Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation


1 Electronics and CommunicationEngineering Department, University College of Engineering, Kakatiya University, Kothagudem, Telangana, India

2 Electronics and Instrumentation Engineering Department, Kakatiya Institute of Technology & Science, Warangal, Telangana, India

3 Electronics and Communication Engineering Department, Kakatiya Institute of Technology & Science, Warangal, Telangana, India


This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to select the useful IMF component from among available IMFs. Conventional AF uses random initial weight vector. The novelty of the proposed method is that it uses decimated version of one of the decomposed IMFs of received OFDM symbol as initial weight vector. This makes the proposed EMD based AF method converge to minimum mean square error (MMSE) in less number of iterations resulting in almost 50% saving of computations. The simulation studies in terms of bit error rate (BER) and mean square error (MSE) calculations established the efficacy of proposed method; and comparative studies under different modulation schemes and fading conditions revealed improved performance.


1.     Cimini, L., "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing", IEEE Transactions on Communications,  Vol. 33, No. 7, (1985), 665-675.
2.     Casas, E.F. and Leung, C., "Ofdm for data communication over mobile radio fm channels. Ii. Performance improvement", IEEE Transactions on Communications,  Vol. 40, No. 4, (1992), 680-683.
3.     Van De Beek, J.-J., Edfors, O., Sandell, M., Wilson, S.K. and Borjesson, P.O., "On channel estimation in ofdm systems", in Vehicular Technology Conference, IEEE 45th, Vol. 2, (1995), 815-819.
4.     Kavehrad, M., "Quadrature amplitude modulated digital radio transmission modeling and simulation", International Journal of Engineering,  Vol. 5, No. 1&233, (1992) 33-38.
5.     Ahmed, F., Ying, F. and Li, R., "A multiband multiple-input multiple-output antenna system for long term evolution and wireless local area networks handsets", International Journal of Engineering-Transactions B: Applications,  Vol. 29, No. 8, (2016), 1087-1095.
6.     Edfors, O., Sandell, M., Van de Beek, J.-J., Wilson, S.K. and Borjesson, P.O., "Ofdm channel estimation by singular value decomposition", IEEE Transactions on Communications,  Vol. 46, No. 7, (1998), 931-939.
7.     Coleri, S., Ergen, M., Puri, A. and Bahai, A., "Channel estimation techniques based on pilot arrangement in ofdm systems", IEEE Transactions on Broadcasting,  Vol. 48, No. 3, (2002), 223-229.
8.     Chang, M.-X. and Su, Y.T., "Model-based channel estimation for ofdm signals in rayleigh fading", IEEE Transactions on Communications,  Vol. 50, No. 4, (2002), 540-544.
9.     Zhang, W., Xia, X.-G. and Ching, P.-C., "Optimal training and pilot pattern design for ofdm systems in rayleigh fading", IEEE Transactions on Broadcasting,  Vol. 52, No. 4, (2006), 505-514.
10.   Edfors, O., Sandell, M., Van De Beek, J.-J., Wilson, S.K. and Börjesson, P.O., "Analysis of dft-based channel estimators for ofdm", Wireless Personal Communications,  Vol. 12, No. 1, (2000), 55-70.
11.   Lyman, R.J. and Edmonson, W.W., "Decision-directed tracking of fading channels using linear prediction of the fading envelope", in Signals, Systems, and Computers, Conference Record of the Thirty-Third Asilomar Conference on, IEEE. Vol. 2, (1999), 1154-1158.
12.   Hoeher, P. and Tufvesson, F., "Channel estimation with superimposed pilot sequence", in Global Telecommunications Conference. GLOBECOM'99, IEEE. Vol. 4, (1999), 2162-2166.
13.   Al-Naffouri, T.Y., "An em-based forward-backward kalman filter for the estimation of time-variant channels in ofdm", IEEE Transactions on Signal Processing,  Vol. 55, No. 7, (2007), 3924-3930.
14.   Tauböck, G., Eiwen, D., Hlawatsch, F. and Rauhut, H., "Compressive estimation of doubly selective channels: Exploiting channel sparsity to improve spectral efficiency in multicarrier transmissions", IEEE Journal of Selected Topics in Signal Processing, to Appear,  (2009), 365-372.
15.   Liu, Y., Tan, Z., Hu, H., Cimini, L.J. and Li, G.Y., "Channel estimation for ofdm", IEEE Communications Surveys & Tutorials,  Vol. 16, No. 4, (2014), 1891-1908.
16.   de Temino, L.A.M.R., i Manchon, C.N., Rom, C., Sorensen, T.B. and Mogensen, P., "Iterative channel estimation with robust wiener filtering in lte downlink", in Vehicular Technology Conference,. VTC 2008-Fall. IEEE 68th, IEEE. (2008), 1-5.
17.   Udawat, A., Sharma, P. and Katiyal, S., "Optimization capabilities of lms and smi algorithm for smart antenna systems",  (2013).
18.   Liang, Y., Luo, H., Yan, C. and Huang, J., "Channel estimation using adaptive filters in mimo-ofdm systems", in Wireless Communications, Networking and Mobile Computing. WiCOM  International Conference on, IEEE. (2006), 1-4.
19.   Zhang, W., Gao, F. and Yin, Q., "Blind channel estimation for mimo-ofdm systems with low order signal constellation", IEEE Communications Letters,  Vol. 19, No. 3, (2015), 499-502.
20.   Beygi, S. and Mitra, U., "Multi-scale multi-lag channel estimation using low rank approximation for ofdm", IEEE Transactions on Signal Processing,  Vol. 63, No. 18, (2015), 4744-4755.
21.   Bakhshi, H., Ghassemian, H. and Kahrizi, M., "Bit error performance for asynchronous ds cdma systems over multipath rayleigh fading channels (research note)", International Journal of Engineering-Transactions A: Basics,  Vol. 15, No. 2, (2002), 135-143.
22.   Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. and Liu, H.H., "The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis", in Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society. Vol. 454, (1998), 903-995.
23.   Kelly, V., "New ieee 802.11 ac™ specification driven by evolving market need for higher, multi-user throughput in wireless lans", IEEE. Retrieved,  (2014), 1-11.
24.   Cho, Y.S., Kim, J., Yang, W.Y. and Kang, C.G., "Mimo-ofdm wireless communications with MATLAB", John Wiley & Sons, ISBN: 978-0-470-82562-4, (2010).
25.   Simon, H., "Adaptive filter theory", Prentice Hall,  Vol. 2, (2002), 478-481.
26.   Akaike, H., "A new look at the statistical model identification", IEEE Transactions on Automatic Control,  Vol. 19, No. 6, (1974), 716-723.
27.   Tomasoni, A., Gatti, D., Bellini, S., Ferrari, M. and Siti, M., "Efficient ofdm channel estimation via an information criterion", IEEE Transactions on Wireless Communications,  Vol. 12, No. 3, (2013), 1352-1362.
28.   Li, M. and Xi, X., "A new variable step-size nlms adaptive filtering algorithm", in Information Technology and Applications (ITA), International Conf, (2013), 236-239.