Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes


1 Physics Department, Iran University of Science and Technology, Tehran, Iran

2 Physics Department, Faculty of Science, Babol Noshirvani University of Technology, Babol, Iran


Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal conductivity of single walled armchair carbon nanotube by using the mentioned interatomic potentials. We take advantage of direct non-equilibrium molecular dynamics simulation, which well resembles the experimental set up for thermal conductivity measurement. The results show that increasing the temperature increases the conductivity in contrast with diameter growth which decreases the thermal conductivity. It is important to note that both interatomic potentials describe the system behavior very well, however they lead to different conductivity values. It is found that the difference between the performance of studied potentials can be seen more obviously in longer tubes. We also observe a peak in thermal conductivity by increasing system temperature. System is deformed at T≈1000 K, when Tersoff's potential is employed for description of interactions. While its instability occurs at higher temperature (T≈1600 K), when we try to simulate system by Brenner's potential.


1.     Guo, Z.-x. and Gong, X.-g., "Molecular dynamics studies on the thermal conductivity of single-walled carbon nanotubes", Frontiers of Physics in China,  Vol. 4, No. 3, (2009), 389-392.
2.     Che, J., Cagin, T. and Goddard III, W.A., "Thermal conductivity of carbon nanotubes", Nanotechnology,  Vol. 11, No. 2, (2000), 65-73.
3.     Gohari, M.S., Ebadzadeha, T. and Rashidi, A., "An experimental study on the thermal conductivity of carbon nanotubes/oil", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 411-420.
4.     Mohammadian, M. and Fereidoon, A., "Young's modulus of single and double walled carbon nanocones using finite element method (technical note)"", International Journal of Engineering,  Vol. 27, (2014), 1467-1474.
5.     Karimi, G.R. and Shirazi, S.G., "Ballistic (n,0) carbon nanotube field effect transistors' i-v characteristics: A comparison of n=3a+1 and n=3a+2", International Journal of Engineering,  Vol. 30, (2017), 516-522.
6.     Shafiabadi, M.H. and Safaei Mehrabani, Y., "Symmetrical, low-power, and high-speed 1-bit full adder cells using 32nm carbon nanotube field-effect transistors technology", International Journal of Engineering,  Vol. 28, (2015), 1447-1454.
7.     Marconnet, A.M., Panzer, M.A. and Goodson, K.E., "Thermal conduction phenomena in carbon nanotubes and related nanostructured materials", Reviews of Modern Physics,  Vol. 85, No. 3, (2013), 1295-1304.
8.     Osman, M.A. and Srivastava, D., "Temperature dependence of the thermal conductivity of single-wall carbon nanotubes", Nanotechnology,  Vol. 12, No. 1, (2001), 21-29.
9.     Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P. and Majumdar, A., "Erratum:“Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device”[journal of heat transfer, 2003, 125 (5), pp. 881–888]", Journal of Heat Transfer,  Vol. 125, No. 6, (2003), 1209-1209.
10.   Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H. and Shimizu, T., "Measuring the thermal conductivity of a single carbon nanotube", Physical Review Letters,  Vol. 95, No. 6, (2005), 065502.
11.   Ren, C., Zhang, W., Xu, Z., Zhu, Z. and Huai, P., "Thermal conductivity of single-walled carbon nanotubes under axial stress", The Journal of Physical Chemistry C,  Vol. 114, No. 13, (2010), 5786-5791.
12.   Mehri, A., Jamaati, M. and Moradi, M., "The effect of imposed temperature difference on thermal conductivity in armchair single-walled carbon nanotube", International Journal of Modern Physics C,  Vol. 26, No. 09, (2015), 1550105-1550113.
13.   Zhang, W., Zhu, Z., Wang, F., Wang, T., Sun, L. and Wang, Z., "Chirality dependence of the thermal conductivity of carbon nanotubes", Nanotechnology,  Vol. 15, No. 8, (2004), 936-942.
14.   Savin, A.V., Hu, B. and Kivshar, Y.S., "Thermal conductivity of single-walled carbon nanotubes", Physical Review B,  Vol. 80, No. 19, (2009), 2498-2499.
15.   Lee, K.-M., Shrestha, R., Dangol, A., Chang, W.S., Coker, Z. and Choi, T.-Y., "Dependence of thermal conductivity on thickness in single-walled carbon nanotube films", Journal of Nanoscience and Nanotechnology,  Vol. 16, No. 1, (2016), 1028-1032.
16.   Zhigilei, L.V., Salaway, R.N., Wittmaack, B.K. and Volkov, A.N., Computational studies of thermal transport properties of carbon nanotube materials, in Carbon nanotubes for interconnects. (2017), Springer.129-161.
17.   Tersoff, J., "Empirical interatomic potential for carbon, with applications to amorphous carbon", Physical Review Letters,  Vol. 61, No. 25, (1988), 2879-2886.
18.   Brenner, D.W., "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films", Physical Review B,  Vol. 42, No. 15, (1990), 9458-9463.
19.   Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B. and Sinnott, S.B., "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons", Journal of Physics: Condensed Matter,  Vol. 14, No. 4, (2002), 783-792.
20.   Stuart, S.J., Tutein, A.B. and Harrison, J.A., "A reactive potential for hydrocarbons with intermolecular interactions", The Journal of Chemical Physics,  Vol. 112, No. 14, (2000), 6472-6486.
21.   Dresselhaus, M., Dresselhaus, G. and Jorio, A., "Unusual properties and structure of carbon nanotubes", Annu. Rev. Mater. Res.,  Vol. 34, (2004), 247-278.
22.   Benedict, L.X., Louie, S.G. and Cohen, M.L., "Heat capacity of carbon nanotubes", Solid State Communications,  Vol. 100, No. 3, (1996), 177-180.
23.   Wang, Z., Tang, D., Zheng, X., Zhang, W. and Zhu, Y., "Length-dependent thermal conductivity of single-wall carbon nanotubes: Prediction and measurements", Nanotechnology,  Vol. 18, No. 47, (2007), 475714-475722.
24.   Rafii-Tabar, H., "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes", Physics Reports,  Vol. 390, No. 4, (2004), 235-452.
25.   Saito, R., Dresselhaus, G. and Dresselhaus, M.S., "Physical properties of carbon nanotubes, University of Electro-Communications, Tokyo, World scientific,  (1998).
26.   Shih, L., "Mesoscopic thermophysical measurements of microstructures and carbon nanotubes, University of California, Berkeley,  (2001).
27.   Lukes, J.R. and Zhong, H., "Thermal conductivity of individual single-wall carbon nanotubes", Journal of Heat Transfer,  Vol. 129, No. 6, (2007), 705-716.
28.   Ren, C., Xu, Z., Zhang, W., Li, Y., Zhu, Z. and Huai, P., "Theoretical study of heat conduction in carbon nanotube hetero-junctions", Physics Letters A,  Vol. 374, No. 17, (2010), 1860-1865.
29.   Maruyama, S., "A molecular dynamics simulation of heat conduction in finite length swnts", Physica B: Condensed Matter,  Vol. 323, No. 1, (2002), 193-195.
30.   Maruyama, S., "A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube", Microscale Thermophysical Engineering,  Vol. 7, No. 1, (2003), 41-50.
31.   Huang, Z., Tang, Z.a., Yu, J. and Bai, S. "Temperature-dependent thermal conductivity of bent carbon nanotubes by molecular dynamics simulation", Journal of Applied Physics,  Vol. 109, No. 10, (2011), 104316-104324.
32.   Chen, H. and McGaughey, A.J., "Thermal conductivity of carbon nanotubes with defects", in ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Mar., (2011), 13-17.
33.   Mehralian, F., Beni, Y.T. and Kiani, Y., "Thermal buckling behavior of defective cnts under pre-load: A molecular dynamics study", Journal of Molecular Graphics and Modelling,  Vol. 73, No., (2017), 30-35.
34.   Azizollah Ganji, B. and Shahiri, M., "Analytical analysis of capacitive pressure sensor with clamped diaphragm (research note)", International Journal of Engineering,  Vol. 26, No., (2013), 297-302.
35.   Yamaguchi, Y. and Maruyama, S., "A molecular dynamics simulation of the fullerene formation process", Chemical Physics Letters,  Vol. 286, No. 3, (1998), 336-342.
36.   Tersoff, J., "New empirical model for the structural properties of silicon", Physical Review Letters,  Vol. 56, No. 6, (1986), 632-641.
37.   Jafari, M., Vaezzadeh, M., Mansouri, M. and Hajnorouzi, A., "Investigation of thermal conductivity of single-wall carbon nanotubes", Thermal Science,  Vol. 15, No. 2, (2011), 565-570.
38.   Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H., "Thermal conductance of an individual single-wall carbon nanotube above room temperature", Nano Letters,  Vol. 6, No. 1, (2006), 96-100.
39.   Thomas, J.A., Turney, J.E., Iutzi, R.M., Amon, C.H. and McGaughey, A.J., "Predicting phonon dispersion relations and lifetimes from the spectral energy density", Physical Review B,  Vol. 81, No. 8, (2010), 081411.
40.   Zhu, L. and Li, B., "Low thermal conductivity in ultrathin carbon nanotube (2, 1)", Scientific Reports,  Vol. 4, (2014), 150-159.
41.   Wu, M.C. and Hsu, J.-Y., "Thermal conductivity of carbon nanotubes with quantum correction via heat capacity", Nanotechnology,  Vol. 20, No. 14, (2009), 145401-145411.
42.   Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A., "Thermal conductance and thermopower of an individual single-wall carbon nanotube", Nano Letters,  Vol. 5, No. 9, (2005), 1842-1846.