A High Gain and Forward Body Biastwo-stage Ultra-wideband Low Noise Amplifier with Inductive Feedback in 180 nm CMOS Process


1 Mazandaran University of Sience and Technology, Babol, Iran

2 University of Mazandaran, Babolsar, Iran


This paper presents a two-stage low-noise ultra-wideband amplifier to obtain high and smooth gain in 180nm CMOS Technology. The proposed structure has two common source stages with inductive feedback. First stage is designed about 3GHz frequency and second stage is designed about 8GHz. In simulation, symmetric inductors of TSMC 0.18um CMOS technology in ADS software is used.Simulations results show high and relatively smooth S21 equal to 18.674±1.38dB, noise figure of less than 3.7dB, power consumption of 14.6mW with 1.2v supply voltage and suitable matching at the input (S11


1.     Kshetrimayum, R.S., "An introduction to uwb communication systems", IEEE Potentials,  Vol. 28, No. 2, (2009), 9-13.
2.     Gholami, M. and Ardeshir, G., "Dual phase detector based on delay locked loop for high speed applications", International Journal of Engineering,  Vol. 27, No. 4, (2014), 517-522.
3.     Sedaghat, S.B., Karimi, G. and Banitalebi, R., "A low voltage full-band folded cascoded uwb lna with feedback topology", International Journal of Engineering-Transactions A: Basics,  Vol. 28, No. 1, (2014), 66-73.
4.     Khurram, M. and Hasan, S.R., "A 3–5 ghz current-reuse $ g_ {m} $-boosted cg lna for ultrawideband in 130 nm cmos", IEEE Transactions on Very Large Scale Integration (VLSI) Systems,  Vol. 20, No. 3, (2012), 400-409.
5.     Jamalkhah, A. and Hakimi, A., "An ultra-wideband common gate lna with g m-boosted and noise cancelling techniques", in Electrical Engineering (ICEE), 2013 21st Iranian Conference on, IEEE., (2013), 1-5.
6.     Mohammadi, I., Sahafi, A., Sobhi, J. and Koozehkanani, Z.D., "A linear, low power, 2.5-db nf lna for uwb application in a 0.18 μm cmos", Microelectronics Journal,  Vol. 46, No. 12, (2015), 1398-1408.
7.     Pandey, S. and Singh, J., "A low power and high gain cmos lna for uwb applications in 90 nm cmos process", Microelectronics Journal,  Vol. 46, No. 5, (2015), 390-397.
8.     Razavi, B. and Behzad, R., "Rf microelectronics, Prentice Hall New Jersey,  Vol. 2,  (1998).
9.     Tarighat, A.P. and Yargholi, M., "A cmos low noise amplifier with employing noise cancellation and modified derivative superposition technique", Microelectronics Journal,  Vol. 54, (2016), 116-125.
10.   Zabeli, M., Caka, N., Limani, M. and Kabashi, Q., "The impact of mosfet’s physical parameters on its threshold voltage", in WSEAS Conference MINO. Vol. 7, (2007), 54-58.
11.   Arshad, S., Ramzan, R., Muhammad, K. and Wahab, Q.-u., "A sub-10mw, noise cancelling, wideband lna for uwb applications", AEU-International Journal of Electronics and Communications,  Vol. 69, No. 1, (2015), 109-118.
12.   Jafari, B.M. and Yavari, M., "A uwb cmos low-noise amplifier with noise reduction and linearity improvement techniques", Microelectronics Journal,  Vol. 46, No. 2, (2015), 198-206.
13.   Shim, J., Yang, T. and Jeong, J., "Design of low power cmos ultra wide band low noise amplifier using noise canceling technique", Microelectronics Journal,  Vol. 44, No. 9, (2013), 821-826.
14.   Mehrjoo, M.S. and Yavari, M., "A new input matching technique for ultra wideband lnas", IEICE Electronics Express,  Vol. 7, No. 18, (2010), 1376-1381.
15.   Mirvakili, A. and Yavari, M., "A noise-canceling cmos lna design for the upper band of uwb ds-cdma receivers", in Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, IEEE., (2009), 217-220.
16.   Mirvakili, A., Yavari, M. and Raissi, F., "A linear current-reused lna for 3.1-10.6 ghz uwb receivers", IEICE Electronics Express,  Vol. 5, No. 21, (2008), 908-914.
17.   Wang, P., Jonsson, F., Tenhunen, H., Zhou, D. and Zheng, L.-R., "Low noise amplifier architecture analysis for ofdm-uwb system in 0.18 μm cmos", in NORCHIP, IEEE., (2008), 184-189.