Modelling and Optimisation of Coconut Shell Drying and Carbonisation Using Multi-response Taguchi Method with Multi-response Signal-to-noise Procedure


Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta, Indonesia


The main purpose of this work is to optimize the biomass drying and carbonization process in terms of both proximate analysis and biomass calorific value, simultaneously. The biomass material used in the study is coconut shells. The independent variables are the drying temperature, the drying time, the carbonization temperature and the carbonization holding time. The dependent variables are proximate analysis and calorific value. The primary methods used to gain the expected result are Taguchi and multi-response signal-to-noise (MRSN) procedure. Simultaneous optimization by using MRSN generate a value of 2.48 and the result corresponds to a drying temperature of 100 °C, a drying time of 24 h, carbonization temperature of 650 °C, and carbonization time of 120 mins. These results are best achieved by using configuration A1B3C3D3. The optimal expected values obtained in this study are maximum calorific values and fixed carbon of 7744 cal/g and 92.934%, respectively, and minimum moisture, volatile matter, and ash content of 0.354%, 2.318%, and 1.437%, respectively. All indicators are satisfied since the resulting model is deemed to be valid and feasible. The novelty of this work is the simultaneous parameter optimization of the five response variables, which have different quality characteristics into a single best parameter.     هدف اصلی از این کار این است برای بهینه سازی خشک کردن زیست توده و فرایند کربن از نظر هر دو آنالیز تقریبی و ارزش زیست توده گرمایی، به طور همزمان. مواد زیست توده مورد استفاده در مطالعه پوسته نارگیل است. متغیرهای مستقل هستند که درجه حرارت خشک کردن، زمان خشک شدن، درجه حرارت کربن و کربنی برگزاری زمانی. متغیرهای وابسته هستند آنالیز تقریبی و ارزش گرمایی. روش اصلی استفاده می شود برای به دست آوردن نتیجه مورد انتظار هستند تاگوچی و چند پاسخ سیگنال به نویز (MRSN) روش. بهینه سازی به طور همزمان با استفاده از MRSN تولید یک ارزش 2.48 و نتیجه مربوط به درجه حرارت خشک کردن از 100 درجه سانتیگراد، زمان خشک کردن 24 ساعت، درجه حرارت کربناتی در 650 درجه سانتیگراد و زمان کربناتی در 120 دقیقه. این نتایج با استفاده از بهترین A1B3C3D3 پیکربندی به دست آورد. ارزش مطلوب به دست آمده در این مطالعه مقادیر حداکثر گرمایی و کربن ثابت 7744 کال / g و 92.934٪، به ترتیب، و حداقل رطوبت، مواد فرار، و خاکستر 0.354٪، 2.318٪ و 1.437 درصد، به ترتیب می باشد. تمام شاخص راضی از نتیجه مدل معتبر و عملی محسوب می شود. به تازگی از این کار بهینه سازی پارامتر همزمان از پنج متغیر پاسخ، که دارای ویژگی های با کیفیت مختلف را به یک بهترین پارامتر است.        


1.     Lund, H., "Renewable energy systems: A smart energy systems approach to the choice and modeling of 100% renewable solutions, Academic Press,  Vol. 39, (2014), 1–6.
2.     Lela, B., Barišić, M. and Nižetić, S., "Cardboard/sawdust briquettes as biomass fuel: Physical–mechanical and thermal characteristics", Waste Management,  Vol. 47, (2016), 236-245.
3.     Payakkawan, P., Areejit, S. and Sooraksa, P., "Design, fabrication and operation of continuous microwave biomass carbonization system", Renewable Energy,  Vol. 66, (2014), 49-55.
4.     Kalyani, P. and Anitha, A., "Biomass carbon & its prospects in electrochemical energy systems", International Journal of Hydrogen Energy,  Vol. 38, No. 10, (2013), 4034-4045.
5.     Masomi, M., Ghoreyshi, A., Najafpour, G. and Mohamed, A., "Adsorption of phenolic compounds onto the activated carbon synthesized from pulp and paper mill sludge: Equilibrium isotherm, kinetics, thermodynamics and mechanism studies",  International Journal of Engineering Transactions A: Basics,   Vol. 27, No. 10, (2014),  1485-1494.
6.     Gao, Y., Yang, Y., Qin, Z. and Sun, Y., "Factors affecting the yield of bio-oil from the pyrolysis of coconut shell", SpringerPlus,  Vol. 5, No. 1, (2016), 333-340.
7.     Modanloo, V. and Alimirzaloo, V., "Investigation of the forming force in torsion extrusion process of aluminum alloy 1050", International Journal of Engineering  Transactions C: Aspects,  Vol. 30, No. 6, (2017), 920-925.
8.     Okafor, E.C., Ihueze, C.C. and Nwigbo, S., "Optimization of hardness strengths response of plantain fibres reinforced polyester matrix composites (PFRP) applying taguchi robust resign", International Journal of Science & Emerging Technologies,  Vol. 5, No. 1, (2013), 1-11.
9.     Lodhi, B.K. and Agarwal, S., "Optimization of machining parameters in wedm of aisi d3 steel using taguchi technique", Procedia CIRP,  Vol. 14, (2014), 194-199.
10.   Vargas-Moreno, J., Callejón-Ferre, A., Pérez-Alonso, J. and Velázquez-Martí, B., "A review of the mathematical models for predicting the heating value of biomass materials", Renewable and Sustainable Energy Reviews,  Vol. 16, No. 5, (2012), 3065-3083.
11.   Vignesh, K., Natarajan, U., Jaswin, M.A. and Prakash, M.A.A., "Optimization on mechanical behavior of coconut shell powder and coir fiber reinforced polyester composites using grey-taguchi method", Journal of Polymer Materials,  Vol. 32, No. 3, (2015), 291-304.
12.   Musabbikhah, Saptoadi, H., Subarmono and Wibisono, M., "Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using taguchi method", in AIP Conference Proceedings, AIP Publishing. Vol. 1717, (2016), 030006.
13.   Belavendram, N., "Quality by design, Prentice Hall,  (1995).
14.   Azadi Moghaddam, M. and Kolahan, F., "Optimization of edm process parameters using statistical analysis and simulated annealing algorithm", International Journal of Engineering Transactions A: Basics,   Vol. 28, No. 1, (2015), 154-163.
15.   Li, L., Flora, J.R., Caicedo, J.M. and Berge, N.D., "Investigating the role of feedstock properties and process conditions on products formed during the hydrothermal carbonization of organics using regression techniques", Bioresource Technology,  Vol. 187, (2015), 263-274.
16.   Kim, K.-S., Lee, S.-J., Cho, S.-G., Jang, J., Lee, T., Hong, J.-P. and Kim, S.-I., "Multi-response taguchi robust design of back electromotive force and cogging torque considering the manufacturing tolerance for electric machine", in Optimization of Electrical and Electronic Equipment (OPTIM), 2012 13th International Conference on, IEEE. (2012), 379-387.
17.   Saravanan, S., Nagarajan, G. and Sampath, S., "Multi response optimization of nox emission of a stationary diesel engine", Fuel,  Vol. 89, No. 11, (2010), 3235-3240.
18.   Alimirzaloo, V., Modanloo, V. and Babazadeh, E., "A experimental investigation of the effect of process parameters on the surface roughness in finishing process of chrome coated printing cylinders", International Journal of Engineering Transactions C: Aspectcs,  Vol. 29, No. 12, (2016), 1775-1782.
19.   Sedighizadeh, M. and Kashani, M.F., "A tribe particle swarm optimization for parameter identification of proton exchange membrane fuel cell", International Journal of Engineering-Transactions A: Basics,  Vol. 28, No. 1, (2014), 16-24.
20.   Estrada-Jaramillo, M., Vera-Romero, I., Martínez-Reyes, J., Ortíz-Soriano, A. and Barajas-Ledesma, E., "Empirical model to calculate the thermodynamic wet-bulb temperature of moist air", Engineering,  Vol. 6, No. 09, (2014), 500-506.
21.   Stull, R., "Wet-bulb temperature from relative humidity and air temperature", Journal of applied meteorology and climatology,  Vol. 50, No. 11, (2011), 2267-2269.
22.   Antwi-Boasiako, C. and Acheampong, B., "Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities", Biomass and Bioenergy,  Vol. 85, (2016), 144-152.
23.   Cook, M.A., King, C.W., Davidson, F.T. and Webber, M.E., "Assessing the impacts of droughts and heat waves at thermoelectric power plants in the united states using integrated regression, thermodynamic, and climate models", Energy Reports,  Vol. 1, (2015), 193-203.
24.   Hamza, U.D., Nasri, N.S., Amin, N.S., Mohammed, J. and Zain, H.M., "Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times", Desalination and Water Treatment,  Vol. 57, No. 17, (2016), 7999-8006.
25.   Chou, C.-S., Lin, S.-H., Peng, C.-C. and Lu, W.-C., "The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the taguchi method", Fuel Processing Technology,  Vol. 90, No. 7-8, (2009), 1041-1046.
26.   Modanloo, V., Hasanzadeh, R. and Esmaili, P., "The study of deep drawing of brass-steel laminated sheet composite using taguchi method", International Journal of Engineering (IJE), Transactions A: Basics,  Vol. 29, No. 1, (2016), 103-108.
27.   Sanger, S., Mohod, A., Khandetode, Y., Shrirame, H. and Deshmukh, A., "Study of carbonization for cashew nut shell", Research Journal of Chemical Sciences,  Vol. 1, No. 2, (2011), 43-55.
28.   Sadaka, S., Sharara, M.A., Ashworth, A., Keyser, P., Allen, F. and Wright, A., "Characterization of biochar from switchgrass carbonization", Energies,  Vol. 7, No. 2, (2014), 548-567.