Design of a High Range, High Efficiency Spread Spectrum Transmitter for Audio Communication Applications

Document Type : Original Article

Authors

Department of Electrical Engineering, Babol University of Technology, Babol, Iran

Abstract

This work proposes a direct sequence spread spectrum transmitter with high transmission range and efficiency for audio signals. It is shown that by choosing high process gain for spread spectrum signal the data could reach a range of 55km in the 2.4GHz ISM band. By employing a light modulation scheme, we have a relaxed SNR requirement for having a low bit error rate (BER) which translates to relaxed error vector magnitude (EVM) condition. Therefore a switching power amplfier (PA) is used in this work which improves the transmitter’s efficiency while by taking PAs nonidealities into account we extracted the new equations to find the conditions to improve the efficiency compared to conventional zero current and zero current switching conditions. The PA efficiency is equal to 79.5% while having 30dBm output power. The mixer alongside power amplifier used in this work provide a conversion gain of 9 dB while having 16 dBm output compression point. The  employed tunable quadrature oscillator has the ability to cancel phase and amplitude errors without comprimising the oscillator phase noise. The transmitter reaches an efficiency of 73.4% and an EVM of -32.75 dB.

Keywords


1. Goldsmith, A., Wireless communications. Cambridge university
press., (2005). 
2. Tse, D. and Viswanath, P., Fundamentals of wireless
communication, Cambridge university press, (2005). 
3. Crilly, P.B., Communication systems: An introduction to signals
and noise in electrical communication, McGraw-Hill
Companies, Inc., (2010). 
4. Rofougaran, A., Chang, G., Rael, J.J., Chang, J.C., Rofougaran,
M., Chang, P.J., Djafari, M., Ku, M.K., Roth, E.W., Abidi, A.A.
and Samueli, H., “A single-chip 900-MHz spread-spectrum
wireless transceiver in 1-μm CMOS. I. Architecture and
transmitter design,” IEEE Journal of Solid-State Circuits, Vol.
33, No. 4, (1998), 515–534. 
5. Peterson, R., Ziemer, R., and Borth, D., Introduction to spreadspectrum
communications, (Vol. 995), New Jersey: Prentice
hall, (1995). 
6. Razavi, B. and Behzad, R., RF microelectronics, (Vol. 1), New
Jersey: Prentice hall, (1998). 
7. Lee, K.Y., Lee, S.W., Koo, Y., Huh, H.K., Nam, H.Y., Lee,
J.W., Park, J., Lee, K., Jeong, D.K. and Kim, W., “Full-CMOS
2-GHz WCDMA direct conversion transmitter and receiver,”
IEEE Journal of Solid-State Circuits, Vol. 38, No. 1, (2003),
43–53. 
8. Choi, C., Choi, J., Kim, M., Park, H. and Nam, I., “A low power
2.4-GHz CMOS direct-conversion transmitter for IEEE
802.15.4,” In IEEE International Wireless Symposium (IWS
2014), IEEE, (2014), 1–4.  
9. Mazzanti, A., Svelto, F., and Andreani, P., “On the Amplitude
and Phase Errors of Quadrature LC-Tank CMOS Oscillators,”
IEEE Journal of Solid-State Circuits, Vol. 41, No. 6, (2006),
1305–1313.  
10. GHonoodi, H. and Miar Naimi, H., “Canceling tradeoff between
phase noise and phase error in parallel coupled quadrature
oscillators,” In 18th Iranian Conference on Electrical
Engineering, IEEE, (2010), 459–464.  
11. Hsiao, C.H., Li, C.J., Wang, F.K., Horng, T.S. and Peng, K. C.,
“Analysis and Improvement of Direct-Conversion Transmitter
Pulling Effects in Constant Envelope Modulation Systems,”
IEEE Transactions on Microwave Theory and Techniques,
Vol. 58, No. 12, (2010), 4137–4146.  
12. Hsiao, C.H., Chen, C.T., Horng, T.S. and Peng, K. C., “Directconversion
transmitter with resistance to local oscillator pulling in non-constant
envelope modulation systems,”In IEEE MTT-S International Microwave
Symposium, (2011), 1–4.
13. Krivokapic, I. and Oskovsky, M., “GTEM cell method based
comparative analysis of performance degradation in integer and
fractional frequency synthesizer based direct conversion CDMA
transmitters,” In Proceedings of the 2005 IEEE International
Frequency Control Symposium and Exposition, IEEE, (2005),
569–574.  
14. Ting-Ping Liu, “A 2.7-V dual-frequency single-sideband mixer
[for PCS],” In Symposium on VLSI Circuits. Digest of
Technical Papers (Cat. No.98CH36215), IEEE, (1998), 124–127.  
15. Hanif, M.F., Askari, S., Desai, K., Banerjee, B. and Nourani,
M., “A direct conversion WiMAX RF transmitter in 0.18um
CMOS technology,” In IEEE Dallas Circuits and Systems
Workshop (DCAS), IEEE, (2009), 1–4.  
16. Abu-Rgheff, M.A., Introduction to CDMA Wireless
Communications, Academic Press, Inc. Orlando, FL, USA,
(2007). 
17. Ziemer, R.E. and Peterson, R.L., Introduction to digital
communication, New York: Maxwell Macmillan, (1992). 
18. Proakis, J. and Salehi, M., Digital communications, New York:
McGraw-hill, (2007). 
19. El-Hamamsy,  S.A.,  “Design  of   high-efficiency   RF   Class-D power amplifier,” IEEE Transactions on Power Electronics,
Vol. 9, No. 3, (1994), 297–308.  
20. El-Desouki, M.M., Deen, M.J. and Haddara, Y.M., “A lowpower CMOS class-E power amplifier for biotelemetryapplications,” In 2005 European Microwave Conference, IEEE,
(2005), 1–4.  
21. Kim, J.Y., Chun, S.H., Jang, D.H., Kim, J.H. and Kennedy, G.P., “A 1-kW switchable damped class-E power amplifier forplasma processing applications,” Microwave and OpticalTechnology Letters, Vol. 52, No. 11, (2010), 2438–2441.  
22. Eroglu, A. and Sivakumar, S., “Phase controlled Class Eamplifiers for pulsing applications,” In IEEE MTT-S
International Microwave Symposium Digest, IEEE, (2009),765–768.  
23. Sokal, N. O. and Sokal, A. D., “Class E-A new class of highefficiency
tuned single-ended switching power amplifiers,”IEEE Journal of Solid-State Circuits, Vol. 10, No. 3, (1975),168–176.  
24. Lee, Y.S., Lee, M.W., Kam, S.H. and Jeong, Y. H., “A HighEfficiency
GaN-Based Power Amplifier Employing Inverse
Class-E Topology,” IEEE Microwave and WirelessComponents Letters, Vol. 19, No. 9, (2009), 593–595.  
25. Typpo, J., Hietakangas, S., and Rahkonen, T., “A 900 MHz 10mW monolithically integrated inverse class E power amplifier,”In NORCHIP 2010, IEEE, (2010), 1–4.  
26. Chen, P. and He, S., “Investigation of Inverse Class-E PowerAmplifier at Sub-Nominal Condition for Any Duty Ratio,”IEEE Transactions on Circuits and Systems I: RegularPapers, Vol. 62, No. 4, (2015), 1015–1024.  
27. Romanò, L., Levantino, S., Samori, C. and Lacaita, A. L.,“Multiphase LC oscillators,” IEEE Transactions on Circuitsand Systems I: Regular Papers, Vol. 53, No. 7, (2006), 1579–
1588.  
28. Seifi, S. and H.Miar-Naimi, “Analysis of Oscillation Amplitudeand Phase Error in Multiphase LC Oscillators,” InternationalJournal of Engineering - Transactions C: Aspects, Vol. 26,No. 6, (2013), 587–596.  
29. GHonoodi, H. and Naimi, H.M., “A Phase and AmplitudeTunable Quadrature $LC$ Oscillator: Analysis and Design,”IEEE Transactions on Circuits and Systems I: RegularPapers, Vol. 58, No. 4, (2011), 677–689.  
30. Hanif, M.F., Askari, S., Desai, K., Banerjee, B. and Nourani,M., “A direct conversion WiMAX RF transmitter in 0.18umCMOS technology,” In IEEE Dallas Circuits and Systems
Workshop (DCAS), IEEE, (2009), 1–4.  
31. Wang, P.C., Chang, C.J., Chiu, W.M., Chiu, P.J., Wang, C.C.,Lu, C.H., Chen, K.T., Huang, M.C., Chang, Y.M., Lin, S.M.and Chan, K.U., “A 2.4GHz Fully Integrated Transmitter FrontEnd with +26.5-dBm On-Chip CMOS Power Amplifier,” InIEEE Radio Frequency Integrated Circuits (RFIC) Symposium,IEEE, (2007), 263–266.  
32. Madoglio, P., Ravi, A., Xu, H., Chandrashekar, K., Verhelst,M., Pellerano, S., Cuellar, L., Aguirre, M., Sajadieh, M.,Degani, O. and Lakdawala, H., “A 20dBm 2.4GHz digitaloutphasing transmitter for WLAN application in 32nm CMOS,”In IEEE International Solid-State Circuits Conference, IEEE,(2012), 168–170.  
33. Lu, C., Wang, H., Peng, C.H., Goel, A., Son, S., Liang, P.,Niknejad, A., Hwang, H.C. and Chien, G., “A 24.7dBm alldigital
RF transmitter for multimode broadband applications in40nm CMOS,” In IEEE International Solid-State CircuitsConference Digest of Technical Papers, IEEE, (2013), 332–333.