The Effect of Linear Change of Tube Diameter on Subcooled Flow Boiling and Critical Heat Flux

Document Type: Original Article


Department of Mechanical Engineering, University of Hormozgan, BandarAbbas, Iran


One of the major industry problems is the flow boiling, where reaching to the critical heat flux (CHF) condition can lead to a temperature jump and damage of the systems. In the present study, the effects of a uniform change in tube diameter on subcooled flow boiling and CHF was numerically investigated. The Euler-Euler model was used to investigate the relationship between the two liquid and vapor phases. The ANSYS Fluent code was used for simulation. According to the results, a linear increase in the tube diameter leads to increase of vapor volume fraction adjacent to the tube wall, as compared to a regular  tube with a fixed-diameter, which leads to increase of the tube wall temperature due to the low value of the heat transfer coefficient. At CHF conditions, where the tube wall temperature is much higher than that in subcooled flow boiling, an increase in tube diameter may lead to higher tube wall temperature before the temperature jump, as compared to the post-jump temperature of a tube with a constant diameter. The best approach for decreasing the tube wall temperature was found to be a linear decrease in tube diameter. For the tube diameter change angles of θ < - 0.0383°, tube wall temperature exhibited a decreasing trend from the inlet of the tube to its end.


  1. Sarafraz, M.M., Hormozi, F., Peyghambarzadeh, S.M. and Vaeli, N., “Upward Flow Boiling to DI-Water and Cuo Nanofluids Inside the Concentric Annuli”, Journal of Applied Fluid Mechanics, Vol. 8, No. 4, (2015), 651-659. doi:10.18869/acadpub.jafm.67.223.19404.
  2. Sengupta, A.R., Gupta, R. and Biswas, A., “Computational Fluid Dynamics Analysis of Stove Systems for Cooking and Drying of Muga Silk”, Emerging Science Journal, Vol. 3, No. 5, (2019), 285-292. doi:10.28991/esj-2019-01191.
  3. DolatiAsl, K., Bakhshan, Y., Abedini, E. and Niazi, S., “Correlations for estimating critical heat flux (CHF) of nanofluid flow boiling”, International Journal of Heat and Mass Transfer, Vol. 139, No. 2019, (2019), 69-76. doi:10.1016/j.ijheatmasstransfer.2019.04.146.
  4. Sikarwar, B.S., Shukla, R.K. and Sharma, S.K., “Experimental Study for Investigating the Mechanism of Heat Transfer Near the Critical Heat Flux in Nucleate Pool Boiling”, International Journal of Engineering, Transactions B: Applications, Vol. 28, No. 8, (2015), 1241-1250. doi:10.5829/idosi.ije.2015.28.08b.18.
  5. DolatiAsl, K., Bakhshan, Y., Abedini, E. and Niazi, S., “Numerical Investigation of Critical Heat Flux in Subcooled Flow Boiling of Nanofluids”, Journal of Thermal Analysis and Calorimetry, Vol. 139, No. 3, (2020), 2295-2308. doi:10.1007/s10973-019-08616-8.
  6. Barzegar, M.H. and Fallahiyekta, M., “Increasing the Thermal Efficiency of Double Tube Heat Exchangers by Using Nano Hybrid”, Emerging Science Journal, Vol. 2, No. 1, (2018), 11-19. doi:10.28991/esj-2018-01122.
  7. Adibi, T., Razavi, S.E. and Adibi, Q., “A Characteristic-based Numerical Simulation of Water-titanium Dioxide Nano-fluid in Closed Domains”, International Journal of Engineering, Transactions A: Basics, Vol. 22, No. 1, (2020), 158-163. doi:10.5829/ije.2020.33.01a.18.
  8. Shahriari, A., Jahantigh, N. and Rakani, F., “Assessment of Particle-size and Temperature Effect of Nanofluid on Heat Transfer Adopting Lattice Boltzmann Model”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 10, (2018), 1749-1759. doi:10.5829/ije.2018.31.10a.18.
  9. Zeinali Heris, S., Nassan, T.H., Noie, S.H., Sardarabadi, H. and Sardarabadi, M., “Laminar convective heat transfer of Al2O3/water nanofluid through square cross-sectional duct”, International Journal of Heat and Fluid Flow, Vol. 44, (2013), 375-382. doi:10.1016/j.ijheatfluidflow.2013.07.006.
  10. Kim, T., Chang, W.J. and Chang, S.H., Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube, International Journal of Heat and Mass Transfer, Vol. 54, No. 9–10, (2011), 2021-2025.  doi:10.1016/j.ijheatmasstransfer.2010.12.029.
  11. Song, S.L., Lee, J.H. and Chang, S.H., CHF enhancement of SiC nanofluid in pool boiling experiment, Experimental Thermal and Fluid Science, Vol. 52, (2014), 12-18, doi: 10.1016/j.expthermflusci.2013.08.008.
  12. Lemmert, M. and Chawla, J.M., “Influence of flow velocity on surface boiling heat transfer coefficient”, Heat Transfer in Boiling, (1977), 237-274.
  13. Krepper, E., Koncar, B., and Egorov, Y., “CFD modelling of subcooled boiling-Concept, validation and application to fuel assembly design”, Nuclear Engineering and Design, Vol. 237, No. 7, (2007), 716-731. doi:10.1016/j.nucengdes.2006.10.023.
  14. DolatiAsl, K., Abedini, E., Bakhshan, Y., “Heat transfer analysis and estimation of CHF in vertical channel”, Journal of Applied Dynamic Systems and Control, Vol. 2, No. 1, (2019), 18-23.
  15. Wang, Y., Deng, K., Wu, J., Su, G. and Qiu, S., “The Characteristics and Correlation of Nanofluid Flow Boiling Critical Heat Flux”, International Journal of Heat and Mass Transfer, Vol. 122, (2018), 212-221. doi:10.1016/j.ijheatmasstransfer.2018.01.118.
  16. Vafaei, S. and Wen, D., “Critical Heat Flux of Nanofluids inside a Single Microchannel: Experiments and Correlations”, Chemical Engineering Research and Design, Vol. 92, No. 11, (2014), 2339-2351. doi:10.1016/j.cherd.2014.02.014.
  17. Netz, T., Shalem, R., Aharon, J., Ziskind, G. and Letan, R., “Incipient Flow Boiling in a Vertical Channel With a Wavy Wall”, in Proceedings of the 14th International Heat Transfer Conference, Washington, DC, USA, (2010). doi:10.1115/IHTC14-22809.
  18. Patil, A.S., Kulkarni, A.V. and Pansare, V.B., “Experimental analysis of convective heat transfer in divergent channel”, International Journal of Engineering Research and General Science, Vol. 3, No. 6, (2015), 691-698.
  19. Khoshvaght-Aliabadi, M., Sahamiyan, M., Hesampour, M. and Sartipzadeh, O., “Experimental study on cooling performance of sinusoidal–wavy minichannel heat sink”, Applied Thermal Engineering, Vol. 92, (2016), 50-61. doi:10.1016/j.applthermaleng.2015.09.015.
  20. Al-Asadi, M.T., Alkasmoul, F.S. and Wilson, M.C.T., “Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators”, International Communications in Heat and Mass Transfer, Vol. 74, (2016), 40-47. doi:10.1016/j.icheatmasstransfer.2016.03.002.
  21. Akbarzadeh, M., Rashidi, S. and Esfahani, J.A., “Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel”, Applied Thermal Engineering, Vol. 116, (2017), 278-291. doi:10.1016/j.applthermaleng.2017.01.076.
  22. Vo, D.D., Alsarraf, J., Moradikazerouni, A., Afrand, M., Salehipour H. and Qi C., “Numerical investigation of γ-AlOOH nano-fluid convection performance in a wavy channel considering various shapes of nanoadditives”, Powder Technology, Vol. 345, (2019), 649-657. doi:10.1016/j.powtec.2019.01.057.
  23. Kim, S.J., McKrell, T., Buongiorno, J. and Hu, L.W., “Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids”, Heat Transfer, Vol. 131, (2009), 043204-1-7. doi:10.1115/1.3072924.