Numerical Analysis of Fully Developed Flow and Heat Transfer in Channels with Periodically Grooved Parts (TECHNICAL NOTE)

Author

University of Ayatollah Alozma Boroujerdi, Faculty of Engineering, Boroujerd, Iran

Abstract

To obtain a higher heat transfer in the low Reynolds number flows, wavy channels are often employed in myriad engineering applications. In this study, the geometry of grooves shapes is parameterized by means of four angles. By changing these parameters new geometries are generated and numerical simulations are carried out for internal fully developed flow and heat transfer. Results are compared with those of rectangular grooved channel. Two different Prandtl numbers, i.e. 0.7 and 5, were investigated while Reynolds number varies from 50 to 300. An element-based finite volume method (EBFVM) is used to discretize the governing equations. Results reveal that that both heat transfer performance and average Nusselt number of rectangular grooved channel were higher than those of other geometries.

Keywords


1.     Webb, R.L., "Principals of enhanced heat transfer, New York, John Wiley & Sons Inc,  (1994).
2.     Nishimura, T., Ohori, Y. and Kawamura, Y., "Flow characteristics in a channel with symmetric wavy wall for steady flow", Journal of chemical engineering of Japan,  Vol. 17, No. 5, (1984), 466-471.
3.     Nishimura, T., Murakami, S., Arakawa, S., Kawamura, Y.,  "Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate reynolds numbers for steady flow", International Journal of Heat and Mass Transfer,  Vol. 33, No. 5, (1990), 835-845.
 4.     Rush, T., Newell, T. and Jacobi, A., "An experimental study of flow and heat transfer in sinusoidal wavy passages", International Journal of Heat and Mass Transfer,  Vol. 42, No. 9, (1999), 1541-1553.
5.     Wang, G.v. and Vanka, S., "Convective heat transfer in periodic wavy passages", International Journal of Heat and Mass Transfer,  Vol. 38, No. 17, (1995), 3219-3230.
6.     Ničeno, B. and Nobile, E., "Numerical analysis of fluid flow and heat transfer in periodic wavy channels", International Journal of Heat and Fluid Flow,  Vol. 22, No. 2, (2001), 156-167.
7.     Metwally, H. and Manglik, R.M., "Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels", International Journal of Heat and Mass Transfer,  Vol. 47, No. 10-11, (2004), 2283-2292.
8.     Zhang, J., Kundu, J. and Manglik, R.M., "Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores", International Journal of Heat and Mass Transfer,  Vol. 47, No. 8-9, (2004), 1719-1730.
9.     Ramgadia, A.G. and Saha, A.K., "Fully developed flow and heat transfer characteristics in a wavy passage: Effect of amplitude of waviness and reynolds number", International Journal of Heat and Mass Transfer,  Vol. 55, No. 9-10, (2012), 2494-2509.
10.   Pashaie, P., Jafari, M., Baseri, H. and Farhadi, M., "Nusselt number estimation along a wavy wall in an inclined lid-driven cavity using adaptive neuro-fuzzy inference system (anfis)", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 4, (2012), 383-392.
11.   Wirtz, R., Huang, F. and Greiner, M., "Correlation of fully developed heat transfer and pressure drop in a symmetrically grooved channel", Journal of heat transfer,  Vol. 113, (1999), 590-596.
12.   Ali, A.H.H. and Hanaoka, Y., "Experimental study on laminar flow forced-convection in a channel with upper v-corrugated plate heated by radiation", International Journal of Heat and Mass Transfer,  Vol. 45, No. 10, (2002), 2107-2117.
13.   Zimmerer, C., Gschwind, P., Gaiser, G. and Kottke, V., "Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls", Experimental thermal and fluid science,  Vol. 26, No. 2-4, (2002), 269-273.
14.   Islamoglu, Y. and Parmaksizoglu, C., "The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel", Applied Thermal Engineering,  Vol. 23, No. 8, (2003), 979-987.
15.   Islamoglu, Y. and Kurt, A., "Heat transfer analysis using anns with experimental data for air flowing in corrugated channels", International Journal of Heat and Mass Transfer,  Vol. 47, No. 6-7, (2004), 1361-1365.
16.   Islamoglu, Y. and Parmaksizoglu, C., "Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel", Applied Thermal Engineering,  Vol. 24, No. 1, (2004), 141-147.
 17.   Naphon, P., "Laminar convective heat transfer and pressure drop in the corrugated channels", International communications in heat and mass transfer,  Vol. 34, No. 1, (2007), 62-71.
18.   Deylami, H.M., SANAEI, M. and KOUHI, K.R., "Numerical investigation of heat transfer and pressure drop in a corrugated channel", (2013).
19.   Farhanieh, B., "Numerical investigation of periodic laminar heat transfer and fluid characteristics in parallel plate ducts with streamwise-periodic cavities", Int. J. Num. Meth. Heat Fluid Flow,  Vol. 1, (1991), 143-157.
20.   Naphon, P., "Effect of wavy plate geometry configurations on the temperature and flow distributions", International communications in heat and mass transfer,  Vol. 36, No. 9, (2009), 942-946.
21.   Ghaddar, N., Korczak, K., Mikic, B. and Patera, A., "Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations", Journal of Fluid Mechanics,  Vol. 163, (1986), 99-127.
22.   Sunden, B. and Trollheden, S., "Periodic laminar flow and heat transfer in a corrugated two-dimensional channel", International communications in heat and mass transfer,  Vol. 16, No. 2, (1989), 215-225.
23.   Pereira, J. and Sousa, J., "Finite volume calculations of self-sustained oscillations in a grooved channel", Journal of Computational Physics,  Vol. 106, No. 1, (1993), 19-29.
24.   Adachi, T. and Uehara, H., "Correlation between heat transfer and pressure drop in channels with periodically grooved parts", International Journal of Heat and Mass Transfer,  Vol. 44, No. 22, (2001), 4333-4343.
25.   Li, L., Yang, M. and Zhang, Y., "Numerical study of periodically fully-developed convection in channels with periodically grooved parts", International Journal of Heat and Mass Transfer,  Vol. 51, No. 11-12, (2008), 3057-3065.
26.   Fabbri, G., "Heat transfer optimization in corrugated wall channels", International Journal of Heat and Mass Transfer,  Vol. 43, No. 23, (2000), 4299-4310.
27.   Nobile, E., Pinto, F. and Rizzetto, G., "Geometric parameterization and multiobjective shape optimization of convective periodic channels", Numerical Heat Transfer, Part B: Fundamentals,  Vol. 50, No. 5, (2006), 425-453.
28.   Patankar, S., Liu, C. and Sparrow, E., "Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area", Journal of heat transfer,  Vol. 99, No. 2, (1977), 180-186.
29.   Garg, V.K. and Maji, P., "Laminar flow and heat transfer in a periodically converging‐diverging channel", International journal for numerical methods in fluids,  Vol. 8, No. 5, (1988), 579-597.