Effect of Tofu Wastewater Addition on the Growth and Carbohydrate-Protein-Lipid Content of Spirulina platensis (RESEARCH NOTE)

Authors

Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Indonesia

Abstract

This study was conducted to investigate the effect of tofu wastewater (TW) addition to the growth medium on the growth of Spirulina platensis. The TW addition was varied in range of 0 – 8 %v/v. The results showed that the growth rate (μ) of S. platensis at TW addition of 0, 2, 4, 6, 8 %v/v was 0.007, 0.084, 0.074, 0.088, 0.086 mg/L/d, respectively. The medium with TW content of 6 %v/v (carbon:nitrogen:phosphorous=161:17:1; carbon/nitrogen=9.55) was the best medium for biomass production. The growth rate of S. platensis was successfully modeled using modified Gompertz equation (R2 =0.93–0.98). In prediction through modified Gompertz, the maximum biomass  production (2.17 mg/L) was resulted from medium IV (TW of 6 %v/v). Medium IV (TW of 6 %v/v), medium II (TW of 2 %v/v) and medium III (TW of 4 %v/v) resulted in biomass containing the highest amount of protein (66.62%), carbohydrate (61.23%) and lipid (19.66%), respectively.

Keywords


1.     BPPT, Development of planning and policy support for improving the potential production of biogas as renewable energy in indonesia’s tofu industries. 2013: Renewable Energy-Efficiency Energy Partnership (REEEP) Environmental Technology Centre, The Agency for the Assessment and Application of Technology, Indonesia.
2.     Syaichurrozi, I., Rusdi, R., Dwicahyanto, S. and Toron, Y.S., "Biogas production from co-digestion vinasse waste and tofu-prosessing waste water and knetics", International Journal of Renewable Energy Research (IJRER),  Vol. 6, No. 3, (2016), 1057-1070.
3.     Syaichurrozi, I., Rusdi, R., Hidayat, T. and Bustomi, A., "Kinetics studies impact of initial ph and addition of yeast saccharomyces cerevisiae on biogas production from tofu wastewater in indonesia", International Journal of Engineering-Transactions B: Applications,  Vol. 29, No. 8, (2016), 1037.
4.     Rizkytata, B.T., Gumelar, M.T. and Abdullah, T.H., "Industrial tofu wastewater as a cultivation medium of microalgae chlorella vulgaris", Energy Procedia,  Vol. 47, (2014), 56-61.
5.     Nugroho, W.A., Hermanto, M.B., Lutfi, M. and Fakhri, M., "Phosphorus removal of tofu processing wastewater in recirculated raceway pond bioreactor by chlorella vulgaris", Nature Environment and Pollution Technology,  Vol. 13, No. 4, (2014), 859-863.
6.     Putnarubun, C., Rettob, M., Gunam, I.B.W. and Balubun, S.K., "Utilization of tofu waste as a cultivation media for tetraselmis sp microalgae in preliminary study of biodiesel production", International Journal of Basic & Applied Sciences,  Vol. 15, No. 4, (2015), 13-16.
7.     Cheunbarn, S. and Peerapornpisal, Y., "Cultivation of spirulina platensis using anaerobically swine wastewater treatment effluent", International Journal of Agriculture & Biology,  Vol. 12, No. 4, (2010), 586-590.
8.     Budiyono, Syaichurrozi, I., Sumardiono, S. and Sasongko, S.B., "Production of spirulina platensis biomass using digested vinasse as cultivation medium", Trends in Applied Sciences Research,  Vol. 9, No. 2, (2014), 93-102.
9.     Hadiyanto, H., Soetrisnanto, D. and Christwardhana, M., "Phytoremediation of palm oil mill effluent using pistia stratiotes plant and algae spirulina sp for biomass production",  International Journal of Engineering -Transactions C: Aspects, Vol. 27, No. 12, (2014), 1809-1814.
10.   Hezarjaribi, M., Ardestani, F. and Ghorbani, H.R., "Single cell protein production by saccharomyces cerevisiae using an optimized culture medium composition in a batch submerged process", Applied Biochemistry and Biotechnology,  Vol. 179, No. 8, (2016), 1336-1345.
11.   Hezarjaribi, M., Ardestani, F. and Ghorbani, H., "Optimization of single cell protein production by aspergillus fumigatus using a fraction of the full factorial method", International Journal of Darshan Institute on Engineering Research & Emerging Technologies, Vol. 4, No. 2, (2015), 39-44.
12.   Golaghaiee, S., Ardestani, F. and Ghorbani, H.R., "Microbial protein production from candida tropicalis atcc13803 in a submerged batch fermentation process", Applied Food Biotechnology,  Vol. 4, No. 1, (2017), 35-42.
13.   Samkhaniyani, F., Najafpour, G.D. and Ardestani, F., "Photobioreactor design and evaluation of effective nutritional parameters in scenedesmus sp. Microalgae culture for biodiesel production", International Journal of Environmental Science and Technology,  Vol. 14, No. 5, (2017), 1037-1046.
14.   Chen, Y.-C. and Lee, M.-C., "Double-power double-heterostructure light-emitting diodes in microalgae, spirulina platensis and nannochloropsis oculata, cultures", Journal of Marine Science and Technology,  Vol. 20, No. 2, (2012), 233-236.
15.   Ardestani, F., Rezvani, F. and Najafpour, G., "Fermentative lactic acid production by lactobacilli: Moser and gompertz kinetic models", Journal of Food Biosciences and Technology,  Vol. 7, No. 2, (2017), 67-74.
16.   Zwietering, M., Jongenburger, I., Rombouts, F. and Van't Riet, K., "Modeling of the bacterial growth curve", Applied and Environmental Microbiology,  Vol. 56, No. 6, (1990), 1875-1881.
17.   Hadiyanto, H., "Enhancement of biomass production from spirulina sp cultivated in pome medium", Proceeding of International Conference on Chemical and Material Engineering, (2012).
18.   Travieso, L., Benitez, F., Weiland, P., Sanchez, E., Dupeyron, R. and Dominguez, A., "Experiments on immobilization of microalgae for nutrient removal in wastewater treatments", Bioresource Technology,  Vol. 55, No. 3, (1996), 181-186.
19.   Chainapong, T., Traichaiyaporn, S. and Deming, R.L., "Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of spirulina platensis", Jorunal of Agricaltural Technology,  Vol. 8, (2012), 1593-1604.
20.   Perez-Garcia, O., Escalante, F.M., de-Bashan, L.E. and Bashan, Y., "Heterotrophic cultures of microalgae: Metabolism and potential products", Water Research,  Vol. 45, No. 1, (2011), 11-36.
21.   Andrade, M.R. and Costa, J.A., "Mixotrophic cultivation of microalga spirulina platensis using molasses as organic substrate", Aquaculture,  Vol. 264, No. 1, (2007), 130-134.
22.   Setyoningrum, T.M. and Nur, M.A., "Optimization of c-phycocyanin production from s. Platensis cultivated on mixotrophic condition by using response surface methodology", Biocatalysis and Agricultural Biotechnology,  Vol. 4, No. 4, (2015), 603-607.
23.   De Morais, M.G. and Costa, J.A.V., "Biofixation of carbon dioxide by spirulina sp. And scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor", Journal of Biotechnology,  Vol. 129, No. 3, (2007), 439-445.
24.   Zheng, S., He, M., Jiang, J., Zou, S., Yang, W., Zhang, Y., Deng, J. and Wang, C., "Effect of kelp waste extracts on the growth and lipid accumulation of microalgae", Bioresource Technology,  Vol. 201, (2016), 80-88.
25.   M Azimatun Nur, M., Kristanto, D., Muji Setyoningrum, T. and Budiaman, I., "Utilization of microalgae cultivated in palm oil mill wastewater to produce lipid and carbohydrate by employing microwave-assisted irradiation", Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering),  Vol. 9, No. 2, (2016), 107-116.
26.   Nur, M.A. and Irawan, M., "Utilization of coconut milk skim effluent (CMSE) as medium growth for spirulinaplatensis", Procedia Environmental Sciences,  Vol. 23, (2015), 72-77.
27.   Uslu, L., Icik, O., Koc, K. and Goksan, T., "The effects of nitrogen deficiencies on the lipid and protein contents of spirulina platensis", African Journal of Biotechnology,  Vol. 10, No. 3, (2011), 386-389.
28.   Markou, G., "Alteration of the biomass composition of arthrospira (spirulina) platensis under various amounts of limited phosphorus", Bioresource Technology,  Vol. 116, (2012), 533-535.
29.   Markou, G., Chatzipavlidis, I. and Georgakakis, D., "Effects of phosphorus concentration and light intensity on the biomass composition of arthrospira (spirulina) platensis", World Journal of Microbiology and Biotechnology,  Vol. 28, No. 8, (2012), 2661-2670.