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A B S T R A C T  
 

 

This study is designed to consider the two important yet often neglected factors, which are factory 

recommendation and bit features, in optimum bit selection. Image processing techniques have been 
used to consider the bit features. A mathematical equation, which is derived from a neural network 

model, is used for drill bit selection to obtain the bit’s maximum penetration rate that corresponds to 

the optimum parameters for drilling. At the end, the bit with the maximum penetration rate is chosen. 
The results of this study showed that bit pattern can be inserted in the calculation through a proper bit 

image processing technique. This is to ensure that each unique bit can be discriminated from other bits. 

The values of mean square error  and coefficient of determination (R2) were respectively found as  
0.0037 and 0.9473, for the rate of penetration model. The image processing techniques were used to 

extract the bit features. The artificial neural network black box was converted to white box in order to 

extract a mathematical equation and visibility of the model. 

doi: 10.5829/ije.2017.30.11b.24 
 

 
1. INTRODUCTION1 
 

A global review of wells showed that bit related cost 

can increase up to 40% of the well cost [1]. For a bit 

run, these costs include trip frequency, which is 

determined by the bit life or the length of the interval 

that the bit can keep drilling, the time-based operating 

cost of the drilling facility, the price of the bit and the 

duration of time needed to drill the interval. 

Consequently, this shows that drilling cost is a 

significant function for the life given by the bit and the 

rate of penetration (ROP). In turn, this means that one of 

the major solutions of cutting down the running cost of 

the bit is finding the most suitable bit design for drilling 

in each interval. The link between bit design and bit run 

performance showed that good bit selection is a crucial 

factor to minimize bit related cost. Accordingly, low 

penetration rate and short bit life will occur if the wrong 

bit design is chosen for the drilling condition and leads 

to requiring a longer time  for rotating and tripping [1]. 

On the other hand, the bit selection program might be 
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impossible when the chosen well d is a wildcat well. 

Hence, bit selection will need to rely on seismic data 

which might provide the predicted thickness intervals 

and formation top. Trial and error methods are 

predominantly adopted in matching bit types to each 

formation. The complete list of major manufacturers’ 

drilling bits by Drill Bit Classifier World Oil is often 

used by supervisors and engineers to guide them in the 

field selection [2]. Furthermore, the Drill Bit Classifier 

also provides the most recent classification charts that 

comprise of bit information along with a 

recommendation on the suitable formation, revolution 

per minute (RPM), weight on bit (WOB),  and available 

bit size. In addition, technical articles published by bit 

manufacturers recommend the optimum parameter for 

drilling each type of bit. As a result, catalogs published 

by the manufacturers can guide the selection for the bit 

rotating speed and the weight on bit for each bit type. 

Moreover, the best operating parameters can be 

determined by referring back to the bit record as bit 

grading and bit life are directly linked to the operating 

conditions [3]. Correspondingly, to optimize bit 

performance, a systematic bit selection approach is very 

much necessary. Such approach identifies the predicted 
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performance of a bit based on the predicted drilling and 

geological conditions, as well as the bit design 

characteristics. As there are many variables that can 

affect ROP, including WOB, RPM, fluid viscosity and 

mud weight (MW), it is challenging to select a proper 

bit [4-6]. 

The artificial neural networks (ANNs) were used in 

some studies [7-10] to predict the IADC codes during 

the process of bit selection. These studies mentioned 

that parameters including formation properties, drilling 

fluid characteristics, and operational parameters are 

linked to the performance of the bit. Hence, they form a 

complicated relationship with bit performance. ANNs, 

with their computational intelligence, have the capacity 

in defining the relationship between these variables. 

Past studies working on neural networks have 

incorporated input data including rotational speed, 

weight on bit , drilled interval, bit size and pump rate, 

while bit code was considered as the output data. In 

their study bit code was used to consider bit features but 

bit codes only represent the bit name, hence, it cannot 

be adopted as a value for calculation.  

The rock failure tests by a single row of inserts were 

conducted on a compound rock fracturing machine [11]. 

The geometrical structure of the single row of inserts is 

the same as one row on a roller cone bit, and its 

movement on the machine can reflect the true 

movement of inserts of a bit (Figure 1). 

Different single row specimens were designed, and 

different types of rock samples were selected for the 

experiments. Figure 1 shows a rock fracturing test by a 

single row of the insert being conducted. Experimental 

results established the ability to estimate real physical 

distance with accuracy as high as 98.76% using image 

processing techniques [12]. Hence, in order to consider 

bit design, image processing techniques can be used as 

there is a strong relationship between the real size of an 

object and its pixels. Current bit selection methods seem 

problematic as they fail to consider bit features and bit 

pattern properly. 

 

 

 
Figure 1. Single-row insert workpiece used to run the 

indentation test [11] 

Besides, the factory recommendation for safety was 

usually ignored during the bit selection process. In 

relation to this, this study applies image processing 

methods to properly deliberate the bit pattern. These 

methods were used to extract the bit features which is 

unique for each bit. Furthermore, during the 

optimization process, factory recommendations were 

highly considered and applied.  
 
 

2. METHODOLOGY 
 
2. 1. Image Capture Procedures         To capture the 

bit images, this study used a 10 megapixel couple-

charged device CCD camera. All of the bits were put 

inside a fixed box, the camera setting, and distance 

between the bit and the camera was kept constant. Due 

to the limit set for the size of images in the MATLAB
®

 

environment, the bit images were resized to 600 × 600 

pixels.  

A Laplacian filter with α = 1 was used to improve 

the edge contracts to extract the surface metrics. 

Structural elements were applied to clearly dilate, erode 

and close the boundary edges. Furthermore, a set of 1D 

intensity signals were generated to compute distance 

classifiers. These classifiers were used to characterize 

the most significant information from the original 2D 

image. The proceeding sections detail the used methods. 

Figure 3 illustrates an example of a bit image which the 

edges were enhanced by the Laplacian filter. 

 

 
Figure 2. Scheme of the camera setup 

 

 

 
Figure 3. Laplacian filter applied on the bit image 
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2. 1. 1. First-Order Surface Metrics           Ten first-

order basic surface metrics, which are often used with 

binary images, were used to investigate the tricone 

rotary drill bit patterns. These metrics which were 

chosen as the changes in the region (ROI) generally 

impact the area as well as the relationship between the 

major and minor axes. First, using a data class 

converting technique, the RGB images were converted 

to binary class or array 0 and 1. The surface metrics 

obtained for each individual binary bit images were 

compared with a new metric as a reference image [13]. 

These metrics include area, which refers to the actual 

pixel number in the target regions, perimeter, which is 

the distance of the boundary surrounding each adjoining 

region in the image, and convex area, which refers to a 

number of pixels contained in the convex image (a 

binary image which comprises of all pixels in the 

region).  Convex hull or the smallest polygon can 

surround the convex image. Solidity, which is 

represented by (A/H), wherein A refers to the polygon’s 

area and H refers to the polygon’s convex hull area that 

approximates the region. Accordingly, a convex region 

will have a solidity near 1. Major axis length, which 

refers to the major axis of the ellipse’s length,  is 

measured in pixels. This length shares the similar 

normalized second central moment with the region. 

Minor axis length, which is the length of the ellipse 

minor axis’ length, is measured in pixels. This length 

shows the similar normalized second central moments 

with the region; eccentricity represents the minor to 

major axis ratio of the region’s best fitting ellipse. 

Equivalent diameter, which is the diameter of a circle, 

has the similar area as the region. Orientation, which 

represents the angle between the ellipse’s major axis, 

has the similar second moments with the x-axis and the 

region [13]. Lastly, extent refers to the pixels proportion 

in the bounding boxes in the region.  

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = √
4×𝐴𝑟𝑒𝑎

𝜋
     (1) 

These metrics have a significant impact on the ROP 

when they are applied as the pattern of each bit. Table 1 

illustrates a common sample of the aforementioned 

parameters for five different bits. 

2. 1. 2. Second-order Statistical Measurements      
Gray-Level Co-Occurrence Matrix (GLCM), which 

represents the second-order statistical measurement, is 

one of the statistical methods that can be used to study 

texture based on the pixel’s spatial relationship.  GLCM 

functions comprise of characterizing the image texture 

by calculating the frequency of pair pixel appearance in 

an image to obtain statistical measures according to a 

matrix. This pair of the pixels has a given spatial 

relationship with particular values. Their appearance 

will generate a GLCM. This GLCM, of an M × N image 

f (i, j) comprising of pixels (with dynamic range G) with 

gray levels {0, 1, …, G − 1}, represents a two-

dimensional (2D) matrix GLCM (i, j). In this case, 

every matrix element illustrates the probability of joint 

occurrence of intensity levels, i and j, at a specific 

distance (i.e. pixel pair spacing (pps), s and a specified 

direction, θ) [14, 15]. Equation (2) was used to 

determine the GLCM generated in this study:  

𝐺𝐿𝐶𝑀(𝑖, 𝑗)𝑠,𝜃 = |{(𝑔1, 𝑔2)|𝐼(𝑔1) = 𝑖, 𝐼(𝑔2) = 𝑗}|  (2)    

where (𝑔1, 𝑔2) ∈ M × N and 𝑔2 is directed at θ at a 

distance of s from 𝑔1.   𝑔1 and 𝑔2 represent the two 

location vectors of two image pixels. M × N represents 

the image size, and I (𝑔1) and I (𝑔2) refer to the gray 

values of the two pixel locations [13]. 0°, 45°, 90°, and 

135° values are the pixel pair directions with the 

vectors, [0 1], [-1 1], [-1 0] and [1-1] and were 

calculated counter-clockwise from the horizontal axis, 

respectively. The GLCM features include energy, 

homogeneity, contrast, entropy, and correlation. 

Furthermore, to identify the dependency, the GLCM 

features obtained from each bit image are plotted 

against the ROP. These features were chosen based on 

the most relevant factors such as homogeneity,  entropy, 

contrast, energy, and correlation [14, 16]. A statistical 

tool was adopted to generate the coefficient of 

determination automatically from the list of each factor 

against the ROP.  Each factor was evaluated separately 

with ROP with regards to accuracy. The following 

equation is used to define and calculate the factors.  

 

 

TABLE 1. A typical example of first-order surface metrics (a is Major axis length, b is Minor axis length and c is Equivalent 

diameter) 

Area Perimeter a b Convex area Solidity Eccentricity c Extent Orientation IADC 

130136 1809.00 430.01 410.92 145014 0.90 0.29 407.06 0.70 8.65 537 

137170 2367.17 444.99 432.27 157526 0.92 0.92 417.91 0.65 61.65 517 

130734 2040.43 440.77 414.31 153291 0.85 0.34 407.99 0.67 -39.55 214 

138627 1967.91 442.75 433.21 160715 0.86 0.76 420.13 0.64 -49.15 135 

127913 1906.24 427.47 418.83 148904 0.859 0.200 403.564 0.669 -24.655 115 
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Local gray-level deviation in the GLCM refers to 

contrast, which is regarded as the gray-level linear 

dependency of adjacent pixels [14] and Equation (3) 

was used: 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑖,𝑗   (3) 

In Equation (3), p refers to the cell value while i and j 

represent the horizontal and vertical cell coordinates. 

The image would have a small contrast if the 

surrounding pixels in their gray-level values are 

identical. Homogeneity is another plotted feature which 

was applied during preprocessing. This calculates 

GLCM’s uniform non-zero entries to weight values, 

with the opposite of contrast weight, based on Equation 

(4) [17, 18]. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
1

1+(𝑖−𝑗)2 𝑝(𝑖, 𝑗)𝑖,𝑗   (4) 

 Pixels are prone to contain similar or identical gray-

level value when there are textures with high GLCM 

homogeneity as the GLCM converges along the 

diagonal lines. The GLCM contrast will be higher when 

the difference in gray values increases and the 

homogeneity of GLCM decreases.  

Meanwhile, Entropy is described as any system 

disorder. Entropy equates to the measurement of spatial 

disorder in texture analysis:     

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))𝑖,𝑗   (5) 

A fully random distribution must have high entropy, 

which indicates chaos. A specific solid tone image 

contains zero entropy value.  This is a valuable feature 

as it provides information in determining whether 

smooth or heavy textures would produce higher entropy. 

Consequently, this provides the information on the type 

of texture that is considered as more chaotic, 

statistically [19]. One of the most significant factors in 

the recent studies is Energy, which refers to the 

evaluation of local homogeneity. Hence, this represents 

the opposite Entropy. In short, energy refers to the 

uniformity of texture [14]. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗   (6) 

Texture homogeneity will increase as the energy value 

increases. Energy value ranges between 0 and 1 or [0, 

1], while energy value for a constant image is 1. 

Lastly, the final factor in this study is correlation. 

Correlation refers to the measurement of each pixel 

relationship with the adjacent pixel in the full image. 

This can be calculated by using the following 

mathematical expression:  

Correlation = ∑
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗   (7) 

Thus, means 𝜇 = ∑ 𝑝(𝑖, 𝑗)𝑖,𝑗 , and the standard 

deviations are 𝜎𝑖 = [∑ (𝑖 − 𝜇𝑖)2𝑝(𝑖, 𝑗)𝑖,𝑗 ]1/2, 𝜎𝑗 =

[∑ (𝑗 − 𝜇𝑗)2𝑝(𝑖, 𝑗)𝑖,𝑗 ]1/2 for each  column and row.  This 

factor also represents the gray level or the spatial 

arrangement of special levels. Furthermore,  Xian et al. 

(2010) showed  a linearity in the relationship between 

the pixel pairs’ gray levels [20]. Table 2 exemplifies 

common GLCM features. 

 

2. 2. Definition of the ANN Model          This study 

used an ANN with three layers containing a tangent 

sigmoid transfer function (tansig) at the hidden layer, as 

well as a linear transfer function (purelin) at the output 

layer. To train the designed networks, this study 

incorporated the use of Levenberg–Marquardt 

backpropagation (trainlm) with 1000 iterations. In the 

hidden layer, the number of neurons was optimized 

between 1and 23 neurons. 

Figure 4 shows the proposed network structure. For 

network training, the data collected from the field were 

used to develop a network model. This model computed 

the forecasted values of ROP based on the input through 

MATLAB
®
. The experimental data were random 

groups, which comprise of 70% training, 15% testing 

and 15% validation.   

In all ANN models, input and outputs were 

normalized between 0 and 1 to prevent numerical 

overflows as a result of very large or small weights [22]. 

The normalization equation is as follows: 

yi =
xi−xmin

xmax−xmin
  (8)  

where yi refers to the standardized value of xi, xmin refers 

to xi minimum value, and xmax refers to the maximum 

value of xi. The ANN model performance was identified 

by adopting the coefficient of determination (R
2
) and 

the Mean Squared Error (MSE) [21-23]. These 

parameters are shown as below: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝑒𝑥𝑝,𝑖)2𝑁

𝑖=1   (9) 

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑒𝑥𝑝,𝑖)2𝑁

𝑖=1

∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑚)2𝑁
𝑖=1

  (10) 

where 𝑦𝑝𝑟𝑑,𝑖 shows  the proposed value by the trained 

ANN model, 𝑦𝑒𝑥𝑝,𝑖 represents the experimental value 

where N is the number of data, and 𝑦𝑚 shows  the 

average experiment value [24]. 

 
TABLE 2. A typical example of second-order surface metrics 

Contrast Homogeneity Energy Correlation Entropy IADC 

0.1298 0.9685 0.4472 0.9947 0.7579 537 

0.1235 0.9677 0.4818 0.9884 0.9130 517 

0.0717 0.9795 0.6225 0.9948 0.9544 214 

0.0808 0.9840 0.6473 0.9945 0.8960 135 

0.1787 0.9569 0.4364 0.9905 0.7281 115 
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According to the ANN model, the objective function 

that connects inputs and output can be shown below:  
ANN output =  Purelin(𝑤2𝑡𝑎𝑛𝑠𝑖𝑔(𝑤1[x(1); x(2); x(3)] +
𝑏1) + 𝑏2)  

(11) 

where, x (1), x (2) and x (3) refer to the inputs, W1 and 

W2 refer to the weight and b1 and b2 represent the 

hidden and output layers bias, respectively. The offset 

bit records comprise of the offset well drilling operation 

data. Drilling data comprise of WOB, MW, RPM, bit 

size, flow rate, nozzle diameter, depth, rotation hour, bit 

meter, and dull bit grading. 

 

 

3. RESULTS AND DISCUSSION 
 
An ANN was adopted to the ROP model. The field data 

were collected using various operational conditions and 

were used to prepare and test the neural network model 

[25].  Consequently, the study achieved the best ANN 

model that appropriates the minimal MSE value for the 

test set. 1 to 23 neurons were applied in the hidden layer 

to optimize the network. The study observed that the 

optimum number of hidden neurons was 18, and the 

value for MSE was 0.0037, while the R
2
 was 0.94. This 

shows that a good agreement between the predicted and 

experimental data was achieved by the trained model.  

The ANN model had taken into account the RPM, 

bit size, WOB, depth, flow rate,  mud weight [10, 26], 

and image features as its inputs. Therefore, drilling bit 

selection can result in obtaining the desired ROP 

through the application of the operational parameters for 

drilling. The subsequent section provides a description 

of the bit selection optimization. 
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Figure 4. A backward propagation of errors ANN model for 

drill bit performance 

This optimization was studied to acquire the maximum 

ROP. Furthermore, Equation (11) was adopted as a GA 

objective function and the study used the similar 

number of ANN and GA inputs.  

Optimizations for 18 separate drill bits were 

conducted as examples for the case study. This progress 

kept the bit size constant and used hydraulic 

optimization which enabled variation in the parameters 

including RPM and WOB. Besides, the GA produced 

the maximum ROP values. This provided the study with 

the best bit that can be utilized for each hole section 

[27]. Here, ANN was adopted to obtain the ROP 

function, the optimum ROP, and related factors 

including mud flow, RPM, and WOB, throughout the 

drilling of various hole sections that were probed. As a 

result, the recommended bit for selection constitutes of 

one that shows the highest forecasted ROP. The field 

data prior to optimization (a) and the optimum data 

proceeding optimization (b) are presented in Table 3. It 

is worth mentioning that the ANN adopted in this study 

successfully performed the proper bit selection for new 

sections, and thus, it can be applied to improve the 

planning process of a new well. This study obtained the 

MSE minimum value of 0.0037 and the coefficient of 

determination (R
2
) of 0.9473 for the ROP. Figure 5 

presents the normalized predicted ROP versus the real 

ROP. The low error indicates the designed algorithm’s 

highest performance.  

115M, 113 and 214 are milled tooth bits designed 

for soft formations with low compressive strength and 

high drillability. After drilling, the cutting structure 

exhibited no significant wear and bits came out to 

surface with effective bearings. The bits were in re-run 

condition and could be considered for another run if 

needed. Reasons for low ROP are insufficient WOB, 

RPM and improper flow rate and mud weight. To 

increase ROP, factors such as WOB, RPM and flow rate 

can be increased but the limitation for flounder point 

and maximum flow rate that pump can provide should 

be considered. Decreasing the mud weight will increase 

ROP but insufficient mud weight may result in the flow 

of formation fluids into the borehole or the collapse of 

borehole. 
 

 

 
Figure 5. Predicted ROP versus real ROP 
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TABLE 3. Optimum bit and drilling data based on maximum ROP using GA 

IADC 

Code 

Size 

(in) 

depth in 

(m) 

Flow area 

(in2) 

Depth out 

(m) 

Pump pressure 

(bar) 

RPM 

(rev/min) 

MW 

(pcf) 

WOB 

(klb) 

Flow rate 

(GPM) 

ROP 

(m/h) 

115M(a) 17.5 13.0 0.99 52 21 45 64.06 10 792.60 3.00 

115M(b) 17.5 13.0 0.99 52 21 65 58.26 24 846.60 5.78 

113(a) 26 51.0 1.30 254 47 72.5 68.52 80 739.76 3.73 

113(b) 26 51.0 1.30 254 47 82.5 48.72 98 867.18 6.46 

214(a) 14.5 2675.0 1.31 2760 188.5 135 79.21 32.5 531.83 3.34 

214(b) 14.5 2675.0 1.31 2760 188.5 150 48.52 38 655.44 7.08 

 

 

4. CONCLUSION 
 
To extract the bit features in this study, the image 

processing techniques was used. The artificial neural 

network was adopted to obtain the mathematical 

correlation between field drilling data image features 

and ROP. Moreover, to optimize drilling data, the 

mathematical equation was adopted as the GA objective 

function. Based on the ROP equation, this study 

simulated the drilling process, as well as drilling 

optimization which leads to the increment of ROP.  The 

optimum bit runs are presented as evaluated by ROP. 

Consequently, the drilling program was improved 

through the drilling simulation, and the mathematical 

model, which represent the ROP, showed good 

correlation with the bit image features and the real field 

data. Lastly, the results showed that bit pattern can be 

inserted in the calculation through a proper bit image 

processing technique so that each unique bit can be 

discriminated from other bits. The values of mean 

square error, 0.0037, and the coefficient of 

determination (R
2
), 0.9473, were identified for the rate 

of penetration model. 
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vüĉ Å½¾z ½ĀÚþù Ăz ĂÞõwÖùĈ ¹wý yöáv wùv øĄù Ăýwñÿ¹ ôùvĀÝāºĉ āºÉ Ă¤å¾ñI  Ăí ôùwÉÍĀ£ĂĊ ÿ ÿ Ăýw·½wíĈñÂĉ wăć  Ă¤ù

I¢Åv  xw¸¤ýv ½¹Ă¤ù  xĀöÖù¢Åv āºÉ Ĉ³v¾Õþî£ )ìĊ wăć ĀÎ£ Ç¿v¹¾~¾ĉ v¾zć ÿ ü¤å¾ñ ¾Úý ½¹ĈñÂĉ wăć Ă¤ù  ā¹wæ¤Åv

 )ºýv āºÉìĉ ¿v ½ Ăõ¹wÞùĈÑwĉ  ¿v Ăíìĉ {ÎÝ Ăî{É óºùĈ v¾z ¢Åv āºÉ ©v¾¸¤Åvć  Ă¤ù xw¸¤ýv ć½wæ³v¾zć  ¢Å¹ Ăz

ù ¾¨ívº³ û¹½ÿjûvÀĊ  »ĀæýĂ¤ù wă¾¤ùv½w~ Ăz Ăíć ĄzĂþĊ v¾zć ½wæ³ć ù¹ĀÉ Ĉù ÓĀz¾ ù ā¹wæ¤ÅvĈ ¹¹¾ñw~ ½¹ )Iûwĉ Ă¤ù  ¾¨ívº³ wz

ùûvÀĊ  xw¸¤ýv »Āæý¹ĀÉ Ĉùw¤ý )ĉª vüĉ ù ûwÊý ĂÞõwÖùĈ Āòõv Ăí ºă¹ć Ă¤ù ù v½Ĉ ¾Õ ¿v ûvĀ£èĉ ìĉ ĀÎ£ Ç¿v¹¾~ Çÿ½¾ĉ 

Ă¤ù v )¹v¹ ½v¾é Ă{Åw´ù ½¹ yÅwþùüĉ v¾zć úÕvûwþĊ v ¿vĂí ¢Åv üĉ  ¾ăĂ¤ù ù ¹¾å Ăz ¾Î´þùĈ ºývĀ£ ¿v Àĉwú¤ù Ă¤ù wăć ¹¾òĉ 

¹wêù )ºÉwz¾ĉ wÖ·ć ùüĊòýwĊ ¾Ñ ÿ Üz¾ùyĉ Ĉò¤Æ{úă $R2£¾£ Ăz #yĊ ++.2*+  ÿ4/2.*+ v¾zć ù óºùûvÀĊ  »Āæý ¢Å¹ Ăz

ºùj ) ¿vþî£ìĊ wăć  Ç¿v¹¾~¾ĉĀÎ£ v¾zć ÿ ©v¾¸¤ÅvĈñÂĉ wăć Ă¤ù Å Ă{Þ« )ºÉ ā¹wæ¤ÅvāwĊ Ăî{É {ÎÝĈ ÝĀþÎùĈ  ½ĀÚþù Ăz

½ ¡đ¹wÞù ©v¾¸¤ÅvĈÑwĉ  ÿ¢ĊåwæÉ æÅ Ă{Þ« Ăz IóºùºĊ º{£ôĉ )ºÉ 

doi: 10.5829/ije.2017.30.11b.24 

 


