Poultry Slaughterhouse Wastewater Treatment Using Anaerobic Fluid Bed Reactor and Aerobic Mobile-Bed Biological Reactor


1 Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

2 Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran


This research evaluated the efficiency of combined anaerobic-aerobic processes for the treatment of slaughterhouse wastewater. The anaerobic reactor consists of a 3.95 L Plexiglas column with 60 mm diameter and 140 cm height. The cylindrical particles of polyvinyl chloride with 2 mm diameter and 1250 kg m-3 density packed to 60 cm of column were used as biomass saving material. The designed aerobic reactor also has a Plexiglas column with 10 cm internal diameter, 90 cm height and 60 cm useful height. Anaerobic fluid bed and aerobic mobile bed reactors were exploited for retention times of 18, 24, 32, 40 and 48 h. The efficiency of total suspended solids, biological oxygen demand and chemical oxygen demand removing were evaluated in different stages. Under the applied condition, chemical oxygen demand, biological oxygen demand and suspended solids were removed by 85.94, 92 and 66%, respectively. Maximum methane production of 3765 mL per day was obtained after 31 h at the residence time of 18 h. The anaerobic reactor plays very important role in reduction of the chemical oxygen demand, and the aerobic reactor is necessary to clear the anaerobic treated wastewater and ensure the quality of the final waste.


1. Wang, L., Hung, Y., and Shammas, N.K., Handbook of Advanced Industrial and Hazardous Wastes Treatment, CRC Press, (2010).
2. Yazdani, O., Torkian, A., and Alinejad, K., “Treatability Evaluation of Municipal Wastewater and Anaerobically-Treated Industrial Effluent in a Rotating Biological Contactor”, International Journal of Engineering - Transactions B: Applications, Vol. 16, No. 2, (2003), 143–154.
3. Chen, C.Y., Wu, P.S., and Chung, Y.C., “Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water”, Bioresource Technology, Vol. 100, No. 19, (2009), 4531–4534.
4. Del Pozo, R. and Diez, V., “Integrated anaerobic–aerobic fixed-film reactor for slaughterhouse wastewater treatment”, Water Research, Vol. 39, No. 6, (2005), 1114–1122.
5. Barrera, M., Mehrvar, M., Gilbride, K., McCarthy, L., Laursen, A., Bostan, V., and Pushchak, R., “Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater”, Chemical Engineering Research and Design, Vol. 90, No. 9, (2012), 1335–1350.
6. John, C.M., Bohaty, S.M., Zachos, J.C., Sluijs, A., Gibbs, S., Brinkhuis, H., and Bralower, T.J., “Impact of the Paleocene-Eocene Thermal Maximum on Continental Margins and Implications for the Carbon Cycle in Near-Shore Environments”, American Geophysical Union, Fall Meeting, (2006).
7. Feng, H., Hu, L., Mahmood, Q., Fang, C., Qiu, C., and Shen, D., “Effects of temperature and feed strength on a carrier anaerobic baffled reactor treating dilute wastewater”, Desalination, Vol. 239, No. 1–3, (2009), 111–121.
8. Debik, E. and Coskun, T., “Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling”, Bioresource Technology, Vol. 100, No. 11, (2009), 2777–2782.
9. Oller, I., Malato, S., and Sánchez-Pérez, J. A., “Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review”, Science of The Total Environment, Vol. 409, No. 20, (2011), 4141–4166.
10. Amini, M., “Phosphorus Removal from Dairy Wastewater in Batch Systems under Simultaneous Aerobic/Anaerobic Conditions: Application of Response Surface Methodology”, International Journal of Engineering - Transactions C: Aspects, Vol. 28, No. 6, (2015), 855–863.
11. Davarnejad, R., Zangene, K., Fazlali, A.R., and Behfar, R., “Ibuprofen Removal from a Pharmaceutical Wastewater using Electro-Fenton Process: An Efficient Technique (RESEARCH NOTE)”, International Journal of Engineering - TransactionsB: Applications, Vol. 30, No. 11, (2017), 1639–1646.
12. Abdollahzadeh Sharghi, E., Shorgashti, A., and Bonakdarpour, B., "The study of organic removal efficiency and membrane fouling in a submerged membrane bioreactor treating vegetable oil wastewater", International Journal of Engineering, Transaction C: Aspects, Vol. 29, No. 12, (2016), 1642-1649.
13. Kumar, R., Sharma, A.K., and Ahluwalia, S.S., Advances in Environmental Biotechnology, Springer, (2017), 94-96.
14. Hassan, S. R., Zaman, N. Q., and Dahlan, I., “Effect of organic loading rate on anaerobic digestion: Case study on recycled paper mill effluent using Modified Anaerobic Hybrid Baffled (MAHB) reactor”, KSCE Journal of Civil Engineering, Vol. 19, No. 5, (2015), 1271–1276.
15. APHA, AWWA, and WEF Standard Methods, “Aggregate organic constituents”, In Standard method for the examination of water and waste, 5th Edition, 5210–5250, (2014).
16. Zhang, W., Feng Y., Chen Y., Li P., Zhu H., and Shen S., “High-efficiency treatment of PTA wastewater using a biogas jet assisted anaerobic fluidized bed reactor”, Environmental Technology, Vol. 40, No. 12, (2019), 1534–1542.