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PAPER INFO ABSTRACT

Paper history: During the last few years, a number of numerical boundary condition schemes have been used to study
Received 12 March 2017 various aspects of the sstip wall condition using théattice Boltzmannmethod. In this paper, a
Received in revised form 07May 2017 modified boundary condition method is employed to sineutdte neslip wall condition in the

Accepted 07 July 2017 presence of the body force term near the wall. These conditions are based on the idea of the bounce

back of the norequilibrium distribution. The error associated with the modified model is smaller than
those of other hindary condition models available in the literature. Additionally, various schemes to

E;gréolgrgfzmann Method simulate body forces have been studied. Based on the numerical, résultaodel demonstrating
Boundary Condition minimum error has been reported. Finally, it has been shown that thetpneseéel is capable of
Multi Relaxation Time simulatingthe effect of highnonlinearityin the heat transfer equation in the presence of a variable
Variable Thermal Conductivity thermal conductivity. This has been accomplisbgdemploying a multi relaxation time scheme to
Rayleigh-Benard Convection model a RayleigiBenard natural aovection current in a-B domain with high Rayleigh numbers.
Previous studies reported that the onset of oscillation oet®s =3 0, 0 0 0 By theimoBifiedt 6 . 0 .
boundary condition method which is used in this
45,000 and Pr=6.0rhe results show that applying scheme 3 for the current boundary condition yields
the least amount of error comparedhe semiempirical correlationThe RayleighBenard convection
problem has been revisited in the presence of a variable thermal conductivity and the simulation results
remain stable for flows with a large variation of thermal conducti\ﬂy:(OJ) and Rayleigh numbers
up to 1,000,000 and Pr=0.7.
doi: 10.58294je.2017.30.09c.14
1. INTRODUCTION modeling of fluids under the influence of boétyrces

[11]. Some examples of such flows are magneto
Conventional methods in computational fluid dynamics hydrodynamic[12] fluid flow, buoyancy driven flow
(CFD) are based on the direct discretization of [13, 14], multi-phase or mulicomponent fluid flows
conservation equationgl, 2]. These methods have a and the flow of norideal gass obeying a van der Waals
macroscopic view in dealing with fluid dynamics type of equation of sta{d5].

problemg[3, 4] andarewidely used in the simulation of Various schemes taking the bddyces into account
physical transport phenomef8, 6]. Alternatively, the may be divided into three general categories. The first
kinetic methods for CFD, such as tlattice Boltzmann approach, called Scheme 1 in this study, is based on the

method, take a microscopic approach and are derived suggestion of Lud16] in which the effect of body
from the Boltzmann equatiofi7-10]. One particular forces are considered in the collision term as
application of the lattice Boltzmann method is the
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Another method, referred to as Scheme 2 in the current
study, is based on the work of Shan and ClHeh. In
order to account for body forces, they employed

Newt on’ s second | aw and
equilibrium velocities as follows
G0 = aicr ) ¢ 20 @)
r
G(F 1) = i(F 1) ¢ ) 3)

r

It seems to be more accurate if both the collision term
and the velocity equations are modified in order to
account for external forces. This idea has been
employed by Guo et a[18] and forms what is called
Scheme 3 in this study. This method leads to the same
conservation equations reached by macroscopic
solutions. To obtain the Navi&tokes equations, Guo

et al. [18] applied the following modifications in the
force and velocity equations.

4
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G(F8) =i 1) D) ©)
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More recently, Mohamad and Kuzm(ih9] examined a
good number of formulations suggested by wuasio
investigators to assess the accuracy of different
schemes. They showed that the method of Guo et al.
[18] is noticeably more accurate than thosported by
others.

The buoyancy can be a good example for
considering body forces in an LBM simulation. To
analyze a buoyanegriven flow, the temperature profile
needs to be obtained. The thermal conductivity has been
assumedo vary with temperature in this study.adi
and Markus [20] employed Scheme 1 to study
convective heat transfer to a supercritical fluid. The
fluid thermal conductivity varied with the temperature
near the critical region. Moreecently, Varmazyar and
Bazargan[21] refined further details othe Hazi and
Markus 20 model. They employed a Chapman
Enskog analysis and showed that this model is capable
of simulating the effect of nonlinearity of the heat
transfer equation due to the variation of thermal
conductivity in the energy equation. Results with
acceptable errorwere reported by Varmazyar and
Bazargan[21] for a variety of hef conduction case
studies. In addition to Scheme 1, it is worthwhile to try
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Scheme 2 and Scheme 3 to investigate the accuracy of
convective heat transfer simulations by comparison of
errors generated in various schemes. This has been
avapmplished & dhe pseht studyf | ui d and
The force and velocity equations are modified in
order to model the effect of body forces. The boundary
conditions also need to be adjusted accordingly. The
most common set of boundary conditions used in the
LBM is the bounceback model. In this type of
boundary conditions, the particles bourzack to the
fluid nodes in opposite directions from which they strike
the wall nodes. The set of boundary conditions may be
categorized in terms of the order of magnitude of the
error generatef22]. Since the accuracy of the LBM is
of the second order inside the mesh points, the first
order boundary conditions degrade the lattice
Boltzmann methd. Many attempts have been made to
introduce higher order schemes for boundary conditions
[23-27]. The bouncéack approach satisfies the mass
conservation on the wall and assures the zero velocity
on the boundary. However, a problem appears once the
body forces are present. They may cause a jump in the
distribution function on the boundary. This has also
been addressed by Li and TdfB]. They showed that
applying the common boundsck boundary condition
leads to an erroneous velocity jump at the wall in the
presence of local forces due to liquidpor interactions.
They developed a masenserving velocifboundary
condition in oreér to eliminate the unwanted velocity
component. This matter deserves further investigations
and has been extensively discussed in the current study.
To accomplish the goals mentioned above, the
following steps are taken. First, the mathematical
models for the fluid motion and the thermal heat
transfer are presented. Then, numerical examples are
applied to show the capability of the models. Next, the
accuracy of the introduced boundary condition in the
current study as well as various schemes used for body
forces is evaluated in Poiseuille flow and Rayleigh
Benard convection case studiésnally, the effect of
variable thermal conductivity is investigated.

2. GOVERNING EQUATIONS AND MODELING

The LBM for an incompressible gas and corresponding
thermalLBM have been described below. The variation
of thermal diffusivity with temperature has been
considered. Multi relaxation time scheme has been used
to increase the stability and accuracy of the model.

2. 1. Lattice Boltzmann Method The lattice
Boltzmann equation (LBE) is directly derived from the
Boltzmann equation by discretization in both time and
phase spacf8]. The general form of theBE in the "
direction with body forces included:is
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fi(F+6 ) ©.0=W +F @

where 7, t and F are the location vector, time and
body forces respectively. The ternf; is the particle
distribution function traveling with velocitg . The
collision operator represents the rate of changefpf
due to collision of particles. The particle distribution
after propagation is relaxed towards the equilibrium
distribution {9rt) . The formulation of the Bhatnagher

GrossKrook method (BGK)[29] for collision operator
has been used in this study as

W =t1(fi (1) £24FL) ®)

The relaxation parameter has been calculated from
the kinematic viscosityy of the simulated fluid
according to the following equatidB0]:

1‘:3u+1
2

9)
The equilibrium densityf *%(rt) is calculated as

£EUF.t) =wi (T 1) 3

2
cg 20‘51 ch
where c; is the speed of sound, andi is the

corresponding equilibrium density fai*®=0. Taking
the moment of the distribution function, the density and
microscopic velocitynay be obtained as follows

rEn=af ) (1)

Ui(F,t):Lé fi (F,1)C

rin S (12)

The body force in the lattice Boltzmann model is
calculated as below

F=(r - 4)G (13)

where r,, and G are the average fluid density and

gravity acceleratiorrespectively. Using the Boussinesq
approximation, the body force (buoyancy) term in

RayleighBenard convection will e
F= - 4T T,)G (14)

where T,, and 6 are the average fluid temperature and
volumetricthermal expansion coefficientespectively.
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2. 2. Multi -relaxation Time Scheme A Multi-
Relaxation Time (MRT) scheme has been applied in
which the collision operator has the form of a
diagonalizable matrixw; . The MRT collision operator

interacts with equilibrium particle distribution functions
as below

fi(F+¢ - F.0)=

-3 viy(f [ (7.4 (F,t))+|3| 15
j

It has been claimed that the MRT scheme proposes a
higher stability and accuracy than a single relaxation
time scheme[30]. Hence, Equation(15) can be
converted to the following equation

BTG 4 6=

NVE! L(f | (F0F @)+ (16)

where fi (f,n and fjeq(F,t) are the vectors of the

moment. The mapping between the distribution function
and moment vectors can be stated by the linear
transformation shown belaw

f(F.ty =M f(F 1) (17)
The GramSchmidt orthogonalization procedure may be
employed to calculate the transformation malrixThe
general form of the transformation matrix has been
suggested by Ginzburg[31]. Consequently, the
transformation matrixM for a D2Q9 type of lattice
using an MRT model is expressed as be|34:

etl 4 ¥ 1+ 1+1 +1 4 %
€4 1 ¥ 1- 1-2+2 £ 2
4 2 2 2o 2-1 +1 4 ¥
€0 1 0 -1 0 * 1 1-1
M=f0 -2 1 2 0 ¥ 1 1-1 (18)
€0 0 +1 0 -1 * I+ 1-1
g0 0 -2 0 ® * 1+ 1-1
€0 +1 41 % 1-0 0 0 O
€0 0 0 0 0 +1 -1 % &

The relaxation matrixL used in Equation14) is a
diagonal matrix and is described as be[8&]:

L =DIAGONAL
(0.0, 1.63, 1.14,L, , 1.92,L4
22,

"1+6m’ 146 m

(19)
, 1.92

where m is the viscosity. Here,L, and Lg are
arbitrary values. The values of equilibrium of the
momentf®d arelisted below[30)]:
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, f39= 2r 3um), f§9=r 3(0w),

feq _ ! feq _ ' eq_ | feq _ |
fooi=ruy, f5'= vuy, fgh=ru'y, f77= su'y, (20)

2 .
eq _ V)2 . eq_ , 2.1 p
g0=(ruy) -(,uy),fg =rauyuy

where u', and u', are the components of microscopic

y
velocity.

2. 3. Thermal LBM with Variable Thermal
Diffusion Coefficient To simulate the energy
equation with variable thermal conductivity, the general
form of the LBE has been used. To account for
variationsof conductivity in the heat transfer equation,
the equilibrium distribution function needs to be
modified as belovj21]:

Dem
S

a
QI =W E +5 /G0 (21
G

C
whereD is the variable part of the thermal conductivity
and T is the temperature. The relaxation time)(is

related to the constant part of the diffusion coefficient
with Equation(22):

/ =i2 3 = (22)
cs 2

where g, is the constant part of thermal diffusivity. The
temperature is calculated by Equat{@3):

T=ag 1) (23

2. 4. Boundary Conditions For the Dirichlet
boundary condition in thermal LBM, it is assumed that

the flux is balanced in any directiog;(- g™ =, qeq).

The subscripti shows the direction of particles after
being reflected back to the domain. Subscyighows

the corresponding mirror direction of particles. For
nodes on the wall, the balanced flux can be written as

g =W )T, ¢ in which T, is the wall

termmperature. To simulate the zero velocity on the wall, a
bounceback type of boundary condition on the non
equilibrium part of the distribution function is
implemented. Figure 1 is presented to explain the
boundary condition used in the current study. Theeup
wall is coinciding with the saxis andis shown by the
dotted line in Figure 1. The unknown values gfff and
fg pointing outwards with respect to the wall are to be
calculated by using the after streaming valuesyof; f
fz, f3, f5, f6'

Supposing thatu, and u, are given on the wall,

Equationg24) are employed to determing f;, fsa n d
[33].
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fatfs £g £ (fo fof o Fafaf 4§,

F
fa+f; $g f= f 4 g+ruy 7y 24)
f3+f6 ‘f’7 f—_l f é’f 8+/'UX‘ %
Simplifying Equationg24) yields Equation(25):
F
fg+f, £ fo faf %—
r:0132"(2§'6)+ 5 (25

1+ Uy

From the bounckack idea applied to the non
equilibrium part of the particle distribution normal to

the boundary, it is understood th&j-f39 £, f-;9

This can convert the set of Equatiq24)) into a closed
form as stated in Equatio26).

f4:f2 —gfu),x

1 1 F, F

fo=fg =(f, f-5) =ru, —-m, -X+-2L,

7=fg 2( 1 f-3) y 3% Tt (26)
1 1 F, F

fg=fg -=(f; f-5) —=ru, = SESE &

8 6 2( 1 3) y 2 X 4 4

The advantage of the present approach in expressing
boundary conditions is that varioe®mponents of the
force term have been taken into consideration and thus
more continuity in values of the distribution function
hold at the wall.

3. RESULTS AND DISCUSSION

Two numerical case studies are presented to illustrate
the capabilities of the crent model. In the first
example, the three schemes mentioned earlier to account
for body forces, together with the modified boundary
condition have been examined in a Poiseuflaw.
Errors associated with the solutions are compahed.
the second exanm a RayleigiBenard convection
problem has been considered.

f; I f,

1, ) fs

p Figure 1. Distribution function for D2Q9 configuration on th

upper wall
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The accuracy and stability of the present simulation
have been evaluated under various conditions.
Furthermore, the effects of thermal conductivity
variations have been investigated in this case study.

3. 1. Poiseuille Flow Case Study A Poiseuille
flow driven by a forcing mechanism is an excellent
example versus which the present model may be
evaluated. Thatsi because the analytical solution for
such flow is known. The velocity profile obtained from

the NavierStokes equations for incompressible
Poiseuille flow is as follows
& o, 2
2y O
B - 5
Uy ane zﬁ; 2 (27)
¢ ¢

where u, = Fy Lyz/(4r J, Fqis the driving force andly

is the channel width. The change of error with channel
width is to be examined. The grid resolutions froys8
to Ly=64 have been tried. The Reynolds number
Re=wL y hag been kept constant. Since the kinematic
viscosity depensl onl y on wmlyneedséo p
remain constant. It means that if the channel width is
doubled,uy needs to be halved, and thus the fording
decreased eightfold. Zero velocity on the top and
bottom boundaries is implemented according to
boundarycondition explained in the previous section.
Inlet and outlet boundary conditions along the flow
direction are set to be periodic.

The error in values of the predicted velocity of this
study with respect to the results of the analytical
solution is defind by Equation(28):

err :\/éii (UN; -UE)Z/N1

where N, is the number of points, andEg, and UN;

correspond to the analytical and numerical normalized
velocity for the 1" node, respectively. Normalization is
made by means of the velocity in the center of the
channel.

Figure 2illustrates the error defined in Equati{28)
versus the channel width. Apparently, the error

(29

decreases with the increase of channel width regardless

of the numerical scheme used. The calculations
determine that the slopéd error variations with channel
width for various results shown Figure 2is about-2,

i.e., the second order. However, the results of this study

provide smaller values of error compared to data of
Chen et al.[22] by orders of magnitudes. Such

improvement in the results is not due to modifications
made to the scheme by which the body force is

modeled. It can be seen that all three schemes used in
this study lead to more or less the same results. In fact,

the schemeaised to model the body force by Chen et al.
[22] is identical to what is called Scheme 1 in this study.
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The smaller error obtaineth the current study is,
therefore, the result of more accurate modeling of the
boundary condition. Chen et dR2] have applied an
extrapolation scheme to model the boundary condition.

3. 2. Rayleigh-Benard Convection Case Study
A two-dimensional simulation of steady Rayleigh
Benard natural convection as a benchmark has been
used to evaluate the results of the present stilitlg.
schematic diagram of the flow between two parallel
plates and the macroscopic boundary conditions are
shown inFigure 3 As illustrated, the walls at= 0 and
y = Ly are heated and coolegkspectively. Other walls
are in periodic conditions. The fluid is initially at rest.
Thermodynamic equilibrium at constant temperaflye
is maintainedT, is the average of the heated and cooled
wall temperatures.

The variation of the thermal condudtiv has been
accounted for by a linear equation as expressed below
a0+D(1) Fot K1)

/‘Cp

roduct
where k(T), r and ¢, are the thermal conductivity,

density, and specific heat capacitgspectively. The
D2Q9 is used to calculate the temperature distribution
and velocity profiles.

To investigate the independence of the numerical
solution from the number of griddjfferent lattice sizes
from 31x61 to 151x301 are examined. It was found that
there is no significant change in the results with a
number of grids larger than 111x221. Simulations at
various Rayleigh numbers are performed on an 111x221
lattice with a Pranttl number of 0.71. The simulation is
started from the static conductive state, beginning with
Ra=2,000. The Nusselt numbers calculated under the

) 31 @I’ -Ii)o'ttom) (29)

steady state conditions and constant diffusion
coefficient are shown ifable 1
102 —&@— Scheme 1, current B.C.
—@)—— Scheme 2, current B.C.
——{}—— Scheme 3, current B.C.
T L\:ﬂfum o
L 10°F
5z
£ 10
O Slope -2
. \
14 L L 1 1 | IR N |
10 20 40 60 80 100
Ly
Figurel.Er r or versus channel
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u=v=0
=0 g l x=Lx
Periodic Periodic
¥
x
y=0
u=v=0

Figure 3. Distribution function for D2Q9 configuration o
the upper wall

TABLE 1. Nusselt number calculated by numerical schemes
and semiempirical correlation for a RayleigBenard
convection problem

Scheme used
to model body

Boundary condition Nusseltnumber

modeling

force Ra=20,000 Ra=30,000

Scheme 3 Firstorderbounce 3.047 3.564
back

Scheme 3 Secondorderbounce 3.210 3.565
back
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Scheme 1 Current model 3.225 3.590
Scheme 2 Current model 3.980 4.394
Scheme 3 Current model 3.238 3.635

Semi empirical correlation: 3.932 3.644

1.56%(Ra/Rady?*®

Two flows with different Rayleigh numbers are
examined. The table contains the results obtained by
different schemes for modeling body forces together
with various models for boundary condition including
the one used in this study. The results of a semi
empirical correlation, Nut56x(Ra/Rad)®® with
critical Rayleigh number (Rac) equal to 1707, are also
presented for the sake of comparison. The results show
that applying scheme 3 for the current boundary
condition yields the least amount of error compared to
the semiempirical orrelation.

The steadystate isotherms for a wide range of
Rayleigh numbers are shown iRigure 4 As shown,
when theRayleigh number is increased, the thermal
boundary layer thickness gets smaller. The rising and
falling fluid layers become narrower. ThRayleigh
number is increased to magnitudes as high as 1,000,000.
Unlike the thermal LBE modgdB4], the present model
remains numerically stable.

Ra=30000

Ra=40000

Ra=50000

Ra=750000

Ra=1000000

Figure 4. Two-dimensional simulation isotherms at steady states for wide range of Rayleigh numbers
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Shan[35] simulated the same problem with the bounce
back boundary condition. He found however that if the
simulation is started from the static conductive state
with Ra=50,000, the system will evolve into an
oscillatory state. He reported that this oscillationursc

in simulatons with Ra>30,000 with Pr=6.By the
modified boundary condition method used, the
oscillation is removed until at least Ra= 45,000 with
Pr=6.0. It shows that the current method has more
stability than the bouneback method.

In the next sp, the variation of thermal
conductivity has been taken into account. The
calculations have been carried out for various values of
the thermal conductivity coefficientg= 0.0, 0.1, 0.3
and 0.7. The Ra and Pr numbers are assumebet
1,000,000 and 0.71espectively.

The isotherms for various values gfare illustrated

in Figure 5 The corresponding Nussefttumber for

1414

Ra=500,000 and Ra=1,000,000 is calculatediahle 2
As shown inFigure 5 an increasein the thermal
conductivity coefficient makes the thermal boundary
layer narrower. The high nonlinearity in the heat
transfer equation causes the higimperature region
near the cold wall larger. Results show that the current
thermal LBM can model highlynonlinear energy
equations satisfactorily.

Acording to the results of this study, by increasing
g, the circulation of the vortex increases and this leads
a rise in the velocity of the cold and hot flgidh other
words, the cold flow travels faster towards the bottom
wall. Meanwhile, a part of the cold flow is separated by
the twin vortices and is driven upward so that a
circulatory pattern resumes. As the vortex intensity
enhances by the rise thfermal conductivity codtient,
the greater part of hot and cold fluids are mixéd
yields an increase in the Nusselt number.

5%

ADNN 0s ./

T —_— _ _

7=0.5

7=0.7

Figure 5. Two-dimensional simulation Isotherms at steady states for Ra=1,000,000 with variation afl t@mductivity

TABLE 2. Nusselt number values calculated by numerical
scheme with variation of thermal conductivity

Nusselthnumber

Ra=500,000 Ra=1,000,000
y = 0.¢ 7.454 8.704
y = 0. 7.688 9.041
y = 0. 8.161 9.687
y = 0.¢ 8.601 10.165
y = 0. 9.012 10.776

4. CONCLUSIONS

Three different schemes have been applied to simulate
the body forces in the lattice Boltzmann equation. In
scheme 1, the effect of body forces is considémeitie
collision term. Scheme 2 employ¢e wt on’ s
law to modify the macroscopic and equilibrium
velocities. Both the collision term and the velocity
equations are modified in order to account for external
forces in Scheme 3. Based on the numericalktion,

it has been shown that applying scheme 3 can more
accurately model the effect of body forces.

seco
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To decrease the error associated with the boundary
condition method, a modified rglip wall condition
model has been implemented. The body force teear

the wall has been taken into account. The results show
that the current boundary condition model is more
accurate than the available methods in the literature. By

using the method of current study, the stesiye 13.

RayleighBenard convection for a wéd range of
Rayleigh numbers has been simulated. Results show
that the present method can eliminate the oscillations

and provids more stable solutions for natural 14

convection flows with Rayleigh numbers up to 45,000.
Additionally, it has been illustrated dh the current

method is capable of simulating the effect of high
nonlinearity in the heat transfer equation. To show this,
the RayleighBenard convection problem has been
revisited in the presence of a variable thermal
conductivity. The simulation result®main stable for

flows with a large variation of thermal conductivity ( 16.

= 0.7) and Rayleigh numbers up to 1,000,000.

17.
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