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A B S T R A C T  
 

 

Project success is assessed based on various criteria, every one of which enjoys a different level of 

importance from the beneficiaries and decision makers. Time and cost are the most important 

objectives and criteria for assessing project success. On the other hand, reducing the risk of finishing 
activities by the predetermined deadlines should be taken into account. Having formulated the problem 

as a multi-objective planning one, the present study aims to minimize the project completion time as 

well as maximizing the net present value and project flexibility by taking into accounts the resource 
constraints and precedence relations. Here, the flexibility of the project is calculated by considering a 

free float for each activity and maximizing the sum of these flotation times. Moreover, the performance 

of each activity may be possible in various states of using resources (mode) which can change the 
project completion time and cost. Owing to the complexity of the problem, the Multi Objective 

Simulated Annealing Meta-Heuristic Algorithm is used to solve the proposed model. For accrediting 
the algorithm, four benchmark problems were considered. Since the algorithm performed well in 

finding the optimal answers to the benchmark problems, it was used to find the optimal answer of large 

scale problems. 

doi: 10.5829/ije.2018.31.05b.13 
 

 
1. INTRODUCTION1 
 
Project scheduling means determining a sequence or a 

scheduling plan for some related activities comprising a 

project. The relations among activities are decided upon 

based on their chronology; this means that starting an 

activity might depend on the starting and finishing times 

of other activities. Precedence constraints are observed 

in any given project, but there may be another group of 

constraints that are called resource constraints. To 

perform any project, we often require specified 

resources, which are often limited. The project 

scheduling problems (PSP) in which resource 

constraints are considered are known as Resource 

Constraint Project Scheduling Problems or RCPSPs [1]. 

The PSP is a research field in the scope of the 

operations research and project management. So far, 

quite a few studies have been done in this field, hence 

we can categorize the most important ones based on 
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three factors: activities, resources, and optimality 

criterion. In terms of activity, the problem can be 

classified based on the precedence relation type, 

execution of activities as single-mode or multi-mode, 

preemptive or non-preemptive activities, deterministic 

or non-deterministic activity, execution times, and so 

on. In terms of resource, we can classify the problem 

based on the presence or absence of restrictions on 

access to resources, resource type (renewable or non-

renewable), and the available amount of resources. In 

terms of optimality criteria, a project scheduling 

problem can be categorized based on the objective 

function. Some objectives can be considered including 

minimizing the execution time of the project, 

maximizing the net present value (NPV) of the project, 

maximizing the efficiency of resources used in the 

project, minimizing the flexibility of the project, 

minimizing the total cost, and so on. 

Different combinations of these factors constitute 

various project scheduling problems. Having a glimpse 
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at these combinations, one can realize the wide range of 

project scheduling problems. 

Some of these combinations, like minimizing the 

total project time objective function under precedence 

relations constraints, have been examined fairly often. 

On the contrary, there is a scarsity of studies on the 

objective function of maximizing flexibility with multi-

mode activities. Therefore, financial aspects of the 

project are often disregarded or considered as a lower-

priority criteria, while in real-world problems there are 

costs and revenues during project implementation. 

On the other hand, minimizing the completion time 

and maximizing the net present value of the project will 

not necessarily lead to similar optimal schedules. 

Another very important subject for any project is the 

robustness of the project. The robustness of the project 

is the project's flexibility against unpredictable events 

during project implementation. 

Most of the studies conducted so far have tried to 

optimize the mentioned goals separately, while all of 

these goals may be important for project decision-

makers. Also, it might be necessary to review the 

interaction and mutual impact of these goals on each 

other. So in this study, it is aimed to optimize a multi-

objective resource constraint project scheduling 

problem to optimize (simultaneously) functions like 

time, net present value, and flexibility objectives, which 

have not been consider yet. Thus, we developed the 

appropriate model to minimize the project completion 

time and maximize the net present value and the 

flexibility of the project, considering renewable 

resource constraints and precedence relations. In the 

present study, the robustness of the project is considered 

by taking into account a floatation time for activities 

and maximizing the total of these floatation times. This 

goal is in conflict with the goal of reducing the 

completion time of the project. Owing to the complexity 

of the problem, the Multi-Objective Simulated 

Annealing meta-heuristic algorithm was employed to 

solve the proposed model.  

The rest of the paper is organized as follows. In 

section 2, we overview the related literature; in section 

3, we provide a formulation for modelling the problem; 

in section 4, solving method for evaluating the solutions 

is explained; in section 5, the computational experiences 

are provided. Finally, the conclusions are drawn in 

section 6.  

 

 
2. LITERATURE 
 
Minimizing the total project completion time is the most 

common objective function in the resource constraint 

project scheduling problem [2]. The issue of multi-mode 

resource constrained project scheduling problem 

(MRCPSP) is a generalized mode of RCPSP, in which 

activities can be performed in several modes. Over the 

past few decades several exact and heuristic solution 

approaches have been developed for this subject. 

Exact approaches have been explored in many 

articles, including Talbot [3], Patterson et al. [4], Zhu et 

al. [5], etc. Most of these approaches were based on 

branches and bound algorithms. A comparison with the 

details of these methods is provided by Hartmann and 

Drexl [6]. Hartman [7] used a genetic algorithm to solve 

the problem. Before executing this algorithm and 

reducing the search space, it used a pre-processing 

method using the project's data. 

There are many other Meta- heuristic algorithms 

applied in project scheduling problems, It is not possible 

to mention all of them here [8-12].  
Taking the financial aspects of the project in the 

RCPSP into account  has been less explored. The net 

present value (NPV) objective was introduced by 

Russell for the first time [13]. The MRCPSP 

Considering the Discounted Cash Flows 

(MRCPSPDCF) is a generalized problem of the 

MRCPSP in which financial flows (positive/negative) 

occur during the implementation of the project. The 

MRCPSPDCF objective function maximizes the NPV 

of all project cash flows. Sung and Lim [14] studied the 

issue of positive and negative financial flows with 

constraints of fund availability and renewable resources. 

Mika et al. [15] considered the MRCPSPDCF in which 

the project was represented by an activity-on-node 

(AoN) network and a positive cash flow was associated 

with each activity. They used simulated annealing and 

tabu search algorithms to solve the problem. Optimizing 

net present value is taken into consideration in further 

studies including [16-19]. 

Assuming that the direct cost of an activity changes 

with changes in its execution time, mathematical 
programming models have been developed to minimize 

direct costs. This problem is known as the continuous 

time-cost trade-off problem in the literature. This 

problem was studied for the first time by Kelly and 

Walker [20]. They considered a linear relationship 

between the time and cost of an activity, and also 

proposed a mathematical model and a heuristic 

algorithm to solve it. Other forms of activity time-cost 

functions were also studied by Moder et al. [21].  

In many practical cases, resources are available in 

discrete units. In the literature, this problem is known as 

a multi-mode problem or discrete time-cost trade-off 

problem (DTCTP). DTCTP was first introduced by 

Hindelang and Muth [22] and has been considered for 

several years. This problem is NP-hard in terms of 

complexity [23]. 

Erenguc et al. [24] were the first to consider DTCTP 

with discounted cash flows through the lifetime of the 

project. The objective function of this problem was to 

determine the duration of activities and the starting 
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times of activities so that the NPV of cash flows can be 

maximized. To solve this problem, generalized Benders 

decomposition technique was used. Icmeli and Erenguc 

[25] presented a new DTCTP model considering 

resources constraint and discounted cash flows. The aim 

is to determine the timing and duration of activities such 

that the NPV of all cash flows is maximized in the 

presence of precedence and resource constraints. They 

proposed a heuristic approach involving three priority 

rules and finally compared the results with the upper 

bounds obtained from Lagrangian Relaxation. 

In addition to time, cost, and NPV, other 

criteria such as quality, reliability, and risk are also 

investigated in project scheduling problems [26]. One of 

the criteria that has received very little attention in the 

literature is the project robustness, since one of the 

common problems in project management is the fact 

that the planned scheduling may be delayed by several 

unpredictable factors. Therefore, it is crucial to consider 

these delays and its negative consequences in the design 

phase. Al-Fawzan and Haouari [27] introduced the 

concept of schedule robustness and developed a bi-

objective resource-constrained project scheduling model 

to maximize robustness and minimize make span. Hua 

et al. [28] presented a model to maximize schedule 

robustness, in which the duration of the activities was 

uncertain. To solve the problem, an intelligent algorithm 

based on simulated annealing was designed. 
 

 

3. PROBLEM FORMULATION 
 
The presented model is related to RCPSPs in which 

activities can be executed in several modes. There is a 

variety of resources in the RCPSP, including renewable, 

non-renewable, and doubly-constrained resources. In 

this paper, we utilized renewable resources that are 

assumed to be available in discrete units. Here, the 

project is displayed by an activity on a node network 

(AON) where the nodes indicate the project activities 

and their arcs represent the precedence relations. The 

precedence activities for j are displayed by the set of 

direct precedence activities of Pj; this indicates that 

activity j can only start when all activities in Pj set have 

been completed. For each of the Non-Dummy Activities 

of Aj, a set of Mj modes have been defined. Each mode 

determines execution time, resources used, and the cost 

of an activity in that mode. Suppose that Aj is conducted 

in ∈ Mj mode with the longest processing time. Time-

cost and time-resource trade-offs indicate that there is 

another mode in the 𝑀𝑗 set that has a shorter processing 

time and more resources.  

The present model aims at minimizing the project 

completion time (Cmax), maximizing the net present 

value of the project as well as the flexibility of the 

project. In what followins, we will define the required 

assumptions and parameters to explain the model. The 

considered assumptions are as follow: 

 Each activity can be executed in a number of 

modes, and eventually one of these modes is 

selected for the respective activities. 

 Project Resources are in discrete units. 

 The resources are limited and predetermined. 

 Preemption is not allowed for the activities. 

 The resources which are used are renewable. 

Sets: 
A set of nodes (activities), A = {1, 2, . . ., n} 

At set of activities that are ongoing at t time 

Pj set of direct precedence activities of activity j 

Mj set of execution modes for activity j, j∊A 

Parameters: 
Cj completion time of activity j 

Rk The number of available resources of type k 

djm Execution time of activity j in mode m 

Rjmk The number of required of resource k, if activity j 
executed in mode m 

Efj Earliest completion time of activity j 

Lfj Latest completion time of activity j 

CFj Net cash flow of activity j 

α Interest rate 

variable: 

xjm 
if activity j is done in mode m, xjm =1, otherwise xjm 

=0 
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Equation (1) represents the completion time of activity 

n+1 which is equivalent to the total project time. 

Meanwhile, it is worth mentioning that this activity has 

zero execution time and all other activities are the 
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precedence of this activity. Equation (2) considers the 

optimality of project with respect to financial flows, 

where CFj = CFj
+ − CFj

−. Equation (3) maximizes the 

flexibility of the project. To calculate this objective, we 

calculated the earliest completion time of the project 

activities by executing the activities in the fastest mode. 

Then, we execute the project in normal state and obtain 

the completion time of the activities. Additionally, a 

normal state means thst it is not necessary to execute the 

activities in the fastest mode. Hereupon, we are aiming 

at calculating the difference between the completion 

time in the normal and fast modes for each activity and 

try to maximize their sum. It is obvious that the first 

objective function is in conflict with the second and 

third objective functions. Therefore, we achieved a 

number of optimal pareto solutions. 

Constraint (4) ensures that only one execution mode 

is determined for each activity. Constraint (5) represents 

the precedence relations between activities. Constraint 

(6) ensures that the amount of used resources does not 

exceed the maximum available renewable resources 

during each time interval. Constraint (7) implies that 

each activity must be completed in an interval of time 

between the earliest (considering the fastest mode) and 

latest (considering the slowest mode) completion time 

of that activity, and constraint (8) is a binary variable, 

which is 1 when mode k is assigned to activity j, and 0 

otherwise. 

 

 
4. SOLUTION PROCEDURE 
 
At first, we take an example and express the general 

process of problem-solving and the way to reach the 

solution using this example. Consider the network of 

Figure 1 below, where nodes and arcs show the activities 

and precedence relations, respectively. Activities 

number 0 and 10 are dummy activities with zero 

processing time. In this network, the precedence 

relations between activities are finish to start (FS) with 

zero lag time. As mentioned previously, each activity 

can be performed in several modes, and at least one of 

these modes must be selected. 

To determine the starting time of activities, we need 

a list of activities based on which one can schedule the 

activities and thus their starting time is assigned. By list 

we mean  the various permutations that are formed by 

these activities. It is necessary to note that since it is 

possible    to    begin   some   activities   simultaneously,  

 
1

0 2

3

4

5

6

7

8

9

10

 
Figure 1. Project network of the example 

different permutations may result in the same scheme 

for activities starting time. Moreover, many of the 

generated permutations are infeasible, because they do 

not satisfy the precedence relation constraints. For 

instance, the following permutation is an infeasible 

solution. Therefore, we should convert this solution to a 

feasible one using a correction mechanism which is 

explained algorithmically in the next sections. 
 

[2     6     9     8     1     3     7     5     4] 

 

4. 1. Correction Mechanism for a Scheduling Plan      
To correct an infeasible schedule scheme, we need to 

define a new permutation by modifying the infeasible 

one. The correction mechanism is explained in the 

following steps algorithmically. 
Step 1: choose the first remaining activity from the 

infeasible permutation. 

Step 2: If the chosen activity could be performed (which 

means it is possible to satisfy the precedence relation 

constraints), we add the very remaining activity to the 

new permutation and remove it from the former one. 

Then go to step 1. 

Step 3: If the chosen activity cannot be performed, we 

choose the next activity from the permutation. Then go 

to step 2. 

Hereby, we reached the following feasible schedule 

scheme using the above algorithm to correct the 

mentioned infeasible permutation in section 4. 
 

[2     1     3     5     7     4     6     9     8] 
 

Now, we can consider these permutations as a feasible 

solution for calculating the starting times as a primary 

feasible solution for subsequent analyses.  

 

4. 2. The Problem Solving Approach       Having 

explained how to correct an initial solution, we will 

describe the problem solving process in the general 

state. Figure 2 illustrates the general scheme of the 

problem solving process. 
Creating and modifying the initial permutation was 

described in the previous section. In this study, we use a 

random selection approach to choose the activities 

modes. In this way, having created possible 

permutations of activities, we randomly selected a mode 

from the set of modes related to each activity and then 

assigned it to that activity. 

 

 
Figure 2. General scheme of problem solving process 
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By project implementation, it is intended to calculate 

the objective functions by considering the resource 

constraints. So far, we have managed to produce an 

initial solution that enables us to extract the starting 

times of activities and related modes. This initial 

solution has three components which show the objective 

functions' values. Presently, using multi objective 

simulated annealing algorithm and its operators, we 

search the neighbourhood space of the initial solution in 

order to improve it and find a better solution.  

 

4. 3. The Multi-Objective Simulated Annealing 
Algorithm       Simulated annealing was independently 

put forward by Kirkpatrick et al. [29] and Cerny [30]. 

This method was inspired by what goes on in the 

process of melting and solidification of metals at the 

molecular dimension. To solve combinatorial 

optimization problems using simulated annealing 

algorithm, at each iteration the SA heuristic considers 

some neighbouring state s' of the current state s and 

probabilistically decides between moving the system to 

state s' or staying in state s. These probabilities 

ultimately lead the system to move to states of lower 

energy. Typically, this step is repeated until the system 

reaches a state that is good enough for the application. 

The concept of storing and archiving the Pareto-optimal 

solutions for solving multi-objective problems with SA 

has been used by Suppapitnarm et al. [31]. The method 

enables the search to restart from an archived solution in 

a solution region, where each of the pair of non-

dominated solutions is superior with respect to at least 

one objective. The flowchart of developed multi-

objective simulated annealing algorithm is shown in 

Figure 3. 

 

 

5. COMPUTATIONAL RESULTS 
 
In this section, the discussion mentioned in the previous 

section has been implemented on some instances, and 

then computational results are reported.  

 

Generate a randomly initial solution, X, and calculate the 
objective functions. Archive this solution in pareto solutions set.

Generate a randomly neighborhood solution, Y, and calculate 
the objective functions for this solution.

Compare this answer with the Pareto solutions set and update 
the pareto set if it is necessary.

Save solution X and ignore solution Y.

Is the new solution, Y, dominated by the Pareto

 set solution?

YES

Is the new solution accepted?

NO

Select a randomly members of Pareto set.

Reduce the temperature periodically by specified rate.

Is stopping criterion met?

End

YES

Replace X with Y and Archive it 
in pareto solutions  set.

NO

Yes

No

 
Figure 3. Flowchart of developed multi-objective simulated annealing algorithm 
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Furthermore, examples of this section are divided into 

two categories. The first includes four instances known 

as benchmark instances that evaluate the performance of 

Multi-objective simulated annealing algorithm. The 

second category consists of large-scale instances, all of 

which have been taken from the PSPLIB website. Since 

some aspects of the study were novel and unique, we 

had to produce some of the data randomly. For example, 

financial flows (including receipts and payments) have 

been produced in each of these instances. All of these 

examples have been implemented in MATLAB 2012b 

software and the output was obtained from a PC with a 

Core i5 2.67 GHz processor. 

 

5. 1. Validation of the Algorithm       As it was 

mentioned in the previous sections, MRCPSPDCF 

problems are strongly NP-hard, and finding exact 

solutions for large-scale problems is practically 

impossible. Considering the fact that real-world 

problems are usually large-size problems and finding an 

exact solution for them is either impossible or requires a 

lot of time, using meta-heuristic methods is inevitable in 

these cases. Therefore, in this research, a multi-

objective Simulated Annealing meta-heuristic algorithm 

(MOSA) has been developed in order to find credible 

solutions at a reasonable time.  
In order to validate the provided algorithm, we 

consider a set of instances as benchmark examples. This 

set of benchmark instances includes four different 

examples whose networks are shown in Figures 4 to 7. 

The optimal solutions have been obtained by complete 

enumeration of the solution space. Moreover, the 

number of optimal solutions and also their execution 

time for each benchmark instance is mentioned in Table 

1. At this moment, we want to solve the benchmark 

instances using MOSA algorithms so that it can be 

evaluated in its ability to find optimal solutions. 
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Figure 4. Network of the 1th benchmark instance 
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Figure 5. Network of the 2th benchmark instance 
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Figure 6. Network of the 3th benchmark instance 
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Figure 7. Network of the 4th benchmark instance 

 

 
TABLE 1. Results of solving the benchmark instances by the 

enumeration method 

Benchmark 

problem 

Number 

of 

activities 

Number of obtained 

pareto solutions by 

enumeration method 

Runtime 

(Second) 

1 6 8 136.33 

2 6 4 79.8 

3 7 22 618.23 

4 5 6 133 

 

 

As Table 2 indicates, the algorithm has managed to 

obtain all of the optimal solutions in a short time. Since 

the algorithm has a good performance in solving small-

scale instances, we expect to reach optimal or at least 

near-optimal solutions in large-scale instances by 

increasing the number of iterations of algorithm. 

 

5. 2. Algorithm Performance in Large-Scale 
Projects         The following is two relatively large-

scale instances extracted from the PSPLIB website, as 

mentioned earlier. The first is an example of 20 three-

mode activities, and the second is 30 three-mode 

activities. Other information related to the examples is 

shown in Tables 3 and 4, respectively. Also, the solving 

results of the first example for 10000 iteration and 10 

runs is presented in Table 5. 

In Figure 8, the process of finding the number of 

pareto solutions in different iterations (NFE) can be 

pursued. As can be seen, until iteration 5000, the  

majority of pareto solutions have been discovered by the 

applied algorithm (about 80 solution), and in the last 

5000 iterations only about 15 pareto solutions are 

obtained indicating that the applied algorithm is able to 

detect most of the pareto solutions in the primary 

iterations in a short time. 
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TABLE 2. Results of solving the benchmark instances by MOSA algorithm 

Benchmark 

problem 

Run 

Number 

Number of total 

pareto solutions  

(obtained by 

enumeration) 

Number of 

obtained pareto 

solutions by 

MOSA algorithm 

Number of 

newly 

discovered 

solutions 

Runtime 

(Second) 

Number of  

required runs to 

explore all 

pareto solutions 

runtimes to 

explore all 

pareto solutions 

(Second) 

1 

1 

8 

8 8 0.3 

1 0.31 

2 8 0 0.3 

3 8 0 0.31 

4 7 0 0.31 

5 7 0 0.31 

2 

1 

4 

4 10 0.31 

1 0.31 

2 4 0 0.31 

3 4 0 0.31 

4 4 0 0.31 

5 4 0 0.31 

3 

1 

22 

20 20 3.53 

2 7.14 

2 20 2 3.61 

3 19 0 3.62 

4 18 0 3.23 

5 20 0 2.97 

4 

1 

6 

6 6 0.17 

1 0.17 

2 6 0 0.17 

3 5 0 0.17 

4 5 0 0.17 

5 5 0 0.17 

 

 

TABLE 3. Data related to the first large-scale example (the project with 20 activities) 

Activity 
Number 

of modes 
successors 

Time Required Resource 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1 1 2 3 4 0     [0  0  0  0]     

2 3 6 9   4 5 10 [3  0  7  0] [0  8  0  3] [0  8  0  2] 

3 3 5 9 17 1 5 7 [0  3  0  9] [6  0  8  0] [5  0  7  0] 

4 3 9 11 14 2 9 10 [0  10  0  9] [10  0  0  9] [0  4  0  6] 

5 3 13 18   4 7 9 [0  9  0  7] [0  9  0  5] [0  8  8  0] 

6 3 7 8 10 5 5 7 [4  0  7  0] [0  4  6  0] [0  4  0  5] 

7 3 12 20   1 6 10 [8  0  5  0] [8  0  0  8] [7  0  3  0] 

8 3 12 14 17 2 2 7 [7  0  9  0] [0  9  0  7] [0  8  10  0] 

9 3 21     2 3 4 [0  7  0  10] [3  0  0  7] [2  0  5  0] 

10 3 11     4 9 9 [0  9  0  6] [0  5  0  3] [4  0  0  6] 

11 3 15 17 21 3 9 10 [0  8  8  0] [0  5  0  3] [1  0  3  0] 

12 3 18     7 7 8 [6  0  0  2] [0  6  0  2] [0  7  0  1] 

13 3 14 15 16 7 8 8 [0  4  1  0] [7  0  0  8] [6  0  0  8] 

14 3 19     3 8 8 [4  0  0  3] [0  8  8  0] [0  8  0  2] 

15 3 19 20   3 6 8 [0  4  0  8] [9  0  0  7] [0  3  0  6] 

16 3 20 21   3 4 8 [0  9  9  0] [0  8  0  8] [0  7  8  0] 

17 3 18     1 1 8 [0  3  3  0] [3  0  0  6] [0  2  3  0] 

18 3 19     7 10 10 [0  8  2  0] [4  0  0  9] [0  8  1  0] 

19 3 22     1 5 8 [9  0  8  0] [9  0  0  8] [7  0  0  3] 

20 3 22     4 6 6 [0  9  0  3] [0  9  7  0] [3  0  0  3] 

21 3 22     2 3 5 [4  0  0  8] [3  0  0  6] [3  0  0  5] 

22 1 -     0     [0  0  0  0]     
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TABLE 4. Data related to the second large-scale example (the project with 30 activities) 

Activity 
Number 

of modes 
successors 

Time Required Resource 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1 1 2 3 4 0     [0  0  0  0]     

2 3 5 6 16 6 6 7 [1  0  10  0] [0  5  10  0] [0  4  0  2] 

3 3 6 8 9 1 4 8 [0  8  7  0] [0  6  6 0] [9  0  0  9] 

4 3 10 15   4 6 7 [0  6  0  9] [1  0  0  8] [0  5  5  0] 

5 3 13 31   2 3 8 [0  7  0  6] [0  6  0  4] [8  0  0  1] 

6 3 19     3 8 8 [8  0  0  7] [7  0  0  7] [5  0  9  0] 

7 3 11 13 23 2 3 4 [9  0  0  4] [0  6  3  0] [4  0  0  3] 

8 3 12 15   3 7 7 [0  9  0  8] [6  0  10  0] [0  9  1  0] 

9 3 10 11 25 7 10 10 [0  5  5  0] [5  0  0  2] [0  5  0  4] 

10 3 27     3 6 10 [8  0  7  0] [0  8  7  0] [0  7  0  3] 

11 3 12 17 26 7 7 8 [1  0  9  0] [0  8  7  0] [0  7  0  10] 

12 3 18 22   3 3 10 [9  0  0  4] [0  10  2  0] [0  9  2  0] 

13 3 14 17 18 1 4 8 [0  7  6  0] [8  0  6  0] [0  4  0  5] 

14 3 19     2 3 8 [7  0  0  6] [3  0  0  6] [0  8  7  0] 

15 3 17 18 23 4 6 9 [9  0  9  0] [0  9  0  6] [0  5  7  0] 

16 3 29     5 8 8 [6  0  7  0] [5  0  0  7] [0  8  0  8] 

17 3 21     3 5 6 [10  0  0  4] [0  4  0  4] [7  0  0  2] 

18 3 20 28   2 6 7 [0  8  0  8] [0  7  8  0] [0  7  0  6] 

19 3 22     2 3 4 [0  4  0  5] [7  0  1  0] [6  0  0  5] 

20 3 24     3 10 10 [5  0  3  0] [0  6  0  4] [3  0  3  0] 

21 3 22 24   2 8 8 [9  0  0  6] [0  9  4  0] [0  9  0  4] 

22 3 28 29   1 3 5 [0  10  0  10] [0  6  0  9] [0  3  3  0] 

23 3 25 26 27 7 7 7 [0  10  0  7] [0  9  4  0] [7  0  4  0] 

24 3 27     2 3 7 [8  0  0  3] [2  0  5  0] [0  1  3  0] 

25 3 29 30 31 1 1 3 [0  7  5  0] [5  0  0  7] [4  0  0  7] 

26 3 28     1 10 10 [0  7  5  0] [5  0  3  0] [0  7  4  0] 

27 3 30     2 3 9 [2  0  5  0] [0  9  0  5] [0  4  3  0] 

28 3 30     1 4 8 [0  7  0  6] [0  3  0  6] [4  0  0  3] 

29 3 32     2 10 10 [0  3  0  7] [2  0  0  7] [0  3  0  6] 

30 3 32     1 6 10 [0  9  0  7] [6  0  5  0] [4  0  0  5] 

31 3 32     1 1 10 [4  0  0  6] [3  0  7  0] [0  5  5  0] 

32 1 -     0     [0  0  0  0]     

 

 
TABLE 5. Results of solving the first large-scale example 

(the project with 20 activities) 

Run 

Number 

Number of 

iteration 

Runtime 

(Second) 

Number of pareto 

solution 

1 10000 138 125 

2 10000 136 111 

3 10000 150 125 

4 10000 134 96 

5 10000 141 147 

6 10000 140 106 

7 10000 142 115 

8 10000 140 125 

9 10000 136 125 

10 10000 138 114 
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Figure 8. The process of finding the pareto solutions in the 

project with 20 activities 
 

 

The solving results of the second example for 10000 

iterations and 10 runs is presented in Table 6. The 

process of finding the number of pareto solutions in 

different iterations can be seen in Figure 9. As can be 

seen, the process of discovering new pareto solutions is 

reducing gradually. The fluctuations described in Figure 

8 holds true here. The reason might be that a new 

discovered solution dominates some of the solutions in 

pareto set, and, as a result, the number of pareto 

solutions are removed, and the chart has a decreasing 

trend in some points. 

The reason for fluctuations in the chart presented in 

Figure 8 (that in some parts of the chart the number of 

pareto solutions is decreased) is that the pareto set is 

updated continuously, and when a new solution is added 

to the pareto set, it is compared with all other pareto 

solutions.  

 

 
TABLE 6. Results of solving the second large-scale example 

(the project with 30 activities) 

Run 

Number 

Number of 

iteration 

Runtime 

(Second) 

Number of pareto 

solution 

1 10000 223 103 

2 10000 250 103 

3 10000 242 114 

4 10000 257 83 

5 10000 240 89 

6 10000 245 89 

7 10000 230 91 

8 10000 225 88 

9 10000 238 89 

10 10000 230 103 

 

Figure 9. The process of finding the pareto solutions in the 

project with 30 activities 

 

 

Obviously, in this comparison it is likely that a new 

solution dominates some of these solutions. Say answer 

A dominates answer B, if answer A in any objectives is 

not worse than answer B, and also the answer A is at 

least in one of the objectives that is better than answer 

B. Moreover, if there is not such a situation between A 

and B, say answer A and B are non-dominated or pareto 

solutions. That is the reason these dominated solutions 

have been removed and the number of pareto solutions 

in these states is lower compared to the previous state 

(the points that have a decreasing trend in Figure 8). 

In what follows, we will try to represent the 

relationship between the objectives functions using the 

pareto solution points in the solution space for the first 

example (the project with 20 activities). Additionally, in 

Figures 11 to 13, mutual influence for objective 

functions have been presented in the form of two-

dimensional graphs.  

As shown in Figure 11, NPV decreases with 

increases in Cmax. Although the variance of variations 

is relatively high, this descending relationship is clear. 

One of the reasons that can be mentioned for this 

relationship is that with the increase of Cmax, the NPV 

will be reduced. Another reason is that the indirect costs 

of the project increase by increases in the Cmax. In 

Figure 12, it can be clearly seen that as project 

flexibility increases, the project completion time 

increases as well. The reason is that increasing the 

flexibility of the project has increased the completion 

time of the activities, and this will delay the completion 

date of the project. In Figure 13, the NPV increases with 

decreases in flexibility because by reducting flexibility, 

the Cmax will be reduced, and reducing the completion 

time will increase the NPV of the project. In Figure 14, 

the Mutual influence of all three objective functions can 

be observed. 
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Figure 11. Mutual influence of NPV-Cmax objective 

functions 

 

 

 
Figure 12. Mutual influence of flexibility-Cmax objective 

functions 
 

 

 
Figure 13. Mutual influence of flexibility-NPV objective 

functions 

 

 

 
Figure 14. The pareto solutions of the project with 20 

activities 

6. CONCLUSION 
 

Resources constraint project scheduling problem is a 

practical topic in project management. In this study, in 

addition to the time-cost trade-off, available incomes in 

project and flexibility of project against unforeseen 

events in the form of three objective problems were 

considered, and their results have been analysed. Since 

the subject of the research was strongly NP-hard and  

multi-objective, we developed the multi-objective 

simulated annealing meta-heuristic algorithm after 

modelling the problem as a three-objective model to 

solve the intended model. Also, to validate the 

algorithm, we applied a complete enumeration to four 

benchmark instances. The results showed that the 

algorithm has managed to discover all pareto solutions 

in a short time. In applying the algorithm in large-scale 

problems, we attained the results that represent the 

desirable performance of the algorithm.  

As a development for future studies, the presented 

model in this research can be implemented in a real case 

study. On the other hand, each of the factors of time and 

resources may be associated with uncertainty. In this 

case, the use of fuzzy logic, as a powerful tool, in the 

study of uncertainty can be considered. In some cases, 

the decision-maker faces so many pareto solutions that 

he may get confused in choosing the desired solution. 

Consequently, considering one of the multi-criteria 

decision making methods can help the decision maker to 

do the best choice. 
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چكيده
 

 

ی همیت متفاوتاشود که هرکدام از این معیارها از نظر ذینفعان پروژه از موفقیت پروژه بر اساس معیارهای مختلفی سنجیده می

 مربوط بهسک ای هستند. از طرف دیگر کاهش ریبرخوردار است. زمان و هزینه از مهمترین اهداف و معیارهای موفقیت هر پروژه

بینی بایستی مورد توجه قرار گیرد. در های از پیش تعیین شده به دلیل عوامل غیرقابل پیشهای اجرایی تا زمانعدم اتمام فعالیت

یشینه م پروژه، بان اتماریزی چند هدفه سعی در کمینه کردن زمتحقیق حاضر، پس از فرموله کردن مسأله در قالب یک مسأله برنامه

 هیم داشت.ازی، خوانیهای منابع و روابط پیشپذیری پروژه با در نظر گرفتن محدودیتعلی خالص پروژه و انعطافکردن ارزش ف

 گرفته درنظر شناوری، زمانهای این مجموع کردن بیشینه و فعالیتها برای شناوری زمان یک گرفتن نظر در با انعطاف پذیری پروژه

ه است، که رفته شدهای مختلفی از مصرف منابع در نظر گعالیت در یک پروژه حالتشده است. علاوه بر این، برای انجام هر ف

ازی تبرید ستکاری شبیهتواند باعث تغییر در زمان و هزینه اجرای آن فعالیت گردد. با توجه به پیچیدگی مسأله از الگوریتم فراابمی

ک، از این سائل محمالگوریتم در یافتن جواب بهینه این چند هدفه  برای حل مدل استفاده شده است. با توجه به عملکرد خوب 

 الگوریتم برای یافتن جواب بهینه در مسائل بزرگ استفاده شده است.
doi: 10.5829/ije.2018.31.05b.13 

 

 
 

 

 
 
 
 


