Effect of Silver Clusters Deposition on Wettability and Optical Properties of Diamond-like Carbon Films

Document Type : Original Article

Authors

1 Radiation Applications Research School, Nuclear Sciences and Technology Research Institute, Tehran, Iran

2 Physics and Accelerators Research school, Nuclear Sciences and Technology Research Institute, Tehran, Iran

3 Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

4 Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology(IROST), Tehran, Iran

Abstract

In this study, the effect of silver clusters deposition was investigated on optical, wettability and surface properties of diamond-like carbon (DLC) films. Silver clusters and DLC films were deposited on Ni-Cu (70.4-29.6;W/W) alloy substrates by ion beam sputtering deposition (IBSD) technique. Optical and structural properties were measured using UV-visible spectroscopy and Raman spectroscopy, respectively. The wettability and surface free energy of films were determined by the contact angle (CA) measurements. Raman spectra of DLC thin film with 121±6nm thickness without accumulated Ag showed that the size of the graphite crystallites with sp 2 bands (La) was 3.36Å by the ID/IG ratio equal to 0.062 with large optical band gap equal 3eV extracted from Tauc relation. The results of the deposition Ag in the various ion beam energy between 0.6 to 2keV showed the Ag clusters were accumulated uniformity on the surface of DLC films at 0.9keV.  The volume percentage of silver clusters was varied from 5.0±2.01 to 16.3±1.4. The variation was caused by controlling the screen voltage and the deposition time. The CA of the deposited films increases from 79°±2 to 95°±2 as well as the reflection values in the visible and near-infrared region due to the increase in the Ag concentration in the surface of DLC films; while the surface free energy decrease from 86±1 to 66±2mJ/m2  and the optical transmittance is almost constant. Our results demonstrate that the deposition of silver particles on DLC films is potentially useful for biomedical applications having good hydrophobic characteristics without causing a destructive effect on the optical properties of DLC films.

Keywords


  1. Zhang, M., Xie, T., Qian, X., Zhu, Y., Liu, X., "Mechanical    properties and biocompatibility of Ti-doped diamond-like carbon films." ACS Omega, Vol. 5, No.36, (2020), 22772-22777,  https:// doi.org/10.1021/acsomega.0c01715.
  2. Robertson, J., "Diamond-like amorphous carbon." Materials Science and Engineering: R: Reports, Vol. 37, No. 4-6, (2002),  129-281, https://doi.org/10.1016/S0927-796X(02)00005-0.
  3. Waseem, B.; Alam, S.; Irfan, M.; Shahid, M.; Farooq, M.; Soomro, B. D.; Hashim, S.; Iqbal, R., "Optimization and Characterization of Adhesion Properties of DLC Coatings on Different Substrates." Materials Today: Proceedings, Vol. 2, No.10, Part B, (2015), 5308-5312. https://doi.org/10.1016/j.matpr.2015.11.041.
  4. HABIBI, B. H., GOLAZAR, M., "Morphological Characterization of Combustion Deposited Diamond Crystals and Films." International Journal of Engineering, Transaction B: Applications, Vol. 15, No. 3, (2002), 255-260. 2002.
  5. Peng, K.-Y., Wei, D.-H., Lin, C.-R., Yu, Y.-C., Yao, Y.-D., Lin, H.-M., "Hydrophobic and high transparent honeycomb diamond-like carbon thin film fabricated by facile self-assembled nanosphere lithography." Japanese Journal of Applied Physics, Vol. 53, No.5S1, (2014), 05FC02. https://doi.org/10.7567/JJAP.53.05FC02.
  6. Mednikarov, B., Spasov, G., Babeva, T., Pirov, J., Sahatchieva, M., Popova, C., Kulischa, W., "Optical properties of diamond-like carbon and nanocrystalline diamond films." Journal of Optoelectronics and Advanced Materials, Vol. 7, No. 3, (2002), 1407-1413.
  7. Yang, P., Huang, N., Leng, Y. X., Chen, J. Y., Fu, R. K. Y., Kwok, S. C. H., Leng, Y., Chu, P. K., "Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PIII-D)." Biomaterials, Vol. 24, No. 17, (2003), 2821-2829. https://doi.org/10.1016/S0142-9612(03)00091-7.
  8. Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., Parker, T. L., "Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications." Journal of Biomedical Materials Research, Vol. 52, No. 2, (2000), 413-421. https://doi.org/10.1002/1097-4636(200011)52:23.0.CO;2-U.
  9. Chen, J. S., Lau, S. P., Sun, Z., Chen, G. Y., Li, Y. J., Tay, B. K., Chai, J. W., "Metal-containing amorphous carbon films for hydrophobic application." Thin Solid Films, Vol. 398-399, (2001), 110-115. https://doi.org/10.1016/S0040-6090(01)01455-9.
  10. Juknius, T., Ružauskas, M., Tamulevičius, T., Šiugždinienė, R., Juknienė, I., Vasiliauskas, A., Jurkevičiūtė, A., Tamulevičius, S., "Antimicrobial properties of diamond-like carbon/silver nanocomposite thin films deposited on textiles: towards smart bandages." Materials, Vol. 9, No. 5, (2016), 371. https://doi.org/10.3390/ma9050371.
  11. Wai, K. P., Koo, C. H., Chong, W. C., Lai, S. O., Pang, Y. L., "Improving Hydrophilicity of Polyethersulfone Membrane Using Silver Nanoparticles for Humic Substances Removal." International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 8, (2018), 1364-1372.
  12. Cavaliere, E., De Cesari, S., Landini, G., Riccobono, E., Pallecchi, L., Rossolini, G. M., Gavioli, L., "Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition." Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 11, No. 6, (2015), 1417-1423. https://doi.org/10.1016/j.nano.2015.02.023.
  13. Ahmed, S. F., Moon, M.-W., Lee, K.-R., "Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix." Applied Physics Letters, Vol. 92, No. 19, (2008), 193502. https://doi.org/10.1063/1.2926676.
  14. Jastrzębski, K., Jastrzębska, A., Bociąga, A., "A review of mechanical properties of diamond-like carbon coatings with various dopants as candidates for biomedical applications." Acta Innovations, Vol. 22, (2017), 40-57.
  15. Choi, H. W., Choi, J.-H., Lee, K.-R., Ahn, J.-P., Oh, K. H., "Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system." Thin Solid Films, Vol. 516, No. 2, (2007), 248-251. https://doi.org/10.1016/j.tsf.2007.06.154.
  16. Jing, P., Ma, D., Gong, Y., Luo, X., Zhang, Y., Weng, Y., Leng, Y., "Influence of Ag doping on the microstructure, mechanical properties, and adhesion stability of diamond-like carbon films." Surface and Coatings Technology, Vol. 405, (2021), 126542. https://doi.org/10.1016/j.surfcoat.2020.126542.
  17. de Oliveira, A., Placias, F., da Silva Sobrinho, A., Leite, D., Miyakawa, W., Neto, J. J., Koh, I., Liberatore, A., dos Santos, M., Matieli, J., "Secondary ion mass spectrometry and atomic force microscopy analysis of silver-doped diamond-like carbon films on titanium alloy (Ti6Al4V) for possible biomedical application." Thin Solid Films, Vol. 719, (2021), 138487. https://doi.org/10.1016/j.tsf.2020.138487.
  18. Ahmed, S. F., Moon, M.-W., Lee, K.-R., "Effect of silver doping on optical property of diamond like carbon films." Thin Solid Films, Vol. 517, No. 14, (2009), 4035-4038. https://doi.org/10.1016/j.tsf.2009.01.135.
  19. Koutsokeras, L., Constantinou, M., Nikolaou, P., Constantinides, G., Kelires, P., "Synthesis and Characterization of Hydrogenated Diamond-Like Carbon (HDLC) Nanocomposite Films with Metal (Ag, Cu) Nanoparticles." Materials, Vol. 13, No. 7, (2020), 1753. https://doi.org/10.3390/ma13071753.
  20. Mohagheghpour, E., Rajabi, M., Gholamipour, R., Larijani, M. M., Sheibani, S., "Ion beam energy dependence of surface and structural properties of amorphous carbon films deposited by IBSD method on Ni–Cu alloy." Journal of Materials Research, Vol. 32, No. 7, (2017) 1258-1266. DOI:10.1557/jmr.2017.43.
  21. Rycenga, M., Cobley, C. M., Zeng, J., Li, W., Moran, C. H., Zhang, Q., Qin, D., Xia, Y., "Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications." Chemical Reviews, Vol. 111, No. 6, (2011), 3669-3712. https://doi.org/10.1021/cr100275d.
  22. Taglietti, A., Arciola, C. R., D'Agostino, A., Dacarro, G., Montanaro, L., Campoccia, D., Cucca, L., Vercellino, M., Poggi, A., Pallavicini, P., Visai, L., "Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface." Biomaterials, Vol. 35, No. 6, (2014), 1779-1788. https://doi.org/10.1016/j.biomaterials.2013.11.047.
  23. Yliniemi, K., Vahvaselkä, M., Ingelgem, Y. V., Baert, K., Wilson, B. P., Terryn, H., Kontturi, K., "The formation and characterisation of ultra-thin films containing Ag nanoparticles." Journal of Materials Chemistry, Vol. 18, No. 2, (2008), 199-206. https://doi.org/10.1039/B713313H.
  24. Liu, G., Wang, Y., Pu, X., Jiang, Y., Cheng, L., Jiao, Z., "One-step synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films by electron beam irradiation." Applied Surface Science, Vol. 349, (2015), 570-575. https://doi.org/10.1016/j.apsusc.2015.05.044.
  25. Jeon, E. K., Seo, E., Lee, E., Lee, W., Um, M.-K., Kim, B.-S., "Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications." Chemical Communications, Vol. 49, No. 33, (2013), 3392-3394. https://doi.org/10.1039/C3CC00115F.
  26. Lim, E. J., Choi, S. M., Seo, M. H., Kim, Y., Lee, S., Kim, W. B., "Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media." Electrochemistry Communications, Vol. 28, (2013), 100-103. https://doi.org/10.1016/j.elecom.2012.12.016.
  27. Yu, X., Qin, Y., Wang, C. B., Yang, Y. Q., Ma, X. C., "Effects of nanocrystalline silver incorporation on sliding tribological properties of Ag-containing diamond-like carbon films in multi-ion beam assisted deposition." Vacuum, Vol. 89, (2013), 82-85. https://doi.org/10.1016/j.vacuum.2011.11.007.
  28. Shin, J.-K., Lee, C. S., Lee, K.-R., Eun, K. Y., "Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films." Applied Physics Letters, Vol. 78, (2001), 631-633. https://doi.org/10.1063/1.1343840.
  29. Ferrari, A. C., "Interpretation of Raman Spectra of Disordered and Amorphous Carbon." Physical Review B, Vol. 61, (2000), 14095-14107. https://doi.org/10.1103/PhysRevB.61.14095.
  30. Sánchez-Vergara, M. E., Alonso-Huitron, J. C., Rodriguez-Gómez, A., Reider-Burstin, J. N., "Determination of the Optical GAP in Thin Films of Amorphous Dilithium Phthalocyanine Using the Tauc and Cody Models." Molecules, Vol. 17, No. 9, (2012), . https://doi.org/10.3390/molecules170910000.
  31. Banerjee, D., Mukherjee, S., Chattopadhyay, K. K., "Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films." Carbon, Vol. 48, No. 4, (2010), 1025-1031. https://doi.org/10.1016/j.carbon.2009.11.021.
  32. Choi, H. W., Dauskardt, R. H., Lee, S.-C., Lee, K.-R., Oh, K. H., "Characteristic of silver doped DLC films on surface properties and protein adsorption." Diamond and Related Materials, Vol. 17, No. 3, (2008), 252-257. https://doi.org/10.1016/j.diamond.2007.12.034.
  33. Vogler, E. A., "Structure and reactivity of water at biomaterial surfaces." Advances in Colloid and Interface Science, Vol. 74, No. 1-3, (1998), 69-117. https://doi.org/10.1016/S0001-8686(97)00040-7.
  34. Pauleau, Y., "Generation and evolution of residual stresses in physical vapour-deposited thin films." Vacuum, Vol. 61, No. 2, (2001), 175-181. https://doi.org/10.1016/S0001-8686(97)00040-7.
  35. Ostrovskaya, L. Y., Dementiev, A. P., Kulakova, I. I., Ralchenko, V. G., "Chemical state and wettability of ion-irradiated diamond surfaces." Diamond and Related Materials, Vol. 14, No. 3, (2005), 486-490. https://doi.org/10.1016/j.diamond.2004.09.010.
  36. Ostrovskaya, L. Y., "Studies of diamond and diamond-like film surfaces using XAES, AFM and wetting." Vacuum, Vol. 68, No. 3, (2002), 219-238. https://doi.org/10.1016/S0042-207X(02)00460-8.
  37. Kwok, S., Zhang, W., Wan, G., McKenzie, D., Bilek, M., Chu, P. K., "Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition." Diamond and Related Materials, Vol. 16, No. 4-7, (2007), 1353-1360. https://doi.org/10.1016/j.diamond.2006.11.001.
  38. Aisenberg, S., Chabot, R., "Ion‐beam deposition of thin films of diamondlike carbon." Journal of applied physics, Vol. 42, No. 7, (1971), 2953-2958. https://doi.org/10.1063/1.1660654.
  39. Oganov, A. R., Hemley, R. J., Hazen, R. M., Jones, A. P., "Structure, bonding, and mineralogy of carbon at extreme conditions." Reviews in Mineralogy and Geochemistry, Vol. 75, No. 1, (2013), 47-77. https://doi.org/10.2138/rmg.2013.75.3.
  40. Paulmier, T., Bell, J. M., Fredericks, P. M., "Deposition of nano-crystalline graphite films by cathodic plasma electrolysis." Thin Solid Films, Vol. 515, No. 5, (2007), 2926-2934. https://doi.org/10.1016/j.tsf.2006.08.027.