Temperature Effect on Creep and Fracture Behaviors of Nano-SiO2-composite and AlSi12Cu3Ni2MgFe Aluminum Alloy

Document Type: Original Article


Faculty of Mechanical Engineering, Semnan University, Semnan, Iran


In the presented article, the temperature effect was studied on creep properties and fracture behaviors of AlSi12Cu3Ni2MgFe aluminum-silicon alloys, unreinforced and reinforced with SiO2 nano-particles. For such objective, standard specimens were fabricated by gravity casting and stir-casting methods, for aluminum alloys and nano-composites, respectively. Then, force-controlled creep testing was performed on standard specimens at 250, 275 and 300°C, under 100 MPa. Then, to find failure mechanisms, the fracture surface of test samples was also analyzed by the field emission scanning electron microscopy. Experimental results depicted the temperature changed creep behaviors of both materials, effectively. Moreover, a significant improvement in creep properties was observed by reinforcing the aluminum matrix with nano-particles, besides a heat treatment process. Such an increase in the creep lifetime was higher at 300°C. In addition, the fracture surface investigation of both materials implied the same brittle behavior, with quasi-cleavage marks. The failure location changed from inside the intermetallic phase into boundaries of the intermetallic phase in the nano-composite.  


1.     Azadi, M., Safarloo, S., Loghman, F., Rasouli, R., "Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles", AIP Conference Proceedings, Vol. 1920, (2018), 020027. DOI: https://doi.org/10.1063/1.5018959

2.     Azadi, M., Zolfaghari, M., Rezanezhad, S., Azadi, M., "Preparation of various aluminum matrix composites reinforcing by nanoparticles with different dispersion methods", Proceedings of Iran International Aluminum Conference, Iran, (2018).

3.     Azadi, M., Zolfaghari, M., Rezanezhad, S., Azadi, M., "Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods", Applied Physics A, Vol. 124, No. 5, (2018), 377. DOI: https://doi.org/10.1007/s00339-018-1797-9

4.     Ishikawa, K., Okuda, H., Kobayashi, Y., "Creep behaviors of highly pure aluminum at lower temperatures", Materials Science and Engineering A, Vol. 234-236, (1997), 154-156. DOI: https://doi.org/10.1016/S0921-5093(97)00204-9

5.     Jenabali Jahromi, S.A., "Creep behavior of spray-cast 7XXX aluminum alloy", Materials and Design, Vol. 23, (2002), 169-172. DOI: https://doi.org/10.1016/S0261-3069(01)00065-6

6.     Ishikawa, K., Kobayashi, Y., "Creep and rupture behavior of a commercial aluminum-magnesiumalloy A5083 at constant applied stress", Materials Science and Engineering A, Vol. 387-389, (2004), 613-617. DOI: https://doi.org/10.1016/j.msea.2004.01.099

7.     Dobes, F., Milicka, K., "Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions", Materials Science and Engineering A, Vol. 387-389, (2004), 595-598. DOI: https://doi.org/10.1016/j.msea.2004.02.095

8.     Srivastava, V., Williams, J.P., McNee, K.R., Greenwood, G.W., Jones, H., "Low stress creep behavior of 7075 high strength aluminum alloy", Materials Science and Engineering A, Vol. 382, (2004), 50-56. DOI: https://doi.org/10.1016/j.msea.2004.04.047

9.     Lina, J., Kowalewskib, Z.L., Caoa, J., "Creep rupture of copper and aluminum alloy under combinedloadings - Experiments and their various descriptions", International Journal of Mechanical Sciences, Vol. 47, (2005), 1038-1058. DOI: https://doi.org/10.1016/j.ijmecsci.2005.02.010

10.   Requena, G., Degischer, H.P., "Creep behavior of unreinforced and short fiberreinforced AlSi12CuMgNi piston alloy", Materials Science and Engineering A, Vol. 420, (2006), 265-275. DOI:  https://doi.org/10.1016/j.msea.2006.01.024

11.   Couteau, O., Dunand, D.C., "Creep of aluminum syntactic foams", Materials Science and Engineering A, Vol. 488, (2008), 573-579. DOI: https://doi.org/10.1016/j.msea.2008.01.022

12.   Kandare, E., Feih, S., Kootsookos, A., Mathys, Z., Lattimer, B.Y., Mouritz, A.P., "Creep-based life prediction modelling of aluminum in fire", Materials Science and Engineering A, Vol. 527, (2010), 1185-1193. DOI: https://doi.org/10.1016/j.msea.2009.10.010

13.   Li, L.T., Lin, Y.C., Zhou, H.M., Jiang, Y.Q., "Modeling the high-temperature creep behaviors of 7075 and 2124aluminum alloys by continuum damage mechanics model", Computational Materials Science, Vol. 73, (2013), 72-78. DOI: https://doi.org/10.1016/j.commatsci.2013.02.022

14.   Maximov, J.T., Duncheva, G.V., Anchev, A.P., Ichkova, M.D., "Modeling of strain hardening and creep behavior of 2024T3 aluminumalloy at room and high temperatures", Computational Materials Science, Vol. 83, (2014), 381-393. DOI: http://dx.doi.org/10.1016/j.commatsci.2013.11.057

15.   Zhan, L.H., Li, Y.G., Huang, M.H., "Effects of process parameters on mechanical properties andmicrostructures of creep aged 2124 aluminum alloy", Transactions of Nonferrous Metals Society of China, Vol. 24, (2014), 2232-2238. DOI: https://doi.org/10.1016/S1003-6326(14)63338-0

16.   Fernandez-Gutierrez, R., Requena, G.C., "The effect of spheroidisation heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy", Materials Science and Engineering A, Vol. 598, (2014), 147-153. DOI: http://dx.doi.org/10.1016/j.msea.2013.12.093

17.   Zhang, Q., Zhang, W., Liu, Y., "Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109", Materials Science and Engineering A, Vol. 628, (2015), 340-349. DOI: http://dx.doi.org/10.1016/j.msea.2015.01.032

18.   Spence, T.W., Makhlouf, M.M., "The effect of machining-induced residual stresses on the creep characteristics of aluminum alloys", Materials Science and Engineering A, Vol. 630, (2015), 125-130. DOI: http://dx.doi.org/10.1016/j.msea.2015.02.020

19.   Yang, Y.L., Zhan, L.H., Li, J., "Constitutive modeling and spring-back simulation for2524 aluminum alloy in creep age forming", Transactions of Nonferrous Metals Society of China, Vol. 25, (2015), 3048-3055. DOI: https://doi.org/10.1016/S1003-6326(15)63932-2

20.   Lei, C., Yang, H., Li, H., Shi, N., Zhan, L.H., "Dependences of microstructures and properties on initialtempers of creep aged 7050 aluminum alloy", Journal of Materials Processing Technology, Vol. 239, (2016), 125-132. DOI: https://doi.org/10.1016/j.jmatprotec.2016.07.004

21.   Erdeniz, D., Nasim, W., Malik, J., Yost, A.R., Park, S., Luca, A.D., Vo, N.Q., Karaman, I., Mansoor, B., Seidman, D.N., Dunand, D.C., "Effect of vanadium micro-alloying on the microstructural evolutionand creep behavior of Al-Er-Sc-Zr-Si alloys", Acta Materialia, Vol. 124, (2017), 501-512. DOI: http://dx.doi.org/10.1016/j.actamat.2016.11.033

22.   Xu, Y., Zhan, L., Li, W., "Effect of pre-strain on creep aging behavior of 2524 aluminum alloy", Journal of Alloys and Compounds, Vol. 691, (2017), 564-571. DOI: http://dx.doi.org/10.1016/j.jallcom.2016.08.291

23.   Li, Y., Shi, Z., Lin, J., Yang, Y.L., Rong, Q., "Extended application of a unified creep-ageing constitutive model tomultistep heat treatment of aluminum alloys", Materials and Design, Vol. 122, (2017), 422-432. DOI: http://dx.doi.org/10.1016/j.matdes.2017.03.023

24.   Yang, Y., Zhan, L., Shen, R., Yin, X., Li, X., Li, W., Huang, M., He, D., "Effect of pre-deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling", Materials Science and Engineering A, Vol. 683, (2017), 227-235. DOI: http://dx.doi.org/10.1016/j.msea.2016.12.024

25.   Spigarelli, S., Sandstrom, R., "Basic creep modelling of aluminum", Materials Science and Engineering A, Vol. 711, (2018), 343-349. DOI: https://doi.org/10.1016/j.msea.2017.11.053

26.   Lei, C., Li, H., Zheng, G.W., Fu, J., "Thermal-mechanical loading sequences related creep aging behaviorsof 7050 aluminum alloy", Journal of Alloys and Compounds, Vol. 731, (2018), 90-99. DOI: https://doi.org/10.1016/j.jallcom.2017.10.035

27.   Cadek, J., Oikawa, H., Gustek, V., "Threshold creep behavior of discontinuous aluminum and aluminumalloy matrix composites: An overview", Materials Science and Engineering A, Vol. 190, (1995), 9-23. DOI: https://doi.org/10.1016/0921-5093(94)09605-V

28.   El Amri, A., El Haddou, M., Khamlichi, A., "Thermal-mechanical coupled manufacturing simulation in heterogeneous materials", Civil Engineering Journal, Vol. 2, No. 11, (2016), 600-606. DOI: 10.28991/cej-2016-00000062

29.   Belodedenko, S., Hanush, V., Baglay, A., Hrechanyі, O., "Fatigue resistance models of structural for risk based inspection", Civil Engineering Journal,  Vol. 6, No. 2, (2020), 375-383. DOI: 10.28991/cej-2020-03091477

30.   Ji, F., Ma, M.Z., Song, A.J., Zhang, W.G., Zong,H.T., Liang, S.X., Osamu, Y., Liu, R.P., "Creep behavior of in situTiCP/2618 aluminum matrix composite", Materials Science and Engineering A, Vol. 506, (2009), 58-62. DOI:  https://doi.org/10.1016/j.msea.2008.11.010

31.   Gonzalez-Doncel, G., Fernandez, R., "Comments on “Creep behavior of in situ TiCP/2618 aluminum matrix composite”", Materials Science and Engineering A, Vol. 527, (2010), 3288-3292. DOI: https://doi.org/10.1016/j.msea.2008.11.010

32.   Fernandez, R., Gonzalez-Doncel, G., "Understanding the creep fracture behavior of aluminum alloys and aluminumalloy metal matrix composites", Materials Science and Engineering A, Vol. 528, (2011), 8218-8225. DOI: https://doi.org/10.1016/j.msea.2011.07.027

33.   Choi, H.J., Bae, D.H., "Creep properties of aluminum-based composite containingmulti-walled carbon nanotubes", Scripta Materialia, Vol. 65, (2011), 194-197. DOI: https://doi.org/10.1016/j.scriptamat.2011.03.038

34.   Sudharshan Phani, P., Oliver, W.C., "A direct comparison of high temperature nano-indentation creep anduniaxial creep measurements for commercial purity aluminum", Acta Materialia, Vol. 111, (2016), 31-38. DOI: http://dx.doi.org/10.1016/j.actamat.2016.03.032

35.   Saberi Kakhki, Y., Nategh, S., Mirdamadi, T.S., "Impression relaxation and creep behavior of Al/SiC nano-composite", Materials and Technology, Vol. 50, No. 4, (2016), 611-615. DOI: 10.17222/mit.2015.113

36.   Zhao, Q., Zhang, H., Zhang, X., Qiu, F., Jiang, Q., "Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation", Materials Science and Engineering A, Vol. 718, (2018), 305-310. DOI: https://doi.org/10.1016/j.msea.2018.01.123

37.   Barzegar, M.H., Fallahiyekta, M., "Increasing the thermal efficiency of double tube heat exchangers by using nano hybrid", Emerging Science Journal, Vol. 2, No. 1, (2018), 11-19. DOI: http://dx.doi.org/10.28991/esj-2018-01122

38.   Azadi, M., Aroo, H., "Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons", Materials Research Express, Vol. 6, No. 11, (2019), 115020.  DOI: https://doi.org/10.1088/2053-1591/ab455f

39.   Zeren, M., "The effect of heat-treatment on aluminum-based piston alloys", Materials and Design, Vol. 28, (2007), 2511-2517. DOI: https://doi.org/10.1016/j.matdes.2006.09.010

40.   Standard test methods for conducting creep, creep-rupture and stress-rupture tests of metallic materials, ASTM-E13911, ASTM International, (2012).

41.   Azadi, M., Azadi, M., "Evaluation of high-temperature creep behavior in Inconel-713C nickel-based superalloy considering effects of stress levels", Materials Science and Engineering A, Vol. 689, (2017), 298-305. DOI: https://doi.org/10.1016/j.msea.2017.02.066

42.   Zainon, F., Rafezi Ahmad, K., Daud, R., "Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332", Applied Mechanics and Materials, Vol. 786, (2015), 18-22. DOI: https://doi.org/10.4028/www.scientific.net/AMM.786.18

43.   Han, L., Sui, Y., Wang, Q., Wang, K., Jiang, Y., "Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys", Journal of Alloys and Compounds, Vol. 695, (2017), 1566-1572. DOI: https://doi.org/10.1016/j.jallcom.2016.10.300

44.   Humbertjean, A., Beck, T., "Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading", International Journal of Fatigue, Vol. 53, (2013), 67-74. DOI: https://doi.org/10.1016/j.ijfatigue.2011.09.017

45.   Mollaei, M., Azadi, M., Tavakoli, H., "A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing", Applied Physics A, Vol. 124, (2018), 504. DOI: https://doi.org/10.1007/s00339-018-1929-2

46.   Wang, M., Pang, J.C., Li, S.X., Zhang, Z.F., "Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature", Materials Science and Engineering A, Vol. 704, (2017), 480-492. DOI: https://doi.org/10.1016/j.msea.2017.08.014

47.   Issa, H.K., Taherizadeh, A., Maleki, A., Ghaei, A., "Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes", Ceramics International, Vol. 43, (2017), 14582-14592. DOI: https://doi.org/10.1016/j.ceramint.2017.06.057

48.   Rezanezhad, S., "Investigation of heat treatment effect on bending high-cycle fatigue properties in aluminum-silicon alloy, with and without nano-particles", MSc Thesis, Semnan University, Iran, (2018).

49.   Zolfaghari, M., Azadi, M., Azadi, M., "Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys", International Journal of Metalcasting, (2020), DOI: https://doi.org/10.1007/s40962-020-00437-y

50.   Bahmanabadi, H., Rezanezhad, S., Azadi, M., Azadi, M., "Characterization of creep damage and lifetime in Inconel-713C nickel-based superalloy by stress-based, strain/strain rate-based and continuum damage mechanics models", Materials Research Express, Vol. 5, No. 2, (2018), 026509. DOI: https://doi.org/10.1088/2053-1591/aaab04

51.   Wang, M., Pang, J.C., Zhang, M.X., Liu, H.Q., Li, S.X., Zhang, Z.F., "Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy", Materials Science and Engineering A, Vol. 715, (2018), 62-72. DOI: https://doi.org/10.1016/j.msea.2017.12.099

52.   Rezanezhad, S., Azadi, M., Azadi, M., "Influence of heat treatment on high-cycle fatigue and fracture behaviors of piston aluminum alloy under fully-reversed cyclic bending", Metals and Materials International, (2019), DOI: https://doi.org/10.1007/s12540-019-00498-7