Enhanced Vitamin B12 Production using Chlorella vulgaris

Document Type : Original Article


1 Biotechnology Research Lab., Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran


Microalgae Chlorella Vulgaris is enriched in vitamin B12 and cobalt ion which is positioned in the center of the vitamin molecule. This study aimed to investigate how different concentrations of cobalt chloride salt affected the vitamin B12 production by utilizing CO2  gas, to assess C. vulgaris biomass. Therefore, Bold’s basal medium used as the medium and  0.5, 1.5, 2 and 2.5 μM cobalt chloride salt was added to C. vulgaris culture. Under four cobalt chloride salt treatments, the best growth rate was obtained at the 2 μM of cobalt chloride salt (0.186 + 0.07 g /L.d). CO2 gas was supplied by 5% CO2 gas cylinder and fermented milk as a novel biological CO2 gas generator (CO2,10%). Use of fermented milk is a practical approach for elimination of waste gas emission and converting CO2 into biomass.  The results revealed that, in the presence of 5% CO2 gas, C. vulgaris vitamin B12 content at 2 and 2.5 μM cobalt chloride, were 166.23 ± 1.78 and 173.32 ± 4.23 μg /100 g of dry biomass (7 and 12% higher than control), respectively. However, under controlled condition (ambient air and 2 μM cobalt chloride) vitamin B12 content was 154.9 ± 1.14 μg / 100 g of dry biomass.


1.     Martens, J., Barg, H., Warren, M. and Jahn, D., "Microbial production of vitamin b12", Applied Microbiology and Biotechnology,  Vol. 58, No. 3, (2002), 275-285.
2.     Scott, J.M. and Molloy, A.M., "The discovery of vitamin b12", Annals of Nutrition and Metabolism,  Vol. 61, No. 3, (2012), 239-245.
3.     Helliwell, K.E., Wheeler, G.L., Leptos, K.C., Goldstein, R.E. and Smith, A.G., "Insights into the evolution of vitamin b12 auxotrophy from sequenced algal genomes", Molecular Biology and Evolution,  Vol. 28, No. 10, (2011), 2921-2933.
4.     Smith, A.G., Croft, M.T., Moulin, M. and Webb, M.E., "Plants need their vitamins too", Current Opinion in Plant Biology,  Vol. 10, No. 3, (2007), 266-275.
5.     Watanabe, F., "Vitamin b12 sources and bioavailability", Experimental Biology and Medicine,  Vol. 232, No. 10, (2007), 1266-1274.
6.     Watanabe, F., Abe, K., Takenaka, S., Tamura, Y., Maruyama, I. and Nakano, Y., "Occurrence of cobalamin coenzymes in the photosynthetic green alga, chlorella vulgaris", Bioscience, Biotechnology, and Biochemistry,  Vol. 61, No. 5, (1997), 896-897.
7.     Panahi, Y., Darvishi, B., Jowzi, N., Beiraghdar, F. and Sahebkar, A., "Chlorella vulgaris: A multifunctional dietary supplement with diverse medicinal properties", Current Pharmaceutical Design,  Vol. 22, No. 2, (2016), 164-173.
8.     Davarnejad, R., Kassim, K., Zainal, A. and Sata, S., "Supercritical fluid extraction of carotenoid from microalgae with projected thermodynamic models (research note)", International Journal of Engineering-Transactions B: Applications,  Vol. 21, No. 2, (2007), 117-126.
9.     Kumudha, A., Selvakumar, S., Dilshad, P., Vaidyanathan, G., Thakur, M.S. and Sarada, R., "Methylcobalamin–a form of vitamin b 12 identified and characterised in chlorella vulgaris", Food Chemistry,  Vol. 170, (2015), 316-320.
10.   Bito, T., Bito, M., Asai, Y., Takenaka, S., Yabuta, Y., Tago, K., Ohnishi, M., Mizoguchi, T. and Watanabe, F., "Characterization and quantitation of vitamin b12 compounds in various chlorella supplements", Journal of Agricultural and Food Chemistry,  Vol. 64, No. 45, (2016), 8516-8524.
11.   Kittaka-Katsura, H., Fujita, T., Watanabe, F. and Nakano, Y., "Purification and characterization of a corrinoid compound from chlorella tablets as an algal health food", Journal of Agricultural and Food Chemistry,  Vol. 50, No. 17, (2002), 4994-4997.
12.   Pop, C.R., Apostu, S., Salanţă, L., Rotar, A.M., Sindic, M., Mabon, N. and Socaciu, C., "Influence of different growth conditions on the kefir grains production, used in the kefiran synthesis", Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology,  Vol. 71, No. 2, (2014), 147-153.
13.   Peng, H., Wei, D., Chen, F. and Chen, G., "Regulation of carbon metabolic fluxes in response to CO2 supplementation in phototrophic chlorella vulgaris: A cytomic and biochemical study", Journal of Applied Phycology,  Vol. 28, No. 2, (2016), 737-745.
14.   Blair, M.F., Kokabian, B. and Gude, V.G., "Light and growth medium effect on chlorella vulgaris biomass production", Journal of Environmental Chemical Engineering,  Vol. 2, No. 1, (2014), 665-674.
15.   Kumudha, A., Kumar, S.S., Thakur, M.S., Ravishankar, G.A. and Sarada, R., "Purification, identification, and characterization of methylcobalamin from spirulina platensis", Journal of Agricultural and Food Chemistry,  Vol. 58, No. 18, (2010), 9925-9930.
16.   Kumudha, A. and Sarada, R., "Effect of different extraction methods on vitamin b12 from blue green algae, spirulina platensis", Pharmaceutica Analytica Acta,  Vol. 2015, No., (2015).
17.   Watanabe, F., Takenaka, S., Abe, K., Tamura, Y. and Nakano, Y., "Comparison of a microbiological assay and a fully automated chemiluminescent system for the determination of vitamin b12 in food", Journal of Agricultural and Food Chemistry,  Vol. 46, No. 4, (1998), 1433-1436.
18.   Popovich, C.A., Damiani, C., Constenla, D., Martínez, A.M., Freije, H., Giovanardi, M., Pancaldi, S. and Leonardi, P.I., "Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: Evaluation of its growth and biochemical composition", Bioresource Technology,  Vol. 114, (2012), 287-293.
19.   Bradford, M.M., "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Analytical Biochemistry,  Vol. 72, No. 1-2, (1976), 248-254.
20.   DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.t. and Smith, F., "Colorimetric method for determination of sugars and related substances", Analytical Chemistry,  Vol. 28, No. 3, (1956), 350-356.
21.   Albalasmeh, A.A., Berhe, A.A. and Ghezzehei, T.A., "A new method for rapid determination of carbohydrate and total carbon concentrations using uv spectrophotometry", Carbohydrate Polymers,  Vol. 97, No. 2, (2013), 253-261.
22.   Folch, J., Lees, M. and Sloane Stanley, G., "A simple method for the isolation and purification of total lipides from animal tissues", Journal of Biological Chemistry,  Vol. 226, No. 1, (1957), 497-509.
23.   Sharma, A.K., Sahoo, P.K., Singhal, S. and Patel, A., "Impact of various media and organic carbon sources on biofuel production potential from chlorella spp", 3 Biotech,  Vol. 6, No. 2, (2016), 116.
24.   Yadav, G., Karemore, A., Dash, S.K. and Sen, R., "Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ", Bioresource Technology,  Vol. 191, (2015), 399-406.
25.   Ördög, V., Stirk, W.A., Bálint, P., van Staden, J. and Lovász, C., "Changes in lipid, protein and pigment concentrations in nitrogen-stressed chlorella minutissima cultures", Journal of Applied Phycology,  Vol. 24, No. 4, (2012), 907-914.
26.   Magalhães, K.T., Dragone, G., de Melo Pereira, G.V., Oliveira, J.M., Domingues, L., Teixeira, J.A., e Silva, J.B.A. and Schwan, R.F., "Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir", Food chemistry,  Vol. 126, No. 1, (2011), 249-253.
27.   Guo, Z., Phooi, W.B.A., Lim, Z.J. and Tong, Y.W., "Control of CO2 input conditions during outdoor culture of chlorella vulgaris in bubble column photobioreactors", Bioresource Technology,  Vol. 186, (2015), 238-245.
28.   Mayo, A.W., "Effects of temperature and ph on the kinetic growth of unialga chlorella vulgaris cultures containing bacteria", Water Environment Research,  Vol. 69, No. 1, (1997), 64-72.
29.   Garrote, G.L., Abraham, A.G. and De Antoni, G.L., "Characteristics of kefir prepared with different grain [ratio] milk ratios", Journal of Dairy Research,  Vol. 65, No. 1, (1998), 149-154.
30.   Battah, M., El-Ayoty, Y., Abomohra, A.E.-F., El-Ghany, S.A. and Esmael, A., "Effect of Mn2+, CO2 + and H2O2 on biomass and lipids of the green microalga chlorella vulgaris as a potential candidate for biodiesel production", Annals of Microbiology,  Vol. 65, No. 1, (2015), 155-162.
31.   Price, N. and Morel, F., "Cadmium and cobalt substitution for zinc in a marine diatom", Nature,  Vol. 344, No. 6267, (1990), 658.
32.   Rachlin, J.W. and Grosso, A., "The growth response of the green algachlorella vulgaris to combined divalent cation exposure", Archives of Environmental Contamination and Toxicology,  Vol. 24, No. 1, (1993), 16-20.
33.   Lima, S., Webb, C.L., Deery, E., Robinson, C. and Zedler, J.A., "Human intrinsic factor expression for bioavailable vitamin b12 enrichment in microalgae", Biology,  Vol. 7, No. 1, (2018), 19.
34.   Nakano, S., Takekoshi, H. and Nakano, M., "Chlorella pyrenoidosa supplementation reduces the risk of anemia, proteinuria and edema in pregnant women", Plant Foods for Human Nutrition,  Vol. 65, No. 1, (2010), 25-30.
35.   Moore, S.J. and Warren, M.J., The anaerobic biosynthesis of vitamin B12. 2012, Portland Press Limited.
36.   Gupta, R., "Microbial technology, APH Publishing,  (2001).
37.   Morita, K., Hamamura, K. and Iida, T., "Binding of pcb by several types of dietary fiber in vivo and in vitro", Fukuoka igaku zasshi= Hukuoka Acta Medica,  Vol. 86, No. 5, (1995), 212-217.
38.   Hoek, C., Mann, D. and Jahns, H.M., "Algae: An introduction to phycology, Cambridge university press,  (1995).
39.   Markou, G., Chatzipavlidis, I. and Georgakakis, D., "Carbohydrates production and bio-flocculation characteristics in cultures of arthrospira (spirulina) platensis: Improvements through phosphorus limitation process", BioEnergy Research,  Vol. 5, No. 4, (2012), 915-925.
40.   Ahmad, A., Yasin, N.M., Derek, C. and Lim, J., "Microalgae as a sustainable energy source for biodiesel production: A review", Renewable and Sustainable Energy Reviews,  Vol. 15, No. 1, (2011), 584-593.
41.   Abdel-Raouf, N., Al-Homaidan, A. and Ibraheem, I., "Microalgae and wastewater treatment", Saudi Journal of Biological Sciences,  Vol. 19, No. 3, (2012), 257-275.
42.   López, C.V.G., García, M.d.C.C., Fernández, F.G.A., Bustos, C.S., Chisti, Y. and Sevilla, J.M.F., "Protein measurements of microalgal and cyanobacterial biomass", Bioresource Technology,  Vol. 101, No. 19, (2010), 7587-7591.
43.   Peng, H., Wei, D., Chen, F. and Chen, G., "Regulation of carbon metabolic fluxes in response to CO2 supplementation in phototrophic chlorella vulgaris: A cytomic and biochemical study", Journal of Applied Phycology,  Vol. 28, No. 2, (2016), 737-745.
44.   Widjaja, A., Chien, C.-C. and Ju, Y.-H., "Study of increasing lipid production from fresh water microalgae chlorella vulgaris", Journal of the Taiwan Institute of Chemical Engineers,  Vol. 40, No. 1, (2009), 13-20.