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This paper develops Order Acceptance for an Integrated Production-Distribution Problem in which
Batch Delivery is implemented. The aim of this problem is to coordinate: (1) rejecting some of the
orders (2) production scheduling of the accepted orders and (3) batch delivery to maximize Total Net
Profit. A Mixed Integer Programming is proposed for the problem. In addition, a hybrid meta-heuristic
algorithm is developed. For a quick exploration around a solution, a Local search is proposed. Two
simple heuristics for initial population and a heuristic for batching are proposed. Besides, data is
generated to evaluate the performance of algorithms and compare with each other based on
comprehensive experiments.
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1. INTRODUCTION

Classical scheduling just focused on the determination
of orders schedules for production without taking into
account distribution such as [1, 2]. However, to achieve
optimal scheduling performance of a supply chain, it is
critical to integrate production and distribution [3].
Vroblefs ki et al. [4] have highlighted that one of the
main costs in distribution is the cost of transportation.
One of the most important approaches that can decrease
the distribution costs is Batch Delivery (BD). BD is
defined as the process of batching the orders and
delivering the batches using transporters [5]. Therefore,
scheduling of an integrated production and distribution
supply chain with the implementation of batch delivery
can be effective for a supply chain to achieve the
optimal goal. Chen [3] presented a survey of such
existing models. For extending the due date
management this field. Yin et al. [6] studied a BD single
machine scheduling to minimize earliness, tardiness,
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holding time, window location, and window size. Rasti-
Barzoki and Hejazi [7] considered the same problem to
minimize the weighted number of tardy jobs, due date
assignment cost and batch set up cost. In another work,
Rasti-Barzoki and Hejazi [8] studied the same problem
considering the resource allocation. Considering the
delivery cost, and investigating minimizing the sum of
weighted flow times for BD and single machine
scheduling, Mazdeh et al. [9] presented structural
properties of the problem. As it can be seen in the BD
literature, there is one important gap. For logistics
activities and BD, one of the most significant resources
in distribution stage is transporter [11, 12]. In which the
articles supposed that there are sufficient transporters
however, many of the distribution centers have not the
enough transporters to deliver the batches to customers
and a batch has to wait until to a transporter return to the
company and is being free to deliver another batch. This
gap is addressed in this paper and hereafter, this
condition is named as Round Trip Transportation.
Furthermore, the papers supposed that the orders have
same size and the capacity of the transporters is
unlimited. However, in many industries such as food
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and beverage, the customers have the different sizes of
the pallets or boxes of the products as well as a
transporter can deliver a constraint volume of the
orders. So, this paper considers a practical aspect of the
BD, that is, each order occupies different physical space
in the transporter in which the transporters have a
constraint capacity. On the other hand, in most of the
companies, there are not sufficient capacities to
production and distribution all of the orders. While,
“Accepting orders without considering their possible
costly impact on capacity can mean the firm is paying
for the privilege or profitability of accepting an order”
[13]. In addition, in the supply chain, the sales
department tends to accept orders as much as possible to
maximize revenue, while, due to available capacity and
resources, the production and distribution parties tend to
reject orders as much as possible to minimize cost. The
tradeoff among orders’ revenue and production-
distribution costs is achievable with Order Acceptance
and scheduling (OAS) approach. In the OAS approach,
all of the brought orders are not accepted, in which
some of the orders can be rejected. Slotnick [14]
presented a taxonomy and review of OAS literature.

Nobibon and Leus [15] studied OAS problem in a
single machine environment. Og et al. [16] studied OAS
in this environment with considering the orders with
release dates, due dates, deadlines, processing times,
sequence dependent setup times and revenues. Cesaret
et al. [17] solved OAS on a single machine in which the
orders have release dates and sequence dependent setup
times. Maximizing the total net revenue (TNP) of the
orders in a two-machine flow shop with implementing
OAS approach is studied by Wang et al. [18]. They
formulated the problem as mixed-integer programming
models. For this problem, Esmaeilbeigi et al. [19]
presented two mixed integer programming model. Lin
and Ying [20] proposed a simulated annealing algorithm
for OAS in a permutation flow shop problem. For this
problem, Rahman et al. [21] proposed a simple heuristic
to accept orders and a GA for scheduling the accepted
orders; and Lei and Guo [22] studied a multi-objective
approach for minimizing makespan and maximizing
TNP. A mixed integer linear programming model is
proposed in their work. For OAS, another mixed integer
programming model is presented by Emami et al. [23]
in which their scheduling environment was non-
identical parallel machines. An m parallel machine
environment is studied by Thevenin et al. [25].

As it can be seen in the literature, the entire studied
problem in OAS, investigated only production and, to
the best our knowledge, so far, any paper has not
studied OAS in distribution or integrated production and
distribution. Therefore, in addition to the mentioned
gaps, this gap is also addressed in this paper. This paper
studied the OAS problem in an integrated production
and distribution.

Furthermore, since in many industries, each
customer has his own orders and the company ships
each batch to the customer by a vehicle separately, this
paper supposes that there are multiple customers. In this
condition, a batch cannot contain the orders of two or
more customers. As well as, due to that the permutation
flow shop is one of the well-known kinds of production
environment with many practical applications in
manufacturing systems [26], this paper studied the
problem in a flow shop production line that has m
machine.

We proposed a mixed integer programming model
for the problem. Furthermore, we provide a heuristic to
form the batches. Then, utilizing the heuristic and
developing Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO), a hybrid Meta-heuristic algorithm
is proposed. In proposed hybrid algorithm, a local
search is proposed. Moreover, two heuristics are
proposed and analyzed as an initial solution of the
hybrid algorithm.

The remainder of the paper is organized as follows.
In section 2, after describing the problem in detail, a
mixed integer programming model is proposed. Section
3 presents the different parts of the developed algorithm
and section 4 introduces the data generation. Section 5
presents the investigating of the performance of the
algorithms, proposed heuristics and local search.
Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION

2. 1. Problem Statement In the considered
integrated supply chain, there is a flow shop production
line, a distribution center with a constant number of
transporters and a number of customers. A pool of the
orders arrives to the sales department. Subsequently,
due to the production and distribution cost, capacity,
tardiness cost, and revenue, a number of the orders are
accepted and the rests are rejected. The accepted orders
are scheduled on the flow shop in the production stage.
In the distribution, the processed orders are batched and
shipped directly to the customer using transporters. In
batch forming, each order occupies an individual
physical space in the transporter and the capacity of the
transporter is considered the maximum accessible space
of a batch. In each batch, only the orders of a customer
must be placed. For shipping, according to the Round
Trip Transportation, when a batch is formed, if there is
not a free transporter, the batch has to wait until a
transporter return to the company. In addition, to the
delivery cost, after delivery, if it is delivered later than
the due date, the company has to pay a tardiness cost.
The objective is to maximize Total Net Profit (TNP)
resulting from the difference between revenue of the
accepted orders and the cost of the transportation and
tardiness.
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2. 2. Problem Assumptions
—All jobs are available at time zero.
— The parameters are known and deterministic.

—Machine and transporter breakdown is not allowed.

— The buffer between the two machines is infinite.

2. 3. Notations

Index list

k The number of customers (k=1,...,K )

j The number of orders ( j=L...n, )

N
N:kzlnk Total number of orders

The batch number (b =1,..,N)
Order sequence position in schedule
p=1.., N)

v The vehicle number (v =1,..v )

Parameters list
V The total number of vehicles

Zik  The revenue of the order j of customer k

Bjk  Tardiness cost of the order j of customer k
0,  Transportation cost of the customer k

pjx Process time the order j of customer k

Sjk  Occupied space by the order j of customer k
Cap Vehicle loading capacity
t,  Transportation time of customer k

djk Due date of the order of customer k

Decision variables list
X
P 0: otherwise

1: if order j customer k is accepted

yi i
Ik 0: otherwise

c The completion time of the order in the position p on

PM " machine m

Cjk  The completion time the order of customer

1: if the order j of customer k is allocated to the batch

Ajkb b
0: otherwise
Rpk  The ready time to the batch b of the customer k

1: if the batch b of the customer k is transported by

9pk,v vehicle v

0: otherwise

1: if the batch b is allocated to customer k
0: otherwise

5 Delivery time of batch ith in the shipping sequence

which is transported by the vehicle v
Dok Delivery time of the batch b

di Delivery time of the order j of customer k
Tk Tardiness of the order j of customer k

2. 4. Mathematical Model
K N K N

K N v
Maxprofit:kZ z njkyjk—(kz ATkt ¥ X Hqubv) 1)
a1j=1 ’

=1j=1 k=1b=1v=1

1: if order j customer k place in position p in sequence

Subject To:

k=1 j=1
m K Nk
Cim :ZZ Xik,pPiici
i=l k=1 j=1
K nk
Com = Cons +k§ XicoPici
]
K nk
ComZCpum * k_lzlxjk oPii
e
S
C. = > Cog X
ik K=1j=1 pPM 7 jk, p
KU 1
> <
o K
N
bzlubksnk ;
N
bElAjk,bSyik
N

g g 1
Opy y=1
K=1b=1 2KV

Z qbk,v:1 ;
v

5\/’0:0

‘ K NV i
Syji =0yt 2 ¥ X (ZthrRk,b)qkb,v ;

k=lp=1v=1

VN
Dpk =2 X Sy i%k,v
v=li=1

702

k=1,..., K

en, @
p=1.,N (3)
m=1..,M (4)
m=1,.,M
p=2., N (5)
m=1...M
p=2., N (6)
k=1,...,K

j=1,..., N (7)
b=1.,N (8)
k=1,..., K (g)
k=1,..., K

b-1..n (10
k=1,...,K

it D
k=1,...,K

=L (12)
b=1.., N
v=1..,V (13)
k=1,...,K

b-1..n (14
v=1.\V (15)
i=1.., N
v=1..,V (16)
k=1,...,K

b-1.n 17



703 A. Noroozi et al. / IJE TRANSACTIONS B: Applications Vol. 30, No. 5, (May 2017) 700-709

. N it
dy = Z DucAyp k8
b=1 yeens
_ j=1., Nk
Ty zdy —dy K (19)
k=1,...K
Tjk =0 =Ly (20)
k=1,...K
Xik,p Y jk Ajk,b ok v <L 02} J=Lny
. p=1.,N (21)
Cjk’Rbk’gv,i’Dbk'djk Ty 20 b=1.., N
v=1.., \%

In the model, the objective function (1) maximizes the
TNP resulting from the difference between revenue of
the accepted orders and the cost of the transportation
and tardiness. In Equation (2), if an order is accepted, it
is assign to a position in the production sequence. To
guarantee that each position is assigned only to one
order, constraint (3) assigns each position to one
accepted order. Constraint (4) computes the completion
time of the first order in the sequence, on each machine.
Constraints (5) and (6) are used to compute the
completion time of the order in position pth on the
machine mth. Finally, constraint (7) computes the
completion time of the order j of customer k on the last
machine (M). In the problem, there are at most N
batches that the orders of a same customer must be
placed in each batch. To this purpose, constraint (8)
assigns each batch to one customer and constraint (9)
guarantees that the maximum number of the allocated

batch to the customer k should be at most n, batches.

Based on constraints (8) and (9), Equation (11) assigns
each accepted order to one batch and constraint (10)
guarantees that the occupied space of the orders in the
batches, is smaller than the transporter’ capacity. In the
shipping, a batch is ready, when all of the orders are
prepared for shipping. That is, a batch is transported
when the production processing of the orders in the
batch are completed. These conditions are considered in
constraint (12). After that, Equations (13) and (14)
allocate one transporter to one formed batch to ship
directly to the customers. The delivery time of the
batches in the transporting sequence ith that is
transported by transporter v, is computed by Equations
(15) and (16). Using these delivery times, Equation (17)
computes the delivery time of the batch b of customer k.
Based on Equation (17), Equation (18) computes the
delivery time of the order j of the customer k that were
placed in the batch b of customer k. Finally, the
tardiness of each order is computed by constraints (19)
and (20). Constraints (21) show the decision variables.

3.SOLUTION APPROACH

BD is strongly NP-hard [3]. As well as, Ghosh [27]
showed that order acceptance and scheduling with
lateness penalty is NP-hard [28]. Therefore, our
considered problem is NP-hard. So, employing met-
heuristic algorithms are preferable. The GA as well as
PSO has been popular in academia and the industry
mainly because of its intuitiveness, ease of
implementation, and the ability to effectively solve
highly nonlinear mixed integer optimization problems.
Therefore, in this paper, a hybrid meta-heuristic
algorithm has been developed in which GA is used to
encode the order acceptance approach and PSO is
implemented to schedule the orders and batches.

3. 1. Genetic Algorithm To encode the OAS
problem, the good ideas are presented in the literature
[17, 20, 29, 30], but, to the best our knowledge, there
are two gaps:

(1) In the search process, an order may be removed
early; however, if the order is removed later, it may
improve the TNP. In their work, to preventing of the
losing an improvement, a local search or other
approaches were not proposed. (2) The base of the most
of them is the scheduling of the accepted order.
However, accept or reject an order is usually performed
randomly. Therefore, an encoding scheme and search
mechanism must be strong to investigate a high volume
of accept or reject of an order. To this purpose, due to
the efficiency of GA to handle the zero-one problems
using the binary coding, we implement the acceptation
or rejection decisions strongly using GA. In this coding,
‘0’ represents rejecting and ‘1’ represents accepting an
order by a chromosome (Figure 1).

In GA, after defining a representation code, a set of
chromosomes are created as the initial population. To
update the generation, some of the chromosomes are
selected based on the fitness function. In the problem,
after accepting some of the orders, the fitness function is
depended on the scheduling, batching and shipping. In
our proposed algorithm, this process is performed by the
PSO algorithm. After this process, genetic operators
(crossover and mutation) generate the new
chromosomes (offspring).

3. 2. Particle Swarm Optimization PSO is an
efficient algorithm dealing with optimization problems
[31, 32]. In the developed PSO, each particle represents
a possible schedule of the accepted orders. The PSO
algorithm is inherently continuous. In this study, using
the smallest position value (SPV), each continuous
value of the PSO is transformed into the acceptable
discrete value which is the position of the order in the
schedule. This method is presented in Figure 2. In this
figure, based on SPV, the smallest particle value is
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X}s=-1.20. Therefore, the dimension number, i.e. 5, is

selected as the order that place in the first particle
position and so on.

In the proposed algorithm, after determining the
schedule of the accepted orders, a heuristic is applied to
form batches and BD scheduling.

3. 3. Heuristic Algorithm In order to batch the
orders and determining the shipping sequence of the
batches, a heuristic algorithm is presented, which is
based on the order ready time; namely rFF-H. After
determining the schedule of the accepted orders by SPV
rule, the completion time of the orders (Cjk) is equal to

the order ready time for delivery ("jk).

Cik = rjk @
Consequently, at the distribution stage, there are the
accepted orders with the ready time, due date,
transportation cost and tardiness cost that should be
appropriately formed the batches and transported to
customers. Mehta and Uzsoy [33] developed the batch
apparent tardiness cost algorithm, adapting the apparent
tardiness cost heuristic of Morton and Vepsalainen [34].

We adopt their heuristic to our problem with
modifying:

(1) Sort all of the accepted orders of each customer in
non-decreasing order of ready time and
nondecreasing order of weighted due date for
orders with the same ready times.

After determining of the orders’ schedule for batching
another heuristic (H) is used to form the batches.

(2) Heuristic H. For the customer k, the first order in the
schedule is placed in batch 1 of the customer. For the
second order, if the size of the order in the schedule is
not larger than the remaining capacity of the batch, the
order is placed in the batch. Otherwise, this batch is
closed. This process is implemented for the next order
in the schedule. For all of the customers, this process is
repeated until all of orders are placed in batches.

Subsequently, it must be determined the shipping

sequence of the batches which highly depends on its

ready time. The batch shipping sequence is determined
with the following step:

(3) Sort the batches based on the descending order of
their ready time.

Binaryvariabl 1 0 1 1 0 1 1 1 0 1 0 1
Figure 1. Representation of OA

Order number 1 2 3 4 5 6

| 180 -0.99 301 -072 -120 215

The permutation
of the SPV rule

X

5 2 4 1 6 3
Figure 2. The SPV method

(4) The first V batches are firstly shipped.

(5) For other batches, the batch with minimum ready
time is shipped with a free transporter which is
returned earliest of them and so on.

Using this approach, delivery time of the batch in the

position ith of sequence is equal to the maximum of the

ready time of this batch and returned time of the
transporter, plus transportation time.

3. 4. Initial population and updating the velocity
and position  To create the initial random solutions,
the initial positions and velocities, Equations (24) and
(25) are used as following:

Xi(J):Xmin H X max =X min 1 (24)

Vi? “Vmin +(Vmax Vmin )Xr2 (25)
However, a significant factor on the final result’s
quality of a search procedure is the initial solution. It
has already been recognized and emphasized by many
researchers in the recent years [35]. To this purpose, we
propose two heuristics for initial population. As it was
mentioned, the order completion time of an order is
equal to the ready time of the order for batching and
transporting. Therefore, a smaller completion time is led
to a smaller ready time [36]. In addition, the due date of
the orders directly influences on scheduling of the
orders and eventually, tardiness of the orders. On the
other hand, in the literature, the shortest processing time
(SPT) is proposed to minimize the completion time and
the earliest due date rule is proposed to minimize the
orders lateness (a function of due date) [36]. These rules
determine a production schedule of orders. Hence, we
must batch the orders according to the schedule. For this
purpose, we use the heuristic H. According to SPT,
EDD and H, we proposed two heuristics: SPT-H and
EDD-H. The steps of the heuristics are as following:
SPT-H: (1) schedule the orders based on SPT rule, (2)
batch the schedule orders using H. (3) ship the batches
according to the batch ready time.

EDD-H: (1) schedule the orders based on EDD rule, (2)
batch the schedule orders using H.(3) ship the according
to the batch ready time.

Two initial solutions are created using SPT-H and EDD-
H. Other solutions are generated randomly.

3. 5. Updating the velocity and position The
particles are updated according to the best positions of
each particle (Pbest) and the position of the best
particles is the global optimum (Gbest). The main part
of PSO is updating the velocity and position of the
particles using the following equations:

t+1_ t t t t t
Vij —)((WViJ- +C1'1j (Gbest—xij )+C2r2j (Pbest—xij )) (26)



705 A. Noroozi et al. / IJE TRANSACTIONS B: Applications Vol. 30, No. 5, (May 2017) 700-709

xi‘Jfl:x}j Jrvi}+1 (27)
In Equation (26), the velocity vector of each particle is
updated according to its velocity at the previous stage (

t t
vii)- Moreover, r; and r; are two random numbers

]
with a uniform distribution in range (0, 1), which are
generated independently. Values C; and C, are learning
coefficients (or acceleration coefficients) and control the
effect of Pbest and Gbest on the search process.
Besides, w indicates the inertia weight coefficient which
controls the impact of the previous velocities on the
current velocity and y is the contraction coefficient and

insures the convergence of the algorithm. After updating
the particles’ velocity, their positions ( xitj) are updated
using Equation (27).

3. 6. Local Search In this work, a local search is
performed on the PSO in each generation. If this new
solution results in a better TNP of accepted orders, the
current solution is replaced by the new solution. The
process of the local search for current solution
terminates if we observe any improvement. In each
solution after the batches forming according to the rFF-
H, the batches are scheduled based on the ready time.
For run a local search, the local search schedules the
orders’ production processing based on their batch
ready time. If this solution is better than the best
solution, it is replaced with the best solution. An
example of applying the local search is demonstrated in
Figure 3 according to the data of Table 1.

The pseudo code of the GA_PSO-LS is presented in
Figure 4. In this pseudo code, Pr is the reproduction
rate. In GA, Pr% of the population is copied to the next

Schedule of PSO

Batches and batch scheduling

{012, 022} {ou} {021}

% »%11 > %21 2%  Ready
Time 29 11 18
Applying the Local search

Oy 20y 0 >0y & {0u} {ou} {012, 02}
Figure 3. Applying Local Search

TABLE 1. Data for example of Figure 3

generation and the crossover operator is applied on (1-
Pr) % of the population to generate new solutions. Also,
Pm is the probability of the mutation. After a new
solution is generated by crossover, a random number is
generated. If the random number is less than Pm, the
mutation operator is applied.

4. DATA GENERATION

In order to evaluate the performance of the proposed
algorithms, different sizes of the test problems (small
and large) are needed. Four small datasets and five large
datasets are created. For determining the number of
machines in the flow shop, the number of customer and
the number of orders in large size of problems, five
combinations from four levels for the number of
machines i.e. M = {5, 10, 15, 20}, three levels for the

number of machines i. .e. M = {5, 10, 15, 20} three
levels for the number of machines i.e. K = {5, 10, 15}
and three levels for the number of orders i.e. n, = {3, 5,
10} are considered:

M x K x ng = {6x15x5, 10x30x10, 15x50x10,
15x75x15, 20x100x20}. Moreover, for small problems,
four combinations from M = {2, 3, 4}, K= {2, 3} and ny
= {2, 3, 4, 5} are considered: M x K x ng = {2x2x2,
3x2x3, 3x2x5, 4x3%3}.

In this paper, the data were generated from a
uniform discrete distribution defied in terms of
intervals: the revenue on [10,15], the processing time on
[1,3], the size of orders on [1,7], the tardiness cost on
[3,9] and the transportation cost [5,10]. The vehicle
capacity is considered to be 10 for all the test problems.
In order to obtain the due date, we propose some
equations as Equations (28) to (32).

Orders Ou Oz O, Oz
S ik 6 5 2 7
Pika 5 6 4 9
Pik.2 2 3 2 5

START:
Set Parameters;
Generate Initial Population;
Do{ Evaluate Fitness of each solution:
Set Parameters;
Generate Initial Population;
Do{
Form the batches and BD scheduling by rFF -H
Evaluate the TNP of New Population;
Update Pbest;
Apply Local Search;
Update velocity;
Update position;
Jwhile(stopping criterion is not met);

GA
PSO

Update The Best Chromosome and BestFitness;
Apply Reproduction (Pr %);
Apply Selection;
Apply Crossover (1- Pr %);
If (rand < Pm) then { apply mutation} ;
Jwhile(stopping criterion is not met);

END;

Figure 4. The pseudo code of the GA_PSO-LS
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B=BV xCap (28)
)
Pi
==l (29)
P, = OAx x M
N
s=0Ax2.)s (30)
k=1 j=1
S
NumTransporters = BV x o (31)

N

Using BV where is the percentage of the occupied space
of the transporter, Equation (28) computes the average
occupied space of the batch. Since, all of the orders are
not accepted, the coefficient OA is considered as the
percentage of accepted orders and using that, Equation
(29) computes the average processing time of each order
and Equation (30) presents the total sum of the order
sizes. According to the primary experiments, for all the
formed batches, BV=0.8 and OA=0.7. Equation (31)
divides the sum of the order sizes by the expected
average occupied space of each transporter.
Subsequently, NV is multiplied by the number of
expected vehicles as a coefficient to obtain the number
of transporters. Equation (32) computes the average
requirement time from the start of the orders processing
in production to the final delivery of each batch to the
customers. After these calculations above, the due dates
are determined as follows.

U~(|-><Qk ; HXQk) (33)

where L and H are lower and upper limits and are set to
be 0.8 and 1.9, respectively. Furthermore, for each
combination of large problems, four sample problems
are created and for more reliability, each problem is
executed ten times. For the proposed algorithms, the
stop criteria are as follows:

(1) Reach a specified number of generations, or (2) No
change in the TNP in the certain number of repetitions.
According to the experiments, the best parameters of the
algorithms are presented in Table 2. All the algorithms
were implemented using C# programming language
(visual studio 2013) on a computer with a 2.6GHz CPU
and a 256Mb RAM.

5. EXPERIMENTAL RESULTS

In order to verify the developed model and evaluate the
performance of the algorithms against the exact
solution, the commercial solver LINGO 11 is used to

TABLE 2. Parameter vlaues of the algorithms

Parameters value
(Xmin » Xmax) 0,1)
(Vmin , Vimax) (-3.5,3.5)
Population size of GA n
Reproduction rate [37] 20%
Probability of mutation (Pm) 0.15
w 1.2

G 0.9
Population size of PSO 2xn
Cl=C2 11

solve the small instances and the outputs are presented
in Table 3. The TNP and Time columns show the
objective function and CPU time (millisecond) of the
algorithm. In this Table, GA_PSO is the algorithm
without the heuristics and local search, GA_PSO-H is
the algorithm with the heuristics SPT-H and EDD-H as
initial population and without local search, GA_PSO-LS
is the algorithm with the local search and without
heuristics, and GA_PSO-H-LS is the algorithm with the
heuristics as the initial population and local search. As it
can be seen in Table 3, the LINGO could find the
optimal solution for the two first data sets and, due to
the complexity of the problem, it could not reach a
solution for other instances, after seven hours
computational time. For the four data sets, although the
LINGO finds the optimal solution, however, the
algorithms can find the near of the optimal solution in a
time less than the LINGO. Furthermore, for3x2x5and
4x3x3 data sets, the algorithms find the optimal or
near of the optimal solution and better than the LINGO
in a logical time.

Furthermore, we investigate the efficiency of the
heuristics in the initial population and local search on
the performance of the suggested algorithm. Because
the scale of objective functions in each instance and run
is different, the relative percent deviation (RPD) is
computed for the problems as follows.

_ Maxgo| ~Alg g

RPD (34)

MaxSOI

where, Algg, is the solution of the algorithm and

Max,, is the maximum value of the solutions. In this

measure, the lowestrrPDis selected as the best
algorithm. The results are shown in Table 4.

As it can be seen in Table 4, GA_PSO-H-LS
considerably outperform the GA_PSO, GA_PSO-H, and
GA_PSO-LS.
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TABLE 3. Comparison of algorithms in small instances

problems

2x2x2
3x2x3
3x2x5

4x3x3

LINGO GA_PSO GA_PSO-H GA_PSO-LS GA_PSO-H-LS

TNP Time TNP Time TNP Time TNP Time TNP Time
13 12000 13 <100 13 <100 13 <100 13 <100
27 619000 26 <100 26 <100 27 <100 27 <100
34 >7" 36 <1000 37 <1000 38 <1000 38 <1000
52 >7" 58 <2000 61 <2000 65 <2000 67 <2000

Furthermore, Figure 5 shows that the heuristics has a
good efficacy on GA_PSO and the proposed local
search performs a good exploration around a solution
and helps the algorithm to locate in
neighborhood. Furthermore, to verify the statistical
validity of the results, an analysis of variance (ANOVA)
is performed. The results show that there is a clear
statistically significant difference between performances
of the algorithms. The means plot and LSD intervals (at
the 95% confidence level) for the algorithms are shown
in Figure 6. They do not meet each other and there is no

overlap.

a better

We investigate the influence of the heuristics SPT-H
and EDD-H, for generating the initial solutions, on the
performance of the suggested PSO. To this purpose, we
run the large instance 1 Ox 1 O< 5 using the heuristics
as some of the individuals in the initial population and
do not use the heuristics.

TABLE 4. Average RPD for algorithms

GA_PSO- GA_PSO- GA_PSO-
Problem GA_PSO H LS H-LS
3x5x%x3 0.1798 0.1812 0.0553 0.0095
5x10 x 3 0.1458 0.1414 0.0334 0.0081
10 x10 x 5 0.1544 0.1165 0.0756 0.0182
10 x15 x5 0.1670 0.1271 0.1035 0.0509
15 x 10 x 10 0.1562 0.1204 0.0943 0.0357
Average 0.1607 0.1373 0.0724 0.0245
e GA_PSO e=fll== GA_PSO-H
GA_PSO-LS @i GA_PSO-H-LS
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Figure 5. Interaction between algorithm performance (RPD)
and size of problems

Figure 7 demonstrated that the proposed heuristics
has a considerable effect on the convergence behavior
of the algorithm and decreases the number of iterations
for achieving to an optimal or near to the optimal

solution.

6. CONCLUSION

In this paper, a new approach of the coordination in
supply chain: Order Acceptance, Batch Delivery and
Round Trip Transportation were proposed. The problem
includes the integration of the accepting the orders,
scheduling, batching, and shipping the batches in which
the numbers of transporters are limited.

RPD
o
8

95% Cl for the Mean

b

t

e

GA-PSO GA-PSO-H GA-PSO-LS GA-PSO-H-LS

Figure 6. Means plot and LSD intervals for the algorithms
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Figure 7. Convergence behavior of the algorithm with and

without using the heuristics in initial population
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Besides, the most of the previous studies that
considered only a single transporter or each transporter
exits from the company after delivery a batch, this paper
generalized the problem, the paper considered a
practical aspect of the problem in which the transporters
return to the company to transport other batches, as well
as the number of transporters, is limited.

The objective is to maximize the difference between
the revenue of accepted orders and the transportation
cost and tardiness cost of them, e.g. the company's
benefit. To this end, a mixed integer programming
model was first proposed. Due to the efficiency of GA
to handle the zero-one problems the acceptation or
rejection decisions are performed using GA. For the
scheduling, batching and shipping the batches of the
accepted orders, based on some important properties of
the problem, a PSO and a heuristic were proposed. In
addition to, this paper proposed a local search algorithm
to improve the quality of the algorithm. A sufficient set
of the test problems are generated. In the performed
analysis, the appropriate efficiency of GA-PSO-H-LS in
solving all the test problems was shown. Moreover, it
was revealed that the heuristics in initial population and
local search has a good influence on the performance of
the algorithm.

For future researches, other transportations and
returning mode for transporters can be considered. It is
also interesting to apply other heuristics or local search
in our proposed algorithms for GA-PSO and developing
other met-heuristic algorithms.
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