Mathematical Investigation of Soil Temperature Variation for Geothermal Applications

Authors

Department of Mechanical Engineering, N.I.T. Jamshedpur, India

Abstract

This paper aims to predict the periodic variation of ground temperature with depth for time variant condition of ambient air temperature and solar radiation data for Jamshedpur, India. Fourier series and numerical techniques have been used to determine (hottest and coldest day) diurnal and annual temperature variation of the year 2015. The diurnal temperature variation is up to 0.2 m depth of soil whereas annual temperature variation is up to 3 m depth.

Keywords


1.     Soni, S.K., Pandey, M. and Bartaria, V.N., "Ground coupled heat exchangers: A review and applications", Renewable and Sustainable Energy Reviews,  Vol. 47, (2015), 83-92.
2.     Khatry, A., Sodha, M. and Malik, M., "Periodic variation of ground temperature with depth", Solar Energy,  Vol. 20, No. 5, (1978), 425-427.
3.     Bharadwaj, S. and Bansal, N., "Temperature distribution inside ground for various surface conditions", Building and Environment,  Vol. 16, No. 3, (1981), 183-192.
4.     Mihalakakou, G., Santamouris, M., Lewis, J. and Asimakopoulos, D., "On the application of the energy balance equation to predict ground temperature profiles", Solar Energy,  Vol. 60, No. 3-4, (1997), 181-190.
5.     Mihalakakou, G., "On estimating soil surface temperature profiles", Energy and Buildings,  Vol. 34, No. 3, (2002), 251-259.
6.     Ozgener, O., Ozgener, L. and Tester, J.W., "A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications", International Journal of Heat and Mass Transfer,  Vol. 62, No., (2013), 473-480.
7.     Kurylyk, B.L. and MacQuarrie, K.T., "A new analytical solution for assessing climate change impacts on subsurface temperature", Hydrological processes,  Vol. 28, No. 7, (2014), 3161-3172.
8.     Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., Qiao, Y., Shi, J., Li, W. and Cheng, G., "New fourier-series-based analytical solution to the conduction–convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux", International Journal of Heat and Mass Transfer,  Vol. 95, No., (2016), 815-823.
9.     Bracewell, R.N. and Bracewell, R.N., "The fourier transform and its applications, McGraw-Hill New York,  Vol. 31999,  (1986).