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A B S T R A C T

 

Recent papers in the concept of Supply Chain Network Design (SCND) have seen a rapid development 

in applying the stochastic models to get closer to real-world applications. Regaring the special 
characteristics of each product, the stracture of SCND varies. In tire industry, the recycling and 

remanufacturing of scraped tires lead to design a closed-loop supply chain. This paper proposes a two-
stage stochastic model for a closed-loop SCND in the application of tire industry. The first stage of 

model optimizes the expected total cost. Then, financial risk has been considered as the second stage of 

model to control the uncertainty variables leading to a robust solution. To solve the developed 
problem, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) have been used. To enhace 

the efficiency of metaheuristic algorithms, Response Surface Method (RSM) has been applied. Finally, 

the proposed model is evaluated by different test problem with different complexity and a set of 
metrics in terms of Pareto optimal solutions.  

doi: 10.5829/ije.2018.31.10a.14 
 

 
1. INTRODUCTION1 
 
One of the important products for humans is car and its 

tires. According to the published reports by Amin et al., 

[1], each family in United States has three cars and each 

car approximately goes through two or three sets of tires 

per year. In this regard, perhaps thirty tires are used per 

each family in three years. Each tire maybe rotated 

every 10K kilometers (km) then disposed after 40-60K 

km [2]. By another point of view, recent reports indicate 

that approximately 290 million scraped tires are 

disposed of every year and almost 20% of them (about 

55 million tires) are illegally dumped. On the other 

hand, world demand for tires is projected to rise 4.1 

percent per year to 3.0 billion units in 2019 [1].  

According to the scientific directions in this research 

zone, Supply Chain (SC) can be defined and illustrated 

as the activities of facilities to provide the materials, to 

manufacture the products, to transform between 
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different parties, and to distribute the final products 

among users [3]. In addition, managers of SC recently 

focused on consumed products in an attempt to generate 

more profit by recovering, remanufacturing or recycling 

products in the backward echelon’s levels [4, 5]. In this 

regard, Supply Chain Management (SCM) guides the 

proper approach to manage all parts in these business 

functions [6].  

Supply Chain Network Design (SCND) is an 

important topic in SCM [7]. It deals with designing an 

efficient and effective network in SC [8]. The literature 

of SCND is rich [9, 10], however, it is relatively scarce 

when it comes to the tire industry, especially that the 

type of the product significantly affects the SC structure 

and configuration [1]. The tire industry is characterized 

by the many times the product can be reused for. 

Chopra and Meindl [11] note that in the United States 

only three percent of sold tires are reused and retreaded 

between 2009 and 2011. Ferrer [12] explains the tire SC 

showing the value-adding operations and the tire 

retreading process. He also estimates the number of 

times which a tire can be reused. Sasikumar et al. [13] 
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propose an optimization model for truck tire 

remanufacturing process. Subulan et al. [2] present a 

case study in Turkey to investigate the tire 

remanufacturing process. Recently, Amin et al. [1] 

develop an optimization model for closed-loop tire SC 

in Toronto, Canada.  

Closed-Loop Supply Chain (CLSC) has been 

appealing for researchers in the last decade [14, 15]. 

This type of SC network considers the reverse and 

forward SC in an integrated manner [16]. Furthermore, 

different configurations and structures of SCs of 

different products are considered totally distinct SCs 

(i.e., they are different for different products) [17]. 

Kannan et al. [18] propose a CLSC for two types of 

products: Tires and plastics. They used Genetic 

Algorithm (GA) and Particle Swarm Optimization 

(PSO) to solve them. They only considered the flow of 

products between different levels of CLSC as well as 

the location and allocation decisions. Their model also 

was deterministic and a type of Mixed Integer Linear 

Programming (MINLP) formulation. In this regard, 

according to the operational and tactical decisions of 

CLSC, an efficient solution is so important. 

Metaheuristics are a type of stochastic optimization in 

nature which gives an optimal solution in a reasonable 

time. In this regard, several new and recent meta-

heuristics are also used in this area. For instance, 

Devika et al. [19] propose six hybridized meta-

heuristics based on the Imperialist Competitive 

Algorithm (ICA) to tackle their proposed CLSC 

problem in glass industry. They also considered the 

impact of technology selection for the model. 

Mirakhorli [20] proposes a GA heuristic-based 

algorithm to optimize bread production. They optimized 

the transportation time as well as the total cost in their 

model. In another similar study, Subulan et al. [21] 

investigate the application of CLSC on battery 

production using an exact solution algorithm for tactical 

decisions in the model. They also recommended the use 

of metaheuristics for large sizes for their developed 

problem. Additionally, Fathollahi Fard et al. [7] 

proposed a two-stage stochastic programming model for 

CLSC in glass industry. To solve their problem, ICA, 

PSO and GA were used. In a recent study, Fathollahi 

Fard and Hajiagahei-Keshteli [22] propose a tri-level 

decision-making model to design a forward/reverse 

supply chain of glass industry. They use Water Wave 

Optimization (WWO) and Keshtel Algorithm (KA) in a 

nested approach.  

The proposed optimization model consists of two 

objective functions: expected total cost and financial 

risk. In order to address the problem two powerful meta-

heuristics are used in this paper: Particle Swarm 

Optimization (PSO) [23] and Genetic Algorithm (GA) 

[24]. The parameters used in PSO and GA are tuned by 

Response Surface Method (RSM). While Fathollahi 

Fard et al. [7] proposed a two-stage stochastic 

programming model for glass industry. In this research, 

a new two-stage stochastic model is developed for the 

tire industry closed-loop supply chain network design 

problem.  

The rest of the paper is organized as follows: In 

Section 2, the problem is described and formulated in a 

two-stage stochastic programming model. In Section 3, 

the encoding scheme is introduced. Computational 

results are investigated in Section 4. Finally, discussion 

and suggestions for the future works are discussed in 

Section 5. 

 

 

2. PROBLEM DESCRIPTION  
 

Usually, the recovery activities in tires consist of 

reusing, remanufacturing and recycling. As shown in 

Figure 1, the proposed Closed-Loop Supply Chain 

(CLSC) network for tire manufacturing and 

remanufacturing is presented. In a nutshell, suppliers 

provide raw materials for manufacturers. The 

manufacturers sell the tires to the retailers in large 

quantities. Then, customers purchase their demands 

from retailers. Only a fraction of used tires from 

customers will be collected by drop-off depots. The 

collected tires are divided into two categories. Some of 

them needs to retreading or remanufacturing return to 

manufacturers. It should be noted, the collected tires 

have a lower price than raw materials from suppliers as 

well as they need some minor process to produce as a 

new product from manufacturers. Consequently, the rest 

of collected tiers should be recycled and be sell to 

suppliers with lower prices.  

The proposed optimization model is based on the 

following assumptions: 

 The demand of each customer must be met.  

 

 

 
Figure 1. The graphical structure of proposed tire CLSC [1] 

Drop-off depots (n) 
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 Each customer can be assigned to only one of 

retailers in the forward flows and drop-off depots 

in the reverse flows. 

 The number of facilities in echelons is predefined.  

 No flow exists between the same facilities. 

 The transportation and fixed costs are known and 

fixed. The other parameters such as demand and 

the rate of returned tires are under uncertainty and 

defined by a set of scenarios.  

 All members of the SC have capacity constraints.  

 The number of returned tires of a certain tire type 

to drop-off depots is considered by a fraction of 

the customer’s demand of that respective tire type 

as originally proposed in literature [1]. 

We define the indexes, parameters and decision 

variables in Tables 1, 2 and 3, respectively. 
 

 

TABLE 1. List of Indexes 

Indexes Description 

i Index of suppliers: i∈{1, 2,…, I}  

m Index of potential manufactures: m ∈{1 ,2,…, M} 

j Index of potential retailers: j ∈{1, 2,…, J} 

l Index of customer zones: l ∈{1, 2,…, L} 

n Index of potential drop-off depots: n ∈{1, 2,…, N} 

r Index of potential recycling centers: r ∈{1, 2,…, R} 

p Index of tire’s type: p ∈{1, 2,…, P} 

s Index of scenarios: s ∈{1, 2,…, S} 

 

 

TABLE 2. The sets of parameters 

Parameters Description 

𝑓𝑐𝑓 The fixed opening cost for facility 𝑓 ∀𝑓∈ {m, j, n, r} 

𝑡𝑐𝑓𝑓′
𝑝

 
The transportation cost for facility f to facility f’ for 

type of tire p ∀  f ∈ {i, m, j, l, n, r} 

𝑝𝑐𝑓
𝑝𝑠

 
The rate of purchasing tire p from facility f over 

scenario s ∀  f  ∈ {i, m, j} 

𝑚𝑐𝑚
𝑝𝑠

 
The manufacturing cost for type of tire p at 

manufacture m over scenario s 

𝑎𝑐𝑗𝑙 
The per unit cost of assigning customer l  to retailer j 

for type of tire p 

𝑑𝑙
𝑝𝑠

 The demand of costumer l for tire p over scenario s 

∝𝑙
𝑝
 

The fraction of returned tires from costumer l for type 
of tire p 

ℎ𝑐𝑙𝑛
𝑝

 
The handling cost of costumer l to drop-off depot n for 

type of tire p 

𝑐𝑝𝑓
𝑝
 The capacity of facility f for type of tire p ∀  f  ∈ {i, m, 

j, l, n, r} 

𝑝𝑟𝑚 
The per unit monetary resulted from the drop-off 

depots for remanufacturing 

𝑚𝑎𝑥𝑓 
The predefined number of each facility f ,∀ f ∈ {m, j, 

n, r} 

𝑝𝑟𝑟 
The per unit monetary resulted from the drop-off 

depots for recycling 

𝛾𝑛 The fraction of used tires shipped to recycle centers. 

𝑝𝑏𝑠 The probability for each scenario. 

 

TABLE 3. The sets of variables 

Variables Description 

𝑋𝑓𝑓′
𝑝𝑠

 
Number of products that flow from facility f to facility f’ 

for type of tire p over scenario s ∀ f  ∈{i, m, j, l, n, r} 

𝑍𝑓𝑓′
𝑝𝑠

 
1 if facility f is assigned to facility f’ over the type of tire 

p over scenario s, 0 otherwise ∀  f ∈ {i, m, j, l, n, r} 

𝑌𝑓 1 if facility f is to be established, 0 otherwise 

𝑉𝑠𝜑 The amount of expected financial risk for each scenario 

 

 

𝐸(𝐶𝑜𝑠𝑡)=∑ 𝑓𝑐𝑓𝑌𝑓+∑𝑝𝑏𝑠𝑠 (∑ ∑ ∑ 𝑡𝑐
𝑓𝑓′
𝑝
𝑋
𝑓𝑓′
𝑝𝑠

𝑝𝑓′𝑓𝑓 +

∑∑ ∑(𝑝𝑐𝑖
𝑝𝑠
+𝑚𝑐𝑚

𝑝𝑠
)𝑝𝑚𝑖 𝑋𝑖𝑚
𝑝𝑠
+∑∑∑(𝑝𝑐𝑗

𝑝𝑠
+𝑝𝑙𝑗

𝑎𝑐𝑗𝑙)𝑑𝑙
𝑝𝑠
𝑍𝑗𝑙
𝑝𝑠
+∑∑ ∑ ℎ𝑐𝑙𝑛

𝑝
𝑝𝑛𝑙 ∝𝑙

𝑝𝑠
𝑑𝑙
𝑝𝑠
𝑍𝑙𝑛
𝑝𝑠
−

𝑝𝑟𝑚(∑∑ ∑(1−𝛾𝑛)𝑋𝑙𝑛
𝑝𝑠

𝑝𝑑𝑐 )−𝑝𝑟𝑟(∑ ∑ ∑ 𝛾𝑛𝑋𝑙𝑛
𝑝𝑠
)𝑝𝑚𝑢 )  

(1) 

In the objective function, the first term is the fixed cost 

of opening facilities. The remaining is multiplied by the 

corresponding probability of its scenario. The second 

represents the transportation cost between facilities. The 

third term represents the purchasing and manufacturing 

costs for the manufacturers. The fourth term represents 

the purchasing cost from retailers and the costs 

associated with assigning a retailer to a costumer. The 

fifth term is the cost associated with assigning 

costumers to drop-off depots to collect used tires in the 

Reverse Logistic (RL) represented as handling cost 

multiplied by the fraction of demand that is going to be 

reused. The sixth and seventh terms represent the saving 

resulting from the remanufacturing and recycling of 

used tires. These terms specify the profit of RL network 

in our model. 

𝑀𝑖𝑛 𝐷𝑅𝑖𝑠𝑘𝜑=∑𝑝𝑏𝑠𝑉𝑠𝜑𝑠   (2) 

Risk management is needed to be considered as an 

important issue when proposing a scenario-based 

stochastic programming model to control and to manage 

the risk associated with unfavourable scenarios. In this 

regard, the second objective function is to minimize the 

downside risk of the model by considering the 

probability of scenario s and its profitability according 

to the following constraint:  

𝑉𝑠𝜑≥ 𝐶𝑜𝑠𝑡
𝑠−𝜑 , ∀ s (3) 

The above equation lets decision maker evaluate each 

scenario to consider its efficiency to find a robust 

solution. In addition, the following constraints specify 

tire flow between different facilities and costumers as 

shown in Figure 1. 

∑𝑋𝑖𝑚
𝑝𝑠

𝑖 =∑ 𝑋𝑚𝑗
𝑝𝑠

𝑚   ∀ p, m, j, s, l (4) 

∑𝑋𝑙𝑛
𝑝𝑠

𝑙 =∑ 𝑋𝑛𝑟
𝑝𝑠

𝑛 +∑ 𝑋𝑛𝑚
𝑝𝑠

𝑛  ∀ n, r, s, m (5) 

∑𝑋𝑗𝑙
𝑝𝑠

𝑗 =∑𝑑𝑙
𝑝

𝑗 𝑍𝑗𝑙
𝑝𝑠

   ∀ p, l, s (6) 
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∑ 𝑋𝑙𝑛
𝑝𝑠

𝑛 =∑∝𝑙
𝑝
𝑑𝑙
𝑝
𝑍𝑛
𝑙𝑠

𝑙    ∀ l, n, p, s (7) 

∑𝑋𝑛𝑚
𝑝𝑠

𝑟 =(1−𝛾𝑛)∑ 𝑋𝑙𝑛
𝑝𝑠

𝑛    ∀ n, l, p, s (8) 

In addition, each costumer should be assigned to only 

one retailer as well as one drop-off depots in the RL as a 

real assumption considered in the related studies e.g. 

[1]; [19] as follows: 

∑𝑍𝑗𝑙
𝑝𝑠

𝑗 =∑ 𝑍𝑙𝑛
𝑝𝑠

𝑛 = 1 ∀ l, p    f ∈ {j, m, s} (9) 

The predefined amount of suppliers as illustrated in 

Equation (10) limits the capacity of facilities. In 

addition, the flow of products through a facility is only 

allowed if the respective facility is open and has enough 

capacity as formulated by Equations (11)-(14) for 

manufacturers, retailers, drop-off depots and recycling 

centers, respectively: 

∑ 𝑋𝑖𝑚
𝑝𝑠

𝑚 ≤𝑐𝑝𝑖
𝑝
  ∀ i, p, s (10) 

∑𝑋𝑚𝑗
𝑝𝑠

𝑗 ≤𝑐𝑝𝑚
𝑝
𝑌𝑚  ∀ m, p, s (11) 

∑𝑋𝑗𝑙
𝑝𝑠

𝑙 ≤𝑐𝑝𝑗
𝑝
𝑌𝑗  ∀ j, p, s (12) 

∑𝑋𝑙𝑛
𝑃

𝑙 ≤𝑐𝑝𝑛
𝑝
𝑌𝑛  ∀ n, p, s (13) 

∑ 𝑋𝑛𝑟
𝑃

𝑛 ≤𝑐𝑝𝑟
𝑝
𝑌𝑟  ∀ r, p, s (14) 

Furthermore, the number of facilities in each echelon is 

limited by a predefined maximum budget. 

∑ 𝑌𝑓𝑓 ≤𝑚𝑎𝑥𝑓  f ∈ {m, j, n, r} (15) 

The binary and continuous variables for the first stage 

of model are as follows. 

𝑌𝑓,𝑍𝑓𝑓′
𝑝𝑠
 ∈{0,1}    (16) 

𝑋𝑓𝑓′
𝑝𝑠
≥0, 𝑉𝑠𝜑≥0  (17) 

 

 

3. SOLUTION APPROACH 
 
This study uses two famous metaheuristics to solve the 

proposed NP-hard two-stage stochastic model. Since 

the algoritms are well-known and only adopted by this 

study, we refer the readers to go through literature [25-

27]. In the following subsection, the encoding scheme 

used in the proposed solution procedures is detailed. 

 

3.1. Encoding Scheme       Whenever a metaheuristic 

procedure is used, coding and decoding the solution of 

mathematical problem is required [26]. This paper 

utilizes a two-stage technique called Random-Key (RK) 

to solve the developed discrete problem. Researchers 

have used this technique repeatedly during last two 

decades [28, 29]. This technique helps the users to use 

any continuous and binary metaheuristics to solve a 

mathematical formulation model with various variables 

and constraints [22]. The illustration of encoding sub-

solutions is shown in Table 4. First, a matrix with size 

|q| elements that are uniformly distributed over 0 to 1 is 

constructed (Table 4 (a)). This sub-solution is 

transformed into binary variables indexation the 

selection of manufacturers and retailers (Q2, Q4, and 

Q5 in the given example). Eventually after the 

algorithm runs, Table 4 (b) determines the flow of 

products. In the other words, a random matrix is formed 

with number of rows equals the number of non zero 

element obtained (3 in the given example) and number 

of columns equal to destination facilities (4 in the given 

example). The columns of the second matrix are then 

normalized to specify how retailers and other facilities 

distribute their supply. 
 

 

4. COMPUTATIONAL EXPERIMENTS  
 
In this section, the test problems are first introduced 

followed by tuning the algorithms’ parameters using the 

Response Surface Method (RSM). Then, the evaluation 

metrics are investigated. Finally, the performance of 

both of the proposed algorithms is evaluated. 
 

4. 1. Instances       In this section, 18 random test 

problems divided into three levels (i.e., small, medium 

and large sizes) were examined as shown in Table 5. It 

should be noted that the number of scenario in all test 

problems is equal to 10. The computational time is 

limited for both algorithms according to the size of 

problems. 

 

4. 2. Parameter Setting          To evaluate the 

performance of any metaheuristic, the model parameters 

should be optimized [28]. It is necessary to tune the 

parameters to balance between the two phases of 

metaheuristics. In this paper, RSM introduced by Box 

and Wilson is utilized [19]. The factors, their levels, and 

the number of experiments are shown in Table 6. 

 

 
TABLE 4. The proposed encoding plan 

 Q1 Q2 Q3 Q4 Q5 

1 0.34 0.57 0.25 0.68 0.92 

 𝑃𝑀𝑎𝑥=3 
2 0 1 0 1 1 

(a) Facilities selection sub-solution 

 d1 d2 d3 d4 

𝑄2  0.65 0.12 0.45 0.33 

𝑄4  0.49 0.08 0.38 0.17 

𝑄5  0.68 0.38 0.52 0.82 

 d1 d2 d3 d4 

𝑄2  0.36 0.21 0.33 0.25 

𝑄4  0.27 0.14 0.28 0.13 

𝑄5  0.37 0.66 0.39 0.62 

(b) Shipment from plants to retailers 
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TABLE 5. Design of test problem size 

The levels of 

problem 

Problem 

number (Ti) 

Computational 

time (Second) 

Size of problems (I, M, 

J, L, N, R, P) 

Small 

T1 20 (7, 5, 10, 9, 4, 3, 22) 

T2 30 (11, 8, 12, 13, 5, 4, 22) 

T3 40 (14, 12, 16, 15, 8, 7, 22) 

T4 50 
(17, 16, 15, 16, 11, 10, 

22) 

T5 60 
(19, 14, 17, 19, 14, 12, 

22) 

T6 70 
(23, 16, 21, 20, 15, 13, 

22) 

Medium 

T7 80 
(25, 29, 30, 31, 19, 18, 

22) 

T8 100 
(29, 31, 32, 33, 21, 19, 

22) 

T9 120 
(34, 32, 33, 35, 23, 20, 

22) 

T10 140 
(37, 35, 34, 37, 25, 21, 

22) 

T11 160 
(41, 37, 36, 39, 27, 22, 

22) 

T12 180 
(45, 39, 38, 41, 29, 24, 

22) 

Large 

T13 260 
(67, 55, 59, 111, 36, 31, 

22) 

T14 300 
(71, 57, 61, 115, 37, 32, 

22) 

T15 340 
(75, 59 , 63, 119, 39, 

33, 22) 

T16 380 
(79, 61, 65, 123, 40, 34, 

22) 

T17 420 
(83, 63 , 67, 127, 42, 

35, 22) 

T18 460 
(87, 65, 69, 131, 43, 36, 

22) 

 

 
TABLE 6. Factors, levels, and number of experiments of the 

two proposed algorithms 

Algorithm Factors and their levels 

N. of 

experiments; 
Total Number= 

(nf, nax, ncp) 

PSO nPop W C1 C2 30=(24, 8, 6) 

 
(100, 
200) 

(0.65, 
0.9) 

(1.2, 2) (1.2, 2)  

GA nPop 𝑃𝐶 𝑃𝑀  

20=(23, 6, 6) 
 

(100, 

200) 

(0.5, 

0.8) 

(0.02, 

0.1) 
 

nPop=number of population, W=inertia weight, C1=acceleration 
coefficient of local optimum, C2=acceleration coefficient of global 

optimum ,𝑃𝐶=probability of crossover, 𝑃𝑀=probability of mutation 

Consequently, the tuned values for parameters, R-

squared (R2) and desirability (D), are approximated as 

displayed in Table 7.  

 

4. 3. Evaluation Metrics        In order to solve the 

proposed problem, four metrics are presented. These 

metrics aim to assess the quality of the Pareto optimal 

solutions (Diversification Metric (DM), Spread of Non-

dominance Solution (SNS), Data Envelopment Analysis 

(DEA) and Percentage of Domination (POD)) [7]. The 

higher value of these metrics the better the solution 

quality. The characteristics of these metrics are outlined 

in Table 8. These parameters are presented in recent 

researches [7, 19, 27, 28]. 
 

4. 4. Comparison of Metaheuristics      This sub-

section aims to discuss the effectiveness and efficiency 

of the proposed solution approaches. Each algorithm is 

applied on all test problems for 30 times, and the best 

solution is saved. Then, the proposed evaluation metrics 

are calculated as shown in Table 9. Furthermore, to 

check statistically the validation of the results, an 

analysis of variance (ANOVA) is performed to analyze 

and to evaluate the obtained results. At the first glance, 

the results reveal that there is a mixed statistical 

difference between the performance and efficiency of 

the both algorithms. The means plot and LSD intervals 

(at the 95% confidence level) for all methods are shown 

in Figure 2. It should be noted that for both algorithms, 

the results of the metrics are analyzed by Relative 

Percentage Deviation (RPD). Lower RPD values mean 

better capability. 

According to Figure 2, based on DM metric, GA has 

a slightly better performance, in comparison of PSO. In 

SNS metric, the behaviour both algorithms are 

analogous. 
 

 

TABLE 7. Optimized values of algorithms parameters and 

Desirability (D) 

Algorithm Tuned parameters D 

PSO nPop=133, W=0.73, C1=1.46, C2=1.46 0.6823 

GA nPop=168; 𝑃𝐶=0.75; 𝑃𝑀=0.05 0.6523 

 

 
TABLE 8. Metrics used to measure the quality of Pareto front 

Metrics Definition 

Diversification Metric 
(DM) 

Measures the spread of non-dominated 
solution set. 

Spread of Non-dominated 
Solution (SNS) 

Measures the diversity of solutions. 

Percentage of Domination 
(POD) 

Measures the ability of an algorithm to 

dominate the solutions of other 
algorithms 

Data Envelopment 
Analysis (DEA) 

Determines the efficiency of solutions. 
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TABLE 9. The evaluation metrics to algorithms performance 

(DM, SNS, DEA and POD) for test problems 

No. of 

problems 

DM SNS DEA POD 

PSO GA PSO GA PSO GA PSO GA 

T1 14389 16452 2267 1748 0.16 0.12 0.22 0.14 

T2 15842 14753 3351 3274 0.74 0.65 0.33 0.41 

T3 14632 15742 5574 6632 0.21 0.63 0.33 0.36 

T4 12669 13745 1422 1544 0.44 0.15 0.24 0.32 

T5 17275 19743 7210 5426 0.12 0.18 0.18 0.19 

T6 6833 7491 7296 6948 0.22 0.26 0.20 0.10 

T7 29164 34112 3105 2915 0.14 0.22 0.14 0.11 

T8 12742 13671 1834 751 0.26 0.18 0.18 0.16 

T9 25199 23749 1282 675 0.12 0.12 0.14 0.12 

T10 22102 25761 4912 4466 0.14 0.20 0.16 0.14 

T11 31054 32144 5187 5514 0.18 0.14 0.18 0.14 

T12 7401 6195 5853 6432 0.22 0.20 0.16 0.08 

T13 8132 8512 4831 3957 0.18 0.12 0.14 0.16 

T14 55261 54771 2745 5544 0.74 0.41 0.32 0.41 

T15 23614 22516 3514 3422 0.36 0.21 0.23 0.31 

T16 31474 23964 2988 6211 0.41 0.33 0.41 0.44 

T17 44752 41636 3425 2855 0.33 0.21 0.33 0.22 

T18 41957 38456 2671 3166 0.52 0.12 0.24 0.17 

 

 
However, PSO is better than GA. Additionally, for both 

DEA and POD metrics, PSO is strongly better than GA 

and shows a mixed performance. 

 

 

5. CONCLUSION AND FUTURE STUDIES 

 
In this paper, a new two-stage stochastic programming 

for the tire industry closed-loop supply chain model is 

developed. The model is different from other similar 

papers in the literature by considering the financial 

risks. In the proposed model, a special network for tire 

production is proposed. Two metaheuristics i.e. GA and 

PSO are utilized to address the problem. Four 

assessment metrics are proposed to evaluate the 

performance of the algorithms under different criteria to 

study the structure of the Pareto optimal solutions. 

Finally, results showed that PSO is slightly better than 

GA in comparisons. Also, the present model shows the 

importance of collecting and recycling of scraped tires 

to consider a performance decisions for consumers and 

manufacturers.  

For the future works, more comprehensive analyses 

on the proposed model can be suggested. In addition, 

other assessment parameters could be implemented to 

analyze the performance of algorithms. Moreover, some 

real cases may be used to present the model more 

efficiently. Regarding the application side, more real 

life constraint should be added on the proposed model 

increasing the complexity of the problem, such as: 

vehicle routing operations to reduce the transportation 

cost or sustainable considerations. 

 

 

 

 

 

 
Figure 2. The interval plot for four proposed metrics 
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 چکیده
 

 

 

 ćwă óºù ¿v ā¹wæ¤Åv wz ĂÞÅĀ£ ów³ ½¹ ¢Ý¾Å Ăz üĊùw£ ā¾Ċ¬ý¿ Ăî{É Ĉ³v¾Õ ¹½Āù ½¹ ¾Ċ·v ćwă Ăõwêù£ºÝ ¢´ ¢ĊÞÖé ÷

w¤·wÅ Iÿ½¹Ā· µ¾¯ ºþýwù ¡đĀÎ´ù ÛĀý Ăz Ă«Ā£ wz )¢Åv ĈÞévÿ ćwĊý¹ ćwă¹¾z½wí Ăz ûºÉ ìĉ¹Àý ćv¾z¬ý¿ ½ üĊùw£ ā¾Ċ

í Ĉù ¾ĊĊâ£¿wÅ¿wz ½¹ wă Ĉ¤¸Å üĉv Ăúă ÿ ĂþĄí ćwă¾ĉw£ ā¹wæ¤Åv ¿wz ÿ wă Ĉ¤¸Å I¾ĉw£ ¢ÞþÍ ½¹ )ºþ¾ýv ćĂþĉÀă ÿ ćÁ  ćwă

Æz Ăêö³ üĊùw£ ā¾Ċ¬ý¿ Ăî{É Ĉ³v¾Õ ìĉ ûwĊù ½¹ āºÉ ā¹wæ¤Åv ÿ½¹Ā· ćwă µ¾¯ ¢åwĉ¿wz Ăz ¾¬þù ĂåwÑvĈù Ă¤  üĉv )¹ĀÉ

ùw£ ā¾Ċ¬ý¿ ćv¾z v½ Ĉå¹wÎ£ ćv Ăö³¾ù ÿ¹ óºù ìĉ IĂõwêùö³¾ù ½¹ )ºþí Ĉù Ĉ³v¾Õ ¾ĉw£ Ă¤Æz Ăêö³ üĊóÿv ĂþĉÀă óºù I Ă

Ĉù ć¿wÅ ĂþĊĄz v½ ć½wÚ¤ýv¾¤þí Ăz ÷vºév óºù ÷ÿ¹ Ăö³¾ù ½¹ vÀ¬ù ãºă Üzw£ ìĉ ½¹ Ĉõwù ìÆĉ½ IÄ Å )ºþí¢ĊÞÖé ÷ºÝ ó 

ĂþĊĄz ø¤ĉ½Āòõv IĂõwÆù üĉv ô³ ćv¾z )ºþí Ĉù ½vºĉw~ xvĀ« ìĉ Ăz ûºĊÅ½ ćv¾z ć¾Ċñ øĊúÎ£ ćwă¾Ċâ¤ù wÅć¿ ½» ÷w³¹¿v ¡v

 āºÉ Ă¤å¾ñ ½wí Ăz ìĊ¤ýÁ ø¤ĉ½Āòõv ÿå¾ñ ½wí Ăz ¶Åw~ ²ÖÅ Çÿ½ Iwă ø¤ĉ½Āòõv ĈÊ¸z¾§v ÈĉvÀåv ćv¾z )ºýv)¢Åv āºÉ Ă¤ 

vĀ« ćv¾z äö¤¸ù xwĉ¿½v ćwă¾¤ùv½w~ ÿ ¡ÿwæ¤ù ć½vĀÉ¹ ćwă ²ÖÅ wz äö¤¸ù ôtwÆù wz āºÉ ¹wĄþÊĊ~ óºùćwă x  ĂþĊĄz

)ºýv āºÉ ĂÆĉwêù ¾òĉºîĉ wz Ā£½w~ 
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