A Novel Model Predictive Voltage Control of Brushless Cascade Doubly-Fed Induction Generator in Stand-Alone Power Generation System

Document Type : Original Article

Authors

Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The aim of this paper is to present a model predictive voltage control (MPVC) strategy for stabilizing the amplitude and frequency of the output voltages in a Brushless Cascade Doubly-Fed Induction Generator (BCDFIG) under load changing and variable speed of generator shaft in stand-alone mode. BCDFIGs are a particular model of BDFIGs that consist of two induction machines called the control machine and the power machine, so that their rotors are electrically and mechanically coupled together. In this paper, unlike previous studies, which the BCDFIG rotor was integrated, the generator rotor is analyzed as a complex of two rotors of two separate induction machines. Also, the output voltages of generator are predicted and regulated in different operating conditions by using model predictive voltage control. In order to stabilize the amplitude and frequency of BCDFIG output voltages, the appropriate voltage vector is determined to apply to the stator of control machine. This generation system is simulated and simulation results prove the accuracy of proposed method. Experimental results on prototype BCDFIG are provided to validate the proposed methods. Finally, the effectiveness of the proposed controller brings better power capture optimization under variable speed wind turbine.

Keywords


1.     Jabbour, N., Tsioumas, E., Mademlis, C., and Solomin, E., "A Highly Effective Fault-Ride-Through Strategy for a Wind Energy Conversion System With a Doubly Fed Induction Generator", IEEE Transactions on Power Electronics, Vol. 35, No. 8, (2020), 8154–8164. doi:10.1109/TPEL.2020.2967971
2.     Gontijo, G. F., Tricarico, T. C., Franca, B. W., da Silva, L. F., van Emmerik, E. L., and Aredes, M., "Robust Model Predictive Rotor Current Control of a DFIG Connected to a Distorted and Unbalanced Grid Driven by a Direct Matrix Converter", IEEE Transactions on Sustainable Energy, Vol. 10, No. 3, (2019), 1380–1392. doi:10.1109/TSTE.2018.2868406
3.     Esfandiari, G., Ebrahimi, M., and Tabesh, A., "Instantaneous Torque Control Method With Rated Torque-Sharing Ratio for Cascaded DFIMs", IEEE Transactions on Power Electronics, Vol. 32, No. 11, (2017), 8671–8680. doi:10.1109/TPEL.2017.2650211
4.     Norouzia, S., Ghoreishy, H., Ale Ahmad, A., and Tahami, F., "A New Variable Frequency Zero Voltage Switching Control Method for Boost Converter Operating in Boundary Conduction Mode", International Journal of Engineering, Transaction B: Applications, Vol. 33, No. 11, (2020), 2222–2232. doi:10.5829/ije.2020.33.11b.14
5.     Sun, D., Wang, X., Nian, H., and Zhu, Z. Q., "A Sliding-Mode Direct Power Control Strategy for DFIG Under Both Balanced and Unbalanced Grid Conditions Using Extended Active Power", IEEE Transactions on Power Electronics, Vol. 33, No. 2, (2018), 1313–1322. doi:10.1109/TPEL.2017.2686980
6.     Liu, Y., Xu, W., Zhi, G., and Zhang, J., "Performance Analysis of a Stand-alone Brushless Doubly-fed Induction Generator Using a New T-type Steady-state Model", Journal of Power Electronics, Vol. 17, No. 4, (2017), 1027–1036. doi:https://doi.org/10.6113/JPE.2017.17.4.1027
7.     Sadeghi, R., Madani, S. M., and Ataei, M., "A New Smooth Synchronization of Brushless Doubly-Fed Induction Generator by Applying a Proposed Machine Model", IEEE Transactions on Sustainable Energy, Vol. 9, No. 1, (2018), 371–380. doi:10.1109/TSTE.2017.2734964
8.     Kou, P., Liang, D., Li, J., Gao, L., and Ze, Q., "Finite-Control-Set Model Predictive Control for DFIG Wind Turbines", IEEE Transactions on Automation Science and Engineering, Vol. 15, No. 3, (2018), 1004–1013. doi:10.1109/TASE.2017.2682559
9.     Chen, J., Zhang, W., Chen, B., and Ma, Y., "Improved Vector Control of Brushless Doubly Fed Induction Generator under Unbalanced Grid Conditions for Offshore Wind Power Generation", IEEE Transactions on Energy Conversion, Vol. 31, No. 1, (2016), 293–302. doi:10.1109/TEC.2015.2479859
10.   Khateri-abri, S., Tohidi, S., and Rostami, N., "Improved Direct Power Control of DFIG Wind Turbine by using a Fuzzy Logic Controller", 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), (2019), 458–463. doi:10.1109/PEDSTC.2019.8697581
11.   Douadi, T., Harbouchea, Y., Abdessemed, R., and Bakhti, I., "Improvement Performances of Active and Reactive Power Control Applied to DFIG for Variable Speed Wind Turbine Using Sliding Mode Control and FOC", International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 10, (2018), 1689–1697. doi:10.5829/ije.2018.31.10a.11
12.   Hussien, M. G., Liu, Y., and Xu, W., "Robust position observer for sensorless direct voltage control of stand-alone ship shaft brushless doubly-fed induction generators", CES Transactions on Electrical Machines and Systems, Vol. 3, No. 4, (2019), 363–376. doi:10.30941/CESTEMS.2019.00048
13.   Pichan, M., Rastegar, H., and Monfared, M., "Fuzzy-based direct power control of doubly fed induction generator-based wind energy conversion systems", 2012 2nd International EConference on Computer and Knowledge Engineering (ICCKE), (2012), 66–70. doi:10.1109/ICCKE.2012.6395354
14.   Rodrigues, L. L., Vilcanqui, O. A. C., Murari, A. L. L. F., and Filho, A. J. S., "Predictive Power Control for DFIG: A FARE-Based Weighting Matrices Approach", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 2, (2019), 967–975. doi:10.1109/JESTPE.2019.2898924
15.   Xu, W., Gao, J., Liu, Y., and Yu, K., "Model predictive current control of brushless doubly-fed machine for stand-alone power generation system", IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, (2017), 322–327. doi:10.1109/IECON.2017.8216058
16.   Xu, W., Hussien, M. G., Liu, Y., and Allam, S. M., "Sensorless Control of Ship Shaft Stand-Alone BDFIGs Based on Reactive-Power MRAS Observer", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 2, (2021), 1518–1531. doi:10.1109/JESTPE.2019.2963264
17.   Salehi, M., and Davarani, R. Z., "Effect of Different Turbine-generator Shaft Models on the Sub-synchronous Resonance Phenomenon in the Double Cage Induction Generator Based Wind Farm", International Journal of Engineering, Transaction B: Applications, Vol. 29, No. 8, (2016), 1103–1111. doi:10.5829/idosi.ije.2016.29.08b.10
18.   Cheng, C., and Nian, H., "Low-Complexity Model Predictive Stator Current Control of DFIG Under Harmonic Grid Voltages", IEEE Transactions on Energy Conversion, Vol. 32, No. 3, (2017), 1072–1080. doi:10.1109/TEC.2017.2694849
19.   Mossa, M. A., Saad Al-Sumaiti, A., Duc Do, T., and Zaki Diab, A. A., "Cost-Effective Predictive Flux Control for a Sensorless Doubly Fed Induction Generator", IEEE Access, Vol. 7, (2019), 172606–172627. doi:10.1109/ACCESS.2019.2951361
20.   Zhang, Y., Jiang, T., and Jiao, J., "Model-Free Predictive Current Control of a DFIG Using an Ultra-Local Model for Grid Synchronization and Power Regulation", IEEE Transactions on Energy Conversion, Vol. 35, No. 4, (2020), 2269–2280. doi:10.1109/TEC.2020.3004567
21.   Agha Kashkooli, M. R., Madani, S. M., and Lipo, T. A., "Improved Direct Torque Control for a DFIG under Symmetrical Voltage Dip With Transient Flux Damping", IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, (2020), 28–37. doi:10.1109/TIE.2019.2893856
22.   Wu, C., Zhou, D., and Blaabjerg, F., "Direct Power Magnitude Control of DFIG-DC System Without Orientation Control", IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, (2021), 1365–1373. doi:10.1109/TIE.2020.2970666
23.   Pichan, M., Rastegar, H., and Monfared, M., "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems", Energy, Vol. 51, (2013), 154–162. doi:10.1016/j.energy.2012.12.047
24.   Han, P., Cheng, M., Wei, X., and Li, N., "Modeling and Performance Analysis of A Dual-Stator Brushless Doubly-Fed Induction Machine Based on Spiral Vector Theory", IEEE Transactions on Industry Applications, Vol. 52, No. 2, (2015), 1380–1389. doi:10.1109/TIA.2015.2491893
25.   Ma, J., Zhao, D., Yao, L., Qian, M., Yamashita, K., and Zhu, L., "Analysis on application of a current-source based DFIG wind generator model", CSEE Journal of Power and Energy Systems, Vol. 4, No. 3, (2018), 352–361. doi:10.17775/CSEEJPES.2018.00060
26.   Gowaid, I. A., Abdel-Khalik, A. S., Massoud, A. M., and Ahmed, S., "Ride-Through Capability of Grid-Connected Brushless Cascade DFIG Wind Turbines in Faulty Grid Conditions—A Comparative Study", IEEE Transactions on Sustainable Energy, Vol. 4, No. 4, (2013), 1002–1015. doi:10.1109/TSTE.2013.2261830
27.   Bektache, A., and Boukhezzar, B., "Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization", International Journal of Electrical Power & Energy Systems, Vol. 101, (2018), 92–102. doi:10.1016/j.ijepes.2018.03.012
28.   Errouissi, R., Al-Durra, A., Muyeen, S. M., Leng, S., and Blaabjerg, F., "Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control", IEEE Transactions on Power Electronics, Vol. 32, No. 3, (2017), 2265–2277. doi:10.1109/TPEL.2016.2557964
29.   Vargas, R., Rodriguez, J., Rojas, C. A., and Rivera, M., "Predictive Control of an Induction Machine Fed by a Matrix Converter With Increased Efficiency and Reduced Common-Mode Voltage", IEEE Transactions on Energy Conversion, Vol. 29, No. 2, (2014), 473–485. doi:10.1109/TEC.2014.2299594
30.   Yan, X., Cheng, M., Xu, L., and Zeng, Y., "Dual-Objective Control Using an SMC-Based CW Current Controller for Cascaded Brushless Doubly Fed Induction Generator", IEEE Transactions on Industry Applications, Vol. 56, No. 6, (2020), 7109–7120. doi:10.1109/TIA.2020.3021624