S.A., "Lessons from damage to steel buildings during the northridge earthquake", Engineering Structures, Vol. 20, No. 4-6, (1998), 261-270. doi: 10.1016/S0141-0296(97)00032-1.
  195. Engelhardt, M. and Husain, A., "Cyclic-loading performance of welded flange-bolted web connections", Journal of Structural Engineering, Vol. 119, No. 12, (1993), 3537-3550. doi: 10.1061/(ASCE)0733-9445(1993)119:12(3537).
  196. Morrison, M., Schweizer, D. and Hassan, T., "An innovative seismic performance enhancement technique for steel building moment resisting connections", Journal of Constructional Steel Research, Vol. 109, (2015), 34-46. doi: 10.1016/j.jcsr.2015.02.010.
  197. Han, S.W., Moon, K.-H., Hwang, S.-H. and Stojadinovic, B., "Rotation capacities of reduced beam section with bolted web (rbs-b) connections", Journal of Constructional Steel Research, Vol. 70, (2012), 256-263. doi: 10.1016/j.jcsr.2011.09.001.
  198. Rahnavard, R., Hassanipour, A. and Siahpolo, N., "Analytical study on new types of reduced beam section moment connections affecting cyclic behavior", Case Studies in Structural Engineering, Vol. 3, (2015), 33-51. doi: 10.1016/j.csse.2015.03.001.
  199. Mirghaderi, S.R., Torabian, S. and Imanpour, A., "Seismic performance of the accordion-web rbs connection", Journal of Constructional Steel Research, Vol. 66, No. 2, (2010), 277-288. doi: 10.1016/j.jcsr.2009.09.007.
  200. Hassanipour, A., Rahnavard, R., Mokhtari, A. and Rahnavard, N., "Numerical investigation on reduced beam web section moment connections under the effect of cyclic loading", Journal of Multidisciplinary Engineering Science and Technology, Vol. 2, No. 8, (2015), 2054-2061. doi: JMESTN42350958.
  201. Plumier, A., "New idea for safe structures in seismic zones", in IABSE Symposium-Mixed Structures Including New Materials., (1990).
  202. Köken, A. and Köroğlu, M.A., "Experimental study on beam-to-column connections of steel frame structures with steel slit dampers", Journal of Performance of Constructed Facilities, Vol. 29, No. 2, (2015), 04014066. doi: 10.1061/(ASCE)CF.1943-5509.0000553.
  203. Köroğlu, M.A., Köken, A. and Dere, Y., "Use of different shaped steel slit dampers in beam to column connections of steel frames under cycling loading", Advanced Steel Construction, Vol. 14, No. 2, (2018), 251-273. doi: 10.18057/IJASC.2018.14.2.7.
  1. Park, H.-Y. and Oh, S.-H., "Structural performance of beam system with t-stub type slit damper", Engineering Structures, Vol. 205, (2020), 109858. doi: 10.1016/j.engstruct.2019.109858.
  2. Aghlara, R. and Tahir, M.M., "A passive metallic damper with replaceable steel bar components for earthquake protection of structures", Engineering Structures, Vol. 159, (2018), 185-197. doi: 10.1016/j.engstruct.2017.12.049.
  3. Ghaedi, K. and Ibrahim, Z., "A new metallic bar damper device for seismic energy dissipation of civil structures", in IOP Conference Series: Materials Science and Engineering, IOP Publishing. Vol. 431, (2018), 122009. doi: 10.1088/1757-899X/431/12/122009.
  4. Ghaedi, K., Ibrahim, Z., Javanmardi, A. and Rupakhety, R., "Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads", Journal of Earthquake Engineering, Vol. 25, No. 2, (2021), 300-318. doi: 10.1080/13632469.2018.1515796.
  5. Council, A.T., Center, M.-A.E., Research, M.C.f.E.E., Center, P.E.E.R. and Program, N.E.H.R., "Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components", Federal Emergency Management Agency, (2007).
  6. Agency, F.E.M., Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components, fema 461. 2007, Federal Emergency Management Agency Washington, DC.
  7. Venture, SAC Joint, "Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens", Rep. No. SAC/BD-97, Vol. 2, (1997).
  8. Manual, AISC Seismic, Seismic provisions for structural steel buildings, (2005), 05-341.
  9. Council, A.T., "Guidelines for seismic testing of components of steel structures", Report of ATC-24, (1992).
  10. Jiao, Y., Kishiki, S. and Yamada, S., "Loading protocols employed in evaluation of seismic behavior of steel beams in weak-beam moment frames", in Proceeding of 15th World Conference on Earthquake Engineering, Lisbon, Portugal. (2012).
  11. Youssef, N.F., Bonowitz, D. and Gross, J.L., "A survey of steel moment-resisting frame buildings affected by the 1994 northridge earthquake, US National Institute of Standards and Technology, (1995).
  12. Azevedo, J. and Calado, L., "Hysteretic behaviour of steel members: Analytical models and experimental tests", Journal of Constructional Steel Research, Vol. 29, No. 1-3, (1994), 71-94. doi: 10.1016/0143-974X(94)90057-4.
  13. Bannantine, J., Comer, J. and Handrock, J., "Fundamentals of metal fatigue analysis((book))", Research supported by the University of Illinois. Englewood Cliffs, NJ, Prentice Hall, 1990, 286, (1990).
  14. Zhang, R., Wang, C., Pan, C., Shen, H., Ge, Q. and Zhang, L., "Simplified design of elastoplastic structures with metallic yielding dampers based on the concept of uniform damping ratio", Engineering Structures, Vol. 176, (2018), 734-745. doi: 10.1016/j.engstruct.2018.09.009.
  15. Jaisee, S., Yue, F. and Ooi, Y.H., "A state-of-the-art review on passive friction dampers and their applications", Engineering Structures, Vol. 235, (2021), 112022. doi: 10.1016/j.engstruct.2021.112022.
  16. Bagheri, S., Barghian, M., Saieri, F. and Farzinfar, A., "U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper", in Structures, Elsevier. Vol. 3, (2015), 163-171. doi: 10.1016/j.istruc.2015.04.003.