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A B S T R A C T  
 

 

This paper investigates the parametric excitation of a micro-pipe conveying fluid suspended between 

two symmetric electrodes. Electrostatically actuated micro-pipes may become unstable when the 

exciting voltage is greater than the pull-in value. It is demonstrated that the parametric excitation of a 
micro-pipe by periodic (ac) voltages may have a stabilizing effect and permit an increase of the steady 

(dc) component of the actuation voltage beyond the pull-in value. Mathieu type equation of the system 

is obtained by applying Taylor series expansion and Galerkin method to the nonlinear partial 
differential equation of motion. Floquet theory is used to extract the transition curves and stability 

margins in physical parameters space (Vdc-Vac). In addition, the stability margins are plotted in flow 

velocity and excitation amplitude space (u-Vac space). The results depict that the micro-pipe remains 
stable even if the flow velocity is more than the critical value for a certain dc voltage. For instance, in 

absence of the (ac) component, it is shown that pull-in voltages associated to critical velocities 3 and 6 

are 14.06 and 5.4 volt, respectively. However, transition curves show that superimposing an (ac) 

component with forcing frequency Ω=10 increases the pull-in voltage beyond these values. 

Furthermore, for the present pull-in voltages the critical velocities 3 and 6 could be increases with 
imposing some (ac) component. These results are discussed in detail in simulation results section 

where the transion curves are ploted quantitatively. 

doi: 10.5829/ije.2017.30.12c.13 
 

 

NOMENCLATURE 

C  Coriolis acceleration matrix Greek Symbols 

E  Young's modulus of the micro-pipe material (GPa) r Density (kg/m3) 

0g  Initial gap between electrodes and the micro-pipe (µm) t Dimensionless time 

I  Area moment of inertia of the beam (m4) a Electrostatic force coefficient 

eK  Electrical matrix b Mass ratio 

mK  Stiffness matrix 0e Permittivity of free space 

uK  Centrifugal force matrix h Dimensionless Deflection of the micro-pipe 
 

K* Parametric electrical matrix x Dimensionless Axial coordinate varies 0-1 

L  Length of the micro-pipe (µm) z
 Dimensionless Coriolis coefficient 

M  Mass Matrix W
 

Excitation frequency (hertz) 

m  Mass of the empty micro-pipe per unit length (kg/m)  ,   d 
 ̱

Constants of Mathieu equation 

U  Steady flow velocity (m/s) nw  Dimensionless natural frequency 

u  Dimensionless fluid flow velocity nj  The nth linear mode shape of the micro-pipe in the absence of fluid 
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1. INTRODUCTION 
 

There has been a considerable amount of interest in the 

use of micro-electro-mechanical systems "MEMS" over 

the last two decades. Electrostatically actuated micro-

sensors and actuators are widely used in many 

applications such as aerospace, biomedicine, 

information technology and so forth. Recently, micro-

structures coupled with fluid flow have been used 

widely in MEMS applications such as micro fluidic 

devices [1], micro scale ink printers [2] and micro-

pumps [3]. Among these devices, micro-pipe conveying 

fluid is significantly important and its flow induced 

vibration and instability has been drawing huge 

attention. Dynamic analysis and stability of pipe 

conveying fluid in macro-scale have been extensively 

studied for many years [4-7]. It has been reported that 

increasing the flow velocity can lead to both static and 

dynamic instability in the form of divergence and 

flutter. Several studies of fluid solid interaction in nano-

scale structures have been reported in connection with 

flow through carbon nanotubes [8-10]. Most recently, 

using MCST for modelling the rotating single-walled 

carbon nanotubes (SWCNTs), SafarPouri and Ghadiri 

investigated how rotational speed and velocity of 

viscous fluid flow affect SWCNTs stability and free 

vibration behavior [11]. Studies were continued and 

extended to analyze the instability of pipe conveying 

fluid in the intermediate micrometer range where 

remains mostly unexplored [12-15]. For example, Kural 

et al. showed that in order to stability analysis, the 

effects of shear stress on micro-beam conveying fluid 

made by some special materials shouldn't be neglected 

[13]. Abbasnejad et al. [14] studied the stability of a 

fluid-conveying micro-pipe axially loaded with a pair of 

piezoelectric layers located at its top and bottom 

surfaces. They investigated the effects of intermediate 

support on the stability margins.  

Micro-pipe conveying fluid may also operate as a 

micro resonator for measuring the operating fluid 

properties. Measuring is achieved by detecting small 

changes in natural frequency. In this case, the micro-

pipe should be excited harmonically. Excitation can be 

triggered by various mechanisms where the electrostatic 

actuation is preferred over other actuation methods 

because of its ease of use and compatibility with micro-

fabrication process. In this regard, Enoksson et al. [16] 

presented a double loop micro-pipe resonator structure 

as a mass flow sensor. In the other work, they proposed 

four different double loop designs and investigated the 

effects of the loop shapes on the sensitivity of the sensor 

as a fluid density meter [17, 18]. Westberg et al. [19] 

proposed a CMOS-compatible rectangular resonating 

micro-tube for measuring the density of fluids. Later, 

Najmzadeh et al. [20] proposed a new and simple 

silicon straight micro-tube with a hexagonal cross 

section as a fluid density sensor. Taking into account 

electrostatically harmonic actuation, they addressed the 

Q-factor and the fluid density sensitivity for the first 

three vibration modes. The investigations were 

continued by spark et al. [21] who examined the use of 

electrostatically resonating cantilever micro-pipe to 

measure both the viscosity and density of fluid.  

One of the main issues related to design a resonant 

micro-pipe is to adjust the electrical load away from the 

pull-in instability, a condition that causes failure in the 

system. Concerning this, Dai et al. [22] derived a 

theoretical model in order to predict pull-in instability of 

electrostatically actuated micro-pipes conveying fluid. 

They addressed the effects of fluid flow and 

electrostatic force on the buckling and pull-in 

instability. Later, Yan et al. comprehensively 

investigated the pull-in instability and dynamic 

characteristics of an electrostatically actuated micro-

beam conveying fluid by considering the elastic 

structure and laminar flow. They studied the energy 

dissipation caused by the fluid viscosity and showed 

that the quality factor decreases by increasing the mode 

order as well as flow velocity [23]. In their another 

paper, Yan et al. studied comprehensively the dynamic 

behavior of an electrostatically actuated suspended 

microchannel resonator and showed that the steady flow 

could extend dynamic stable region of pull-in. They also 

demonstrated that applying dc voltage and steady flow 

could shift the resonant frequency [24]. 

Furthermore, Krylov et al. [25] proposed a 

symmetric actuation mechanism, which included a 

steady (dc) and time dependent (ac) component of the 

voltage to extend the stable margins of a micro-beam 

beyond the pull-in value. As well, Rhoads et al. [26] 

studied the same geometry that couples the inherent 

benefits of a resonator with purely parametric excitation. 

Moreover, Abbasnejad et al. [27] shows that the 

parametric excitation of a symmetrically actuated micro 

mirror superimposing the harmonic (ac ) component 

could have a stabilizing effect and allow an increase of 

the steady (dc ) component beyond the pull-in value.  

It seems that, instead of single side electrode, a 

symmetrically double side actuation mechanism could 

be used in resonant micro-pipe conveying fluid to 

extend the thresholds of instability. In this paper, a 

double clamped resonant micro-pipe with rectangular 

cross section is actuated symmetrically with 

electrostatic electrodes. It is shown that the parametric 

excitation of the micro-pipe using harmonic (ac) voltage 

may have a stabilizing effect and permits an increase of 

the bias (dc) component of the actuation beyond the 

pull-in value. Employing Galerkin projection method a 

Mathieu type governing equation is derived. Floquet 

theory is used to extract the transition curves and 

stability margins in physical parameters space (Vdc-Vac). 

In addition, the stability margins are plotted in flow 
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velocity and excitation amplitude space (u-Vac space). 

The results depict that the micro-pipe remains stable 

even the flow velocity is more than the critical value for 

a certain dc voltage.   

 

 

2. MATHEMATICAL MODELING  
 
Figure 1 shows a double clamped micro-pipe conveying 

fluid placed symmetrically between two electrodes. The 

micro-pipe is subjected to bias Vdc and superimposed 

harmonic Vac voltage equally in both sides. Here b, h, L, 

and EI are the width, height, length and flexural rigidity 

of the micro-pipe, respectively. M and m are the mass 

per unit length of the Micro-pipe and flowing fluid with 

average velocity U.  Lateral deflection is denoted as W 

and internal dimensions are specified in the cross 

section view.   

The governing equation of the transverse motion of 

the micro-pipe subjected to symmetrically electrostatic 

loads is: 
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where V(t) is the actuation voltage, g0 is the initial gap 

between the pipe and the electrodes and ε0=8.854×10
-12

 

Fm
-1

 is the permittivity of free space. The first term in 

the above equation stems from the elastic flexural 

restoring force and the second term corresponds to the 

centrifugal force of the fluid flowing with constant 

speed U . The third term is recognized as being 

associated with the Coriolis acceleration and the last 

term represents inertial effects of both pipe and fluid. To 

ease the calculations following dimensionless 

parameters are defined. 
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Figure 1. Schematic view of the micro-pipe conveying fluid 

with side electrodes 

Substituting these parameters into Equation (1) results 

in the following dimensionless equation of motion: 
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where, in the double clamped case the following 

boundary conditions should be satisfied.  
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Bearing in mind that finite vibrations of the micro-pipe 

around the equilibrium position η=0 will be studied, the 

nonlinear electrostatic terms appearing in the governing 

equation are expanded into a Taylor series up to the 

second order. Therefore, the resulting equation takes the 

following form: 
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where δV=Vac cos(2Ωτ) is the harmonic component of 

the exciting voltage and Vdc is the bias or tuning voltage. 

Rearranging Equation (5) yields the following 

parametric equation.  
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The lateral deflection of the micro-pipe η can be 

formulated as the summation of a finite number of 

suitable shape functions with time dependent 

coefficients as: 
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N
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where qn(t) represents the n
th

 generalized coordinate and 

φn(ξ) denotes the n
th

 linear mode shape of the micro-

pipe in the absence of fluid. The symmetric 

configuration of the proposed micro-pipe and the 

electrostatic loading mechanism reveals that the first 

mode could be the dominant mode of operation. Hence, 

by letting N=1 in Equation (7) and employing the 

orthogonality of the mode shapes, the single mode 

approximation yields the following equation: 
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Applying the transformation ɋt t*=    Equation (8) will 

take the following Mathieu equation: 
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3. SIMULATION RESULTS 
 
At first, with ignoring the fluid effects and applying bias 

dc voltage, the stability of micro-pipe in single side and 

symmetrically double side actuation cases are presented.  

Then, taking into account the fluid flow, the effect of 

the bias voltage on the critical fluid velocity ucr is 

depicted. Finally, superimposing ac components to the 

bias voltages and utilizing Floquet theory, the 

possibility of parametric stabilization of the micro-pipe 

is reported.  The fluid density used in the simulations is 

1000 kg/m
3 

and the geometrical and material properties 

of the micro-pipe are listed in Table 1. 

 

 
TABLE 1. Geometrical and material properties of the micro-

pipe and the fluid 

Parameters Value 

Length, L(µm) 0.198 

Width, b(µm)  

Height, h(µm)  

Inner width, bi(µm)  

Inner height, hi(µm)  

Young’s modulus, E(Gpa)  

Poisson’s ratio, ν  

Mass density, ρ(Kg/m3) 0.184 

Figure 2 illustrates micro-pipe conveying fluid midpoint 

deflection versus applied voltage in the absence of fluid 

flow velocity for both single and double side actuation 

states. It is depicted that the static pull-in voltage for 

single and double side actuations are 12.8 volts and 16 

volts respectively. Namely, in the case of symmetrically 

double side actuation state, with increasing the bias 

voltage the micro-pipe remains in the equilibrium 

position and the instability is taking placed suddenly. 

The figure shows that symmetric state is more stable.  

It should be noted that the centrifugal fluid force acts 

as a compressive load and the side electrodes produce 

lateral forces on the micro-pipe. Therefore, beyond 

some values of the fluid velocity, critical velocity ucr, 

the micro-pipe loses its stability by divergence ‘[14]’. 

Furthermore, as it can be seen from the Figure 2, the 

midpoint deflection of the micro-pipe with double side 

electrodes, is zero. In other words, there is no vertical 

deflection caused by implementing any voltage level. 

Hence, the effect of the large deflection in this study is 

not considered. 

In order to examine the effects of taking into account 

the fluid flow velocity on the stability of the micro-pipe, 

variations of the critical fluid velocity versus the applied 

symmetric bias voltage are shown in Figure 3. It is 

observed that the critical fluid velocity decreases in the 

presence of the side electrodes. Specifically, decreasing 

the applied voltage will increase the critical fluid 

velocity.    

As stated in the literature review, micro-pipes 

conveying fluid may operate as a micro resonator for 

measuring flowing fluid properties. Measuring is 

achieved by detecting small changes in its vibrational 

properties. In this case, the micro-pipe should be excited 

harmonically. Hence, a harmonic ac voltage is 

superimposed to the present bias dc component in the 

symmetrically actuated case. This will result a Mathieu 

type equation (Equation10) with classical parameters δ 

and ε. 

 
 

 

 
Figure 2. Micro-pipe midpoint deflection versus the applied 

voltage in absence of fluid flow for both single and double 

side actuation states 
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Figure 3. Non-dimensional critical fluid velocity ucr versus 

Vdc for the double clamped micro-pipe conveying fluid. 

 

 

It should be noted that the parameter δ (equivalent 

stiffness of the micro-pipe) is a function of the flexural 

rigidity, applied dc voltage, and fluid velocity while 

time varying the equivalent stiffness of the micro-pipe ε 

is a function of applied dc and ac voltages. There are a 

few well-known methods to solve Mathieu equation. 

Among them, the Floquet theory, perturbation method, 

and iteration techniques are the common methods. In 

this paper to obtain the stable margins of the micro-pipe, 

the Floquet theory [28] is employed. Figure 4 depicts 

the stable and unstable regions in the classical 

parameters plane (δ-ε). It was proved that along the 

boundaries (transition curves) there exists at least one 

normal solution, which is periodic with the period of 

either 2π or 4π depending on the case. 

To provide transition curves in the plane of the 

physical parameters of the system a nonlinear mapping 

is carried out from (δ-ε) plane to the (Vdc-Vac) plane for a 

given forcing frequency Ω and fluid velocity u. Taking 

into account the nondimensional forcing frequency as 

Ω=10, the stability margins of the micro-pipe for 

different values of the fluid velocity are plotted in 

Figure 5. In the absence of the ac component (horizontal 

axis), the static pull-in voltages of the system are stated 

on the figures. 

 

 

 

 
Figure 4. Stable (shaded) and unstable regions in the 

parametric plane (δ-ε). 

It is found that the harmonic component (ac voltage) 

has a stabilizing effect and permits an increase of the 

bias (dc) component of the actuation voltage beyond the 

pull-in value. With due attention to the figure, one 

observes however that the stability can be attained only 

through the application of relatively high ac voltage 

comparable with dc component.  In addition, it can be 

seen that the fluid velocity has a strong influence on the 

area of the stability regions (compare Figures 5a and 

5b). 

In order to study the influence of the forcing 

frequency on the stability margins of the micro-pipe, we 

increase the nondimensional forcing frequency to Ω=15 

and plotted the transition curves in (Vdc-Vac) plane 

‘Figure 6’. Comparison of the shaded areas beyond the 

static pull-in value in Figures 5 and 6, one observes that 

this influence more pronounced and leads to the 

extension of the stability areas. 

The region of stability of the micro-pipe in terms of 

the dimensional fluid velocity U and harmonic voltage 

Vac is shown in Figure 7. Stability regions for 

dimensionless forcing frequency Ω=10 and different 

static pull-in voltages, namely Vdc=14.06 and 5.40 volt, 

are depicted in Figures 7a and 7b, respectively. These 

pull-in voltages are related to fluid velocities 73.84m/s 

and 147.68m/s  (dimensionless fluid velocities 3 and 6), 

respectively. 

 

 

 
(a) 

 
(b) 

Figure 5. Stable (shaded) and unstable regions of the system 

in the plane of physical parameters (Vdc-Vac) for excitation 

frequency Ω=10, (a) u=3, (b) u=6. 
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(a) 

 
(b) 

Figure 6. Stable (shaded) and unstable regions of the system 

in the plane of physical parameters (Vdc-Vac) for excitation 

frequency Ω=15, (a) u=3, (b) u=6. 

 

 

 
(a) 

 
(b) 

Figure 7. Stable (shaded) and unstable regions of the system 

in the plane of physical parameters (U-Vac) for excitation 

frequency Ω=10, (a) Vdc =14.06, (b) Vdc =5.40 volt 

Figure 7b shows that, due to increased forcing 

amplitude Vac the stable fluid velocity increases and 

could be higher than the static critical fluid velocity 

(compare Figures 3 and 7b).  In addition, it is revealed 

that the stable higher fluid velocity requires higher ac 

amplitude. 

In order to check the correctness of the obtained 

stability margins, direct numerical integration method is 

employed to extract the phase portrait corresponding to 

specific points on the stable and unstable regions. 

Another goal of the numerical analysis is to check the 

effects of the higher modes, which was neglected in 

driving the Mathieu type Equation (10).  

Figure 5a is repeated here where some points are 

specified on the stable and unstable regions ‘Figure 8a’. 

Namely, points A and C are located in stable region and 

B and D are in the unstable region. Figure 8b shows a 

bounded phase portrait corresponding to point A located 

in the stable region. The phase plot related to unstable 

point B for Vdc=11 and Vac= 15 is shown in Figure 8c. 

The numerical result associated with stable point C for 

Vdc=14.59 and Vac= 6.25 is depicted in Figure 8d. 
 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 8. Stable (shaded) and unstable regions of the micro-

pipe for Ω=10 , u=3 and phase portraits corresponding to 

different points, a) stable and unstable regions b) Phase plot of 

point A (Vdc=10.06, Vac=4.63), c) Phase plot of point B 

(Vdc=11, Vac=15), d) Phase plot of point C (Vdc=14.59, 

Vac=6.25), e) Phase plot of point D (Vdc=14.6, Vac=3). 

 

 

It should be noted that with the increase of Vdc beyond 

the pull-in value (Vdc>Vpull-in = 14.06) the values of the 

ac voltages Vac required for the stabilization increase as 

well. For this reason, time history corresponding to 

point D with low ac amplitude is unbounded ‘Figure 

8e’. 

 

 

4. CONCLUSION 
 
In the present work, we demonstrated the possibility of 

stabilization of electrostatically actuated micro-pipe 

conveying fluid using parametric excitation. Expansion 

of the nonlinear electrostatic forces around the 

equilibrium position leads to a parametric Mathieu type 

equation. The stability regions of the system in the 

physical parameters plane (u-Vac) and (Vdc-Vac) for 

different forcing frequency were built employing 

Floquet theory. It was shown a micro-pipe conveying 

fluid, which is subjected to symmetric actuation by 

steady dc and harmonic ac voltages, might remain 

stable under application of the dc voltages beyond the 

pull-in value. In order to stabilize the micro-pipe at the 

voltages higher than the pull-in value, relatively high 

amplitudes of the harmonic voltages are needed. It was 

found that the ac voltages might increase the critical 

fluid velocity. It is shown that, the critical pull-in 

voltage for the micro-pipe under certain excitation 

frequency Ω=10 and dimensionless flow velocity u=6 is 

5.40 volt in which micro-pipe will collapse. However, 

by superimposing periodic (ac) voltage the micro-pipe 

remains stable beyond pull-in voltage (5.40 volt).  The 

results revealed that the ac voltages increase with an 

increase of the forcing frequency. The obtained results 

could be used in the design of micro-pipes for 

measuring the operating fluid properties. Moreover, the 

effect of geometrical parameters and the gap between 

micro-pipe and electrodes might change the results 

which will be considered in the future studies. 
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 ôùw³ ĂõĀõÿ¾îĊù üĉv Ăí )¢Åv Ă¤å¾ñ ½v¾é ĈÅ½¾z ¹½Āù ìĉ¾¤ùv½w~ ìĉ¾´£ Ôĉv¾É ½¹ ówĊÅ ôùw³ ĂõĀõÿ¾îĊù ìĉ ć½vºĉw~ IĂõwêù üĉv ½¹

 ½v¾é ìĊ£w¤Åÿ¾¤îõv ìĉ¾´£ ¢´£ Ăí ĂõĀõÿ¾îĊù üĉv )¹½v¹ ½v¾é ìĊ£w¤Åÿ¾¤îõv ìĉ¾´£ ÛĀý ¿v ¹ÿ¾¤îõv ÿ¹ üĊz ½¹ û½wê¤ù ¡½ĀÍ Ăz ówĊÅ

í ĈÖĉv¾É ½¹ I¹½v¹ )¹¹¾òĊù ½vºĉw~wý IºÉwz ĈîĊ£w¤Åv ć½vºĉw~wý Áw¤õÿ ¿v ¾¤ñ½Àz ìĉ¾´£ Áw¤õÿ Ăwz ¢zw§ Áw¤õÿ Ăz xÿwþ¤ù Áw¤õÿ û¹¾í ĂåwÑv  ÿ

IüĊí¾öñ Çÿ½ ÿ ½ĀöĊ£ ć¾Å û¹¾z½wí Ăz wz ºÉw{Ċù ĀĊ£wù Ăõ¹wÞù ÷¾å Ăz Ăí ø¤ÆĊÅ ¾z øíw³ Ăõ¹wÞùI ¢Åv āºÉ ©v¾¸¤Åv ć½Āu£ ¿v ā¹wæ¤Åv wz )

 ÿ ĂíĀöåĊâ£ wzÿ ¢zw§ Áw¤õÿ ā¿vºýv ¾ĊÚý ø¤ÆĊÅ ìĉ¾´£ ćwă¾¤ùv½w~ ¾Ċ Ĉþ´þù Ĉzÿwþ£ Áw¤õÿ Ăþùv¹ ½¼ñ ćwă ÿ¾îĊù ½vºĉw~ Ĉ³vĀý ÿĂõĀõ 

 Ì¸ÊùÉāº ºýv.  ) )ºýv āºùj ¢Å¹ Ăz ÀĊý ìĊýĀù½wă Áw¤õÿ Ăþùv¹ ÿ ówĊÅ ¢Ý¾Å ¾ĊĊâ£ wz ½vºĉw~ Ĉ³vĀý ÿ ½¼ñ ćwă Ĉþ´þù āÿĒÞz ªĉ w¤ý

 û¹ÿÀåv wz Ăí ºþăºĊù ûwÊýìĊýĀù½wă ĂæõĀù ìĉ  ÀĊý ĈîĊ£w¤Åv ć½vºĉw~wý ¿v ¾£đwz ½vºêù Ăz ÿ ā¹v¹ ÈĉvÀåv v½ ø¤ÆĊÅ ć½vºĉw~wý Áw¤õÿ ûvĀ¤Ċù

ºýwÅ½.  Ëw· Ówêý ćv¾z āºùj ¢Å¹ Ăz ªĉw¤ýzÀĊý ć¹ºÝ ¡½ĀÍ Ă ¢Åv āºÉ ĈÅ½¾z ć¹½Āù ¡½ĀÍ Ăz ø¤ÆĊÅ ć½vºĉw~ ÿ āºÉ ô³ Ăz )

vºýv IìĊýĀù½wă Áw¤õÿ xwĊá ½¹ ów¨ù ûvĀþÝ Ĉýv¾´z ćwă ¢Ý¾Å ćv¿v Ăz ø¤ÆĊÅ ć½vºĉw~wý Áw¤õÿ ā¿. ÿ1  yĊ£¾£ Ăz+1*,/ ÿ/*0  Ĉù ¢õÿ

 ìĉ¾´£ Äýwí¾å wz ĈõwúÝv Áw¤õÿ Ăz ìĊýĀù½wă ĂæõĀù û¹ÿÀåv wz Ăí ºþă¹ Ĉù ûwÊý ½¼ñ ćwă Ĉþ´þù ĂîĊ£½ĀÍ ½¹ )ºÉwzΩ=10 ¿w¤õÿ I

āÿĒÝ )¹v¹ ÈĉvÀåv ĈĄ«Ā£ ôzwé ā¿vºýv Ăz ûvĀ£ Ĉù v½ ć½vºĉw~wý  Ĉýv¾´z ćwĄ¤Ý¾Å Ăí ºþă¹ Ĉù ûwÊý ªĉw¤ý Iüĉv ¾z.ÿ1  ćwăÁw¤õÿ ćv¿v Ăz ÀĊý

ºÉ ā¹v¹ ²ĊÑĀ£ ªĉw¤ý ¢úÆé ½¹ Ăõwêù ü¤ù ½¹ ôĊÎæ£ Ăz ªĉw¤ý üĉv Ĉùwú£ )ºþzwĉ Ĉù ÈĉvÀåv ìĊýĀù½wă Áw¤õÿ ówúÝv wz  I¾Ùwþ¤ù ć½vºĉw~wý ā

)ºýv 
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