Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator


Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran


In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system for a novel SMA rod actuator. To do so, the hysteretic behavior of the actuator was simulated in the form of a gray-box Wiener model. Based on the experimental training dataset obtained from the actuator, the hysteresis Wiener model was trained using a PSO algorithm. Afterwards that the identified hysteresis Wiener model was validated, the authors formed a model-in-the-loop (MIL) position control system. Next, a PSO algorithm was again set to find the best controller parameters regarding some performance criteria. At the end, implemented on the fabricated prototype (the experimental setup), the designed control system shared such excellent accuracy that makes the fabricated actuator amenable to micro-positioning applications.


1.     Roohbakhsh Davaran, A. and Sadrnejad, S.A., "A 3d micro-plane model for shape memory alloys", International Journal of Engineering-Transactions A: Basics,  Vol. 21, No. 1, (2007), 17-30.
2.     Fathi, A. and Mozaffari, A., "Identification of a dynamic model for shape memory alloy actuator using hammerstein-wiener gray box and mutable smart bee algorithm", International Journal of Intelligent Computing and Cybernetics,  Vol. 6, No. 4, (2013), 328-357.
3.     Mozaffari, A., Fathi, A. and Azad, N.L., "Preferred design of recurrent neural network architecture using a multiobjective evolutionary algorithm with un-supervised information recruitment: A paradigm for modeling shape memory alloy actuators", Meccanica,  Vol. 49, No. 6, (2014), 1297-1326.
4.     Jokar, M., Ayati, M., Yousefi-Koma, A. and Basaeri, H., "Experiment-based hysteresis identification of a shape memory alloy–embedded morphing mechanism via stretched particle swarm optimization algorithm", Journal of Intelligent Material Systems and Structures,  Vol. 28, No. 19, (2017), 2781-2792.
5.     Shakiba, S., Zakerzadeh, M.R. and Ayati, M., "Experimental characterization and control of a magnetic shape memory alloy actuator using the modified generalized rate-dependent prandtl–ishlinskii hysteresis model", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,  Vol. 232, No. 5, (2018), 506-518.
6.     Mohd Jani, J., Leary, M. and Subic, A., "Designing shape memory alloy linear actuators: A review", Journal of Intelligent Material Systems and Structures,  Vol. 28, No. 13, (2017), 1699-1718.
7.     Noroozi, S. and Sadrnezhaad, S., "Fabrication of spiral stent with superelastic/shape memory nitinol alloy for femoral vessel", International Journal of Engineering-Transactions A: Basics,  Vol. 30, No. 7, (2017), 1048-1053.
8.     Sayyaadi, H. and Zakerzadeh, M.R., "Nonlinear analysis of a flexible beam actuated by a couple of active sma wire actuators", International Journal of Engineering_Transactions C: Aspects,  Vol. 25, No. 3, (2012), 249-264.
9.     Elahinia, M., Esfahani, E. and Wang, S., Control of sma systems: Review of the state of the art, 2010.
10.   Elahinia, M.H., "Shape memory alloy actuators: Design, fabrication, and experimental evaluation, John Wiley & Sons,  (2016).
11.   Barforoushi, S.D., Fathi, A. and Danaee, S., "Experimental model of shape memory alloy actuators using modified prandtl-ishlinskii model", UPB Buletin Stiintific, Series B: Chemistry and Materials Science,  Vol. 73, No. 2, (2011), 255-266.
12.   Sarvi, M., Derakhshan, M. and Sedighizadeh, M., "A new intelligent controller for parallel DC/DC converters", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 1, (2013), 131-142.
13.   Mahmoudzadeh, S., Mojallali, H. and Pourjafari, N., "An optimized pid for capsubots using modified chaotic genetic algorithm (Research Note)", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 9, (2014), 1377-1384.
14.   Ara, A.L., Tolabi, H.B. and Hosseini, R., "Dynamic modeling and controller design of distribution static compensator in a microgrid based on combination of fuzzy set and galaxy-based search algorithm", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 10, (2016), 1392-1400.
15.   MirMohammadSadeghi, S.A., Nikzadfar, K., Bakhshinezhad, N. and Fathi, A., "Optimal idle speed control of a natural aspirated gasoline engine using bio-inspired meta-heuristic algorithms", International Journal of Automotive Engineering,  Vol. 8, No. 3, (2018), 2792-2806.
16.   Ahn, K.K. and Kha, N.B., "Modeling and control of shape memory alloy actuators using preisach model, genetic algorithm and fuzzy logic", Mechatronics,  Vol. 18, No. 3, (2008), 141-152.
17.   Hadi, A., Alipour, K., Kazeminasab, S. and Elahinia, M., "Asr glove: A wearable glove for hand assistance and rehabilitation using shape memory alloys", Journal of Intelligent Material Systems and Structures,  Vol. 29, No. 8, (2018), 1575-1585.
18.   Nematollahi, M., Mehrabi, R., Callejas, M.R., Elahinia, H. and Elahinia, M., "A two-way architectural actuator using niti se wire and sme spring", in Active and Passive Smart Structures and Integrated Systems XII, International Society for Optics and Photonics, Vol. 10595, (2018).
19.   Kazeminasab, S., Hadi, A., Alipour, K. and Elahinia, M., "Force and motion control of a tendon-driven hand exoskeleton actuated by shape memory alloys", Industrial Robot: An International Journal,  Vol. 45, No. 5, (2018), 623-633.
20.   Villoslada, A., Flores, A., Copaci, D., Blanco, D. and Moreno, L., "High-displacement flexible shape memory alloy actuator for soft wearable robots", Robotics and Autonomous Systems,  Vol. 73, (2015), 91-101.
21.   Potapov, P.L. and Da Silva, E.P., "Time response of shape memory alloy actuators", Journal of Intelligent Material Systems and Structures,  Vol. 11, No. 2, (2000), 125-134.
22.   Meier, H. and Oelschlaeger, L., "Numerical thermomechanical modelling of shape memory alloy wires", Materials Science and Engineering,  Vol. A 378, No. 1-2, (2004), 484-489.
23.   Bhattacharyya, A., Sweeney, L. and Faulkner, M. , "Experimental characterization of free convection during thermal phase transformations in shape memory alloy wires", Smart materials and Structures,  Vol. 11, No. 3, (2002), 411-422.
24.   Kohl, M., "Shape memory microactuators", Springer Science & Business Media., (2013).
25.   Sreekumar, M., Nagarajan, T. and Singaperumal, M., "Application of trained niti sma actuators in a spatial compliant mechanism: Experimental investigations", Materials & Design,  Vol. 30, No. 8, (2009), 3020-3029.
26.   De Almeida, L.A.L., Deep, G.S., Lima, A.M.N. and Neff, H., "Limiting loop proximity hysteresis model", IEEE Transactions on magnetics,  Vol. 39, No. 1, (2003), 523-528.
27.   Nascimento, M., De Araújo, C., De Almeida, L., Da Rocha Neto, J. and Lima, A., "A mathematical model for the strain–temperature hysteresis of shape memory alloy actuators", Materials & Design,  Vol. 30, No. 3, (2009), 551-556.
28.   Naitali, A. and Giri, F., "Wiener–hammerstein system identification–an evolutionary approach", International Journal of Systems Science,  Vol. 47, No. 1, (2016), 45-61.
29.   Eberhart, R. and Kennedy, J., "A new optimizer using particle swarm theory", In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), 39-43.