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A B S T R A C T  
 

 

Inventory routing problems arise as simultaneous decisions in inventory and routing optimization. In 
the present study, vendor managed inventory is proposed as a collaborative model for reverse supply 

chains and the optimization problem is modeled in terms of an inventory routing problem. The studied 

reverse supply chains include several return generators and recovery centers and one collection center. 
Since the mathematical model is an NP-hard one, finding the exact solution is time consuming and 

complex. A hybrid heuristic model combining dynamic programming, ant colony optimization and 

tabu search has been proposed to solve the problem. To confirm the performance of proposed model, 
solutions are compared with three previous researches. The comparison reveals that the method can 

significantly decrease costs and solution times. To determine the ant colony parameters, four factors 

and three levels are selected and the optimized values of parameters are defined by design of 
experiments. 

doi: 10.5829/idosi.ije.2016.29.10a.12 
 

 
1. INTRODUCTION1 
 

Reverse supply chain consists of a  series of activities 

needed to retrieve a used product from the point of use 

and either dispose or recover its value. By increasing 

level of consumption, waste and public awareness about 

environmental problems, the significance of the reverse 

supply chains has been quickly identified in academic 

and business world. Several studies have been 

conducted in different fields of these chains. However, 

the great implementation costs as stated by some supply 

chain members and references [1, 2], caused these 

chains to work slower in application than theory. 

Collaboration is an approach to reduce the primary costs 

and can be employed as a method to make these projects 

as economic ones. In the present study, a model is 

proposed to collaborate between components of parallel 

reverse chains that try to minimize total costs of chains. 

The costs involve ordering, holding, transportation, 

loading, unloading costs and penalties for not using raw 

                                                           

1*Corresponding Author’s Email: mehrjerdyazd@gmail.com  (Y. Zare 

Mehrjerdi) 

materials and disposing in non-environmentally friendly 

ways. 
 

 

2. LITERATURE REVIEW 
 

Supply Chain Collaboration (SCC) has received great 

attention in recent years as a key success factor for 

leaders [3, 4]. Reviewing the SCC literature in 2014 

shows that the most talked benefits are cost saving, 

inventory reduction, visibility increase and reduction in 

bullwhip effect [5]. Hernández et al. defined SCC as a 

way that the members of a supply chain actively work 

together and share their information, risks, knowledge 

and profits [6]. Content analysis of literature between 

1997 and 2006 have shown that the main concentration 

of previous works were on vertical collaboration 

between organizations and its suppliers or customers 

and vertical collaboration is ignored [7]. In another 

investigation, Hudnurkara et al. [5] identified 28 factors 

affecting SCC, that information sharing is the most 

highly talked one.  

Vendor Managed Inventory (VMI) as one of the 

main models for collaboration in supply chains, is 
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studied widely. Setak and Daneshfar [8] by reviewing 

the literature demonstrated that before the second half of 

90
th

 VMI was considered just as a flavoring item. By 

new and update information and communication 

technology and demand transparency between chain 

members, it becomes possible to optimize the inventory 

management for all members. So, the inventory 

decreases along with the decrease in bullwhip effect. As 

a result, the required space and various costs of chains 

will decrease. VMI results in better planning and 

modification of production and distribution, improving 

services, better availability of data and improved 

communication with customers. This system is an 

automatic integrated replenishment which results in 

lower costs and higher ability of clients for emphasizing 

on their competitive advantages [8, 9]. 

In collaborative reverse supply chains, some 

researchers paid special attention to the role of 

communication and others consider the decision support 

systems and information systems as tools for it [10]. 

One of the first papers in reverse supply chains, by 

Zhang and Sun [1], introduced cooperation and 

synchronization of reverse supply chain partners as a 

success factor for them. They defined opportunities for 

cooperation in the processes for waranny, return 

material authorization, return price rationalization and 

product returns with damaged packaging. Bai [11] 

developed a model for collaboration between customers, 

retailers and producers in order to maximize the return 

of ink cartridge. In this structure, the OEM and 3
rd

 party 

refiller collaborate. To examine the impact of this new 

structure, the results and cost functions are compared 

with the previous structure and it is found that in the 

new model returns will increase; all stakeholders 

concentrate on their own capabilities and costs will 

reduce. Lambert et al. [12] added integrated information 

system as a component to the usual framework of open-

loop reverse supply chains. This system is known as 

most important part of model which establishes a 

relationship between different components of reverse 

supply chain. 

Aras et al. [13] using a heuristic algorithm and tabu 

search (TS) solved a VRP for planning the collection of 

durable goods from dealers. They studied the case that a 

firm wants to collect cores from the dealers and return 

to the collection center (CC). These dealers charge the 

company for the collected products. Therefore, the 

returns can only be taken back if the acquisition price 

exceeds the dealer charges. A comparison between the 

report available in the literature [13] and our problem 

shows that collection is not obliged for every center and 

just takes place in special conditions.  

Le Blanc [2] developed a concept called Collector 

Managed Inventory (CMI) as a variant for VMI in 

reverse supply chain. In this system, two levels of 

inventories: can order (CO) and must order (MO) are 

introduced.  

When inventory reaches MO, collecting trucks must 

go towards the point and collect returns. CO is the 

inventory level that is used to profitably fill up the 

remaining capacity of trucks, but cannot start a 

collection. Gou et al. [14] developed the previous 

methods, proposed a new policy for inventory 

management in open-loop chains. They defined optimal 

economic parameters to minimize the total system costs. 

Joint inventory management was introduced by these 

researchers later and a method was defined for 

inventory management in central and local collection 

points. This study minimizes the average long-term 

costs of chain [15]. However, the study focus is on 

inventory and not optimizing the routes. Developing [2, 

15], a comprehensive model will be provided for 

managing inventories and routing in the current paper. 

By developing VMI, Inventory Routing Problems 

(IRP) become more significant, since the supplier must 

make three decisions simultaneously: (a) When should 

the company send the product to customers? (b) How 

many products should be sent? (c) Which is the optimal 

route [16]? Coelho et al. investigated IRP by 

considering transshipment that means goods can be 

shipped to a customer either directly from the supplier 

or from another customer. Large neighborhood search 

heuristic is used to determine the routes and network 

flow algorithm to specify the delivery quantities and 

transshipment moves [17]. In an IRP problem with 

backlogging, a meta-heuristic method is developed 

based on parallel genetic algorithms to solve MINLP 

(mixed integer nonlinear programming). The proposed 

solutions and previous methods are compared to 

confirm its performance [18]. Mirzaei et al. [19] studied 

inventory, production and distribution planning in a 

two-echelon supply chain with one producer and several 

retailers in a multi-period, multi-product case. A two-

step algorithm including Particle Swarm Optimization 

(PSO) and linear programming is proposed to solve the 

problem. 

A recent study for waste collection problem from 

sensor equipped containers, involves decisions about 

routing and container selection. A simple heuristic 

algorithm is proposed by defining three different levels 

of waste at containers by "mustgo", "maygo" and 

"nogo". These levels are defined by the expected days 

left before a container fulls [20]. The model and 

solution is similar to our problem. It has just one 

recovery center that can be in a route more than once, 

wastes can be deliverd any time and it doesn't have any 

limitations for accepting. In our study, several 

manufacturers and recovery centers and one CC are 

supposed. Loading and unloading occur in several 

places and consumption and production rates are not 

deterministic. Based on the assumptions, problem 

becomes more complicated and the previous methods 

might not be practical. The relevant literature of this 

paper are shown in Table 1. 
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TABLE 1. The relevant literature 

Chain members Solution procedure Main problem 
Collection conditions Ref no. 

Customer G R CC LCP DP ACO TS Heuristic Mathematic collection VRP Inventory 

 * * *       *   -- [1] 

          *   -- [12] 

   * *    *   * * Time to full [20] 

 *  *     *  * *  Profit [13] 

 * *       *  * * Inventory [2] 

   * *     * *  * Inventory [14, 15] 

 * * *  * * * *  * * * Inventory paper 

 

 

3. PROBLEM DEFINITION 
 

As described earlier, IRP in reverse supply chain is 

more complex because of aspects such as non-

deterministic return production and consumption. We 

focus on open-loop reverse supply chains, which 

include the following members and echelons: 

 Return Generators (G): Places where returns are 

produced, gathered or held. They can be wholesalers or 

retailers who gather customers' returns or manufacturers 

who hold their scraps to send for recovery centers. If 

collection does not take place, scraps will be disposed. 

 Recovery centers (R): Various options are 

introduced for returns in a reverse supply chain that 

differ according to product features, its life cycle phase 

and other characteristics. These options may be reuse, 

resale, repair, remanufacture, refurbish and recycle. In 

order to be applicable for all options, we use the word 

"recovery" that is more common and can be each of 

these options. 

 CC as an intermediate center is responsible for 

collecting, holding and transferring returns. 

In the non-collaborative case, each chain works in 

isolation and plans its own collection and delivery of 

returns that will increase total costs. Our problem is to 

plan for return collection and delivery, in the case that 

all members collaborate. Multiple Gs, Rs and one CC 

are assumed. CC has information about members' 

inventory levels and plans the vehicle routes to decrease 

whole supply chain costs. CC also can hold returns for 

some time when there is no place in any Rs to accept 

them. 

One of the early collaboration types in reverse supply 

chains is using central collection point for sorting, 

reprocessing and transferring returns as shown by 

researchers [15, 21]. Advantages such as better 

inventory turnover, information visibility, finding more 

quality problems, decreasing inventory levels and 

related costs are demonstrated for these centers [22]. 

 

4. THE PROPOSED MODEL 
 
4. 1. The Collaborative Process            The proposed 

model is designed in accordance with VMI in forward 

supply chains. CC has the information about inventory 

levels of Rs and Gs and plans for collecting and 

transferring returns through the chains. These plans 

must minimize the whole supply chain costs for multi-

period case. A route will start only when a G reaches its 

MP or a R reaches its order point (OP). The following 

summarizes the main assumptions of this paper: 

The model is a multi-period one. 

Number of Gs and Rs is known and fixed. 

Holding, shortage, transportation and disposal penalty 

costs are known for each location. 

Holding cost depends on mean inventory level. 

Stock-out cost depends on its quantity and time. 

Gs' Returns cannot be collected before reaching CP. 

The routes start and finish must be at CC. 

Trucks and their capacities are similar. 

Lead time is zero, returns will be delivered by Rs at the 

same period that are collected. 

When a G's inventory exceeds MP, it cannot hold 

returns more than CP and will dispose them. 

CP is zero for CC, means that when there is some 

inventory in CC, it can be inserted in a route. MP is 

unlimited for CC because it can warehouse. 

The inventory capacity of Rs is limited. Rs just when 

reach their OP, can deliver returns. 

MP is unlimited for CC.  
 

 

4. 2. Model Formulation         The notations for 

mathematical formulation are: 

Time period (t = 1,2,...,T) t 

Number of Gs and Rs n,m 

Nodes (1,2,...,n for Gs, n+1 for CC and n+2,...,n+m+1 

for Rs) 
i,j 

Stops at each route (k=0 for start at CC) K 
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Parameters: 

Production rate in Gi at period t t

iSP  

Return demand rate at Ri at period t t

iD  

The economic order quantity for Ri iEO  

Reorder point for Ri iE  

Distance between i and j ijd  

Returns holding cost at G, C and R RhChGh CCC ,,  

Loading and unloading cost UL CC ,  

Transportation cost per kilometer mC  

Route / truck start cost SC  

Stock-out cost for each Ri SOC  

Penalty cost for disposal PC  

Truck capacity (assumed the same for all) TP 

Variables: 

Amount of returns collected at Gi in period t t

GiQ  

Amount of returns delivered to Ri in period t 
t

RiQ  

Amount of returns at CC in period t 
t

CQ  

Stock-out amount at Ri at period t 
t

iSO  

If Gi inventory reaches MP at t = 1  else = 0 
t

ix  

If Gi inventory reaches CP at t = 1  else = 0 
t

iy  

If Rireaches it OP at period t = 1 else =0 
t

iO  

Remain truck capacity at kth stop of period t t

KRTP  

Decision variables: 

Number of trucks start their route at period t 
tf  

Truck goes from i to j at period t = 1 
t

ijZ  

Scraps picked from i at period t = 1    i=1,…n 
t

ib
 

Returns loaded at Gi in kth stop of period t 
t

ikQL
 

Scraps unloaded in i at period t = 1  ,i=n,…n+m 
t

ia
 

Returns unloaded in Ri at kth stop of period t 
t

ikQU
 

The model objective is to collect most possible returns 

from Gs while minimizing costs. The objective function 

(1) consists of holding cost for returns at Gs, Rs and 

CC, transportation, stock-out for Rs, loading and 

unloading, start for each tour, and penalty for not-

covering Gs. 
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(1) 

Consriants are defined in three main categories: 
 

A) Load/Unload Quantity 

Costraints (2) and (3) impose maximal for QL; that is 

the minimum of remained truck capcaity and returns 

Inventory level at Gs. Also (4) shows that quantity of 

returns loaded at G must be greater than the CP of that 

center. For the CC, this amount can not exceed the 

quantity of returns collected at that center (5). Equation 

(6) shows that the unloaded amount at each stop must be 

less than the collected amount in the truck before that 

stop. The two next consriants (7) and (8) assure that the 

unload quantity at Rs at each stop is less than the 

center's Economic Order Quantity (EOQ) and more than 

its OP. These equations are used to avoid stock-out at 

Rs, if the collected amount is less than their EOQ. 

Constraint (9) shows that sum of the loaded amounts at 

each period is equal to sum of the unloaded amounts at 

that period. 
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B) Transportation between centers 

For the routes between centers we limit the model to 

start and finish at CC (10). Equations (11) and (12) are 

subtour elimination and continuing the tour from each 

point between start an finish.  
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C) Feasibility of load/unload 

If G reaches its MP, it must be picked up (13) and if 

reaches its CP, it can be picked up (14). Also when R 

reaches its OP, returns can be unloaded at that center 

(15). Maximum loads at each period is equal to the 

number of Gs and CC and maximum of unloads is 

number of Rs and CC as shown in (16), (17). 
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D) Returns amounts 

The returns inventoryof a G at period t is equal to sum 

of collected returns at t-1 and t minus the amount loaded 

from that point (18). The R inventory level of returns at 

period t equals to sum of collected and delivered returns 

at this center before t minus the amount used at this 

period (19). The inventry level at CC is calculated by 

(20) that equals to its last period inventory plus the 

difference between loads and unloads at this period. The 

truck starts from CC at k=0 stop and moves to other 

centers in its route. The remained truck capacity at each 

stop is shown by (21). Equation (22) is the capacity at 

the start. 
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5. SOLUTION PROCEDURE 
 

The above mathematical model is MINLP. Since these 

problems and especially IRP are known to be NP-hard 

[23], it is very difficult to obtain high quality solutions 

in a reasonable amount of time by usual solvers. 

Typically these problems are solved by heuristic and 

meta-heuristic methods [16]. A hybrid heuristic 

algorithm is developed in the present study. The 

developed algorithm is composed of dynamic 

programming (DP), ant colony optimization (ACO) and 

TS. DP has been known as one of the most general 

optimization approaches, since it can solve a broad class 

of problems, including VRP [24, 25]. ACO is one of the 

meta-heuristic techniques used for probelms such as 

VRP and IRP at preveious works for example by Tan et 

al. [26]. ACO is based on the behaviour of a group of 

ants in finding food. First ants search and move 

randomly and deposit pheromones. Other ants follow 

the pheromones and traveling the same routes, 

reinforces it. In selecting a route, the one with more 

pheromone more probably will be selected. To help the 

ants select the best routes, a TS method is developed in 

current paper. 

In the proposed DP, steps are time periods that are 

shown by n1, n2, .... In each step, some states are defined 

and shown by Si. In the suggested method, we use 

5(m+n+1) state matrix for each step, that n shows the 

number of Gs and m is the number of Rs. This matrix 

and its members are shown in Figure 1. Any decision 

changes the current state to next one. Two decisions are 

available in each step:  

a) No tour between centers. Costs include holding of 

returns at Gs, Rs and CC, stock-out for Rs and penalty 

for landfill by Gs (if inventory exceeds MP). 

b) Select a route and transfer returns between 

centers. Differnt routes can be selected, and each one 

impacts the next iteration decisions and costs. For this 

decision, ACO with the following characteristics is used 

in the model. 

Each decision is shown by a matix D=[d1 d2 ... dn+m+2], 

that implies how a state matrix changes to another. di 

shows the inventory change at center i, that pick up is 

negative and deliver is positive. Other symbols are: 

ir  Production / consumption amount at center i 

id  Pick-up (-)/deliver (+) returns at center i 

iMP  Must Pick point for center i 

iCP  Can Pick point for center i 

iOP  Order Point for center i 

iLL  The truck load before center i 

iL  Pick up/deliver amount at center i 

ijd  Distance between centers i and j 

,.)(rSi
  Row r of the new state (after decision D) 

A transition function will change the current state (S) to 

next state (S
'
) by decision D, that is shown as S

'
=F(S,D). 

The function for the first row of state matrix is as (25). 

Other rows will be calculated by this row amount. 

iiii rdSS  ,.)1(,.)1(  (25) 

The objective function (total cost) for state S and 

decision D is shown by Z(S,D) and will be calculated by 

forward generation. For each iteration, objective 

function is calculated as the total costs of current 

iteration and reaching this iteration. As stated before, 

the tour selection for second decision (b) is taken by a 

hybrid algorithm of ACO and TS, with the following 

steps. 

Step 1. Ants population is the number of trucks at 

CC at the first iteration. They must select the best route 

for picking up and delivering returns. 

At each iteration, the pheromone amount for different 

centers from the current center can be calculated, that 

for a G Equation (26) and for R Equation (27) are used.  
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α and β are coefficients for the importance of landfill 

penalty for Gs (pickup when reach MP) and stock-out 

for the Rs, respectively These coefficients that are 

calculated by costs (28), give priorities to the more 

important routes. 
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Step 2. The pheromone amount between two centers at 

time t+1 is calculated by Equation (29), that 1-ρ stands 

for evaporation rate and the amount of pheromones 

made by k
th

 ant between centers i and j is k

ijt . 

(29) 
k

ijijij TtTtT  )()1(   

k

ijT  calculation is different in different ACO algorithms. 

We used Equation (30) when truck goes from I to j, that 

is derived from ant number method and Q is constant. 

ijii

k

ij
dLLL

Q
ttT


 )1,(

  
(30) 

TS concepts are used to help ants in finding a good 

route. This technique's performance at VRP has been 

evidenced in prior literature [27]. Tabu list is a set of 

rules to ban some solutions from appearing in the 

answers. According to their memory structure, the tabu 

lists are categorized into short, intermediate and long-

terms [28]. Tabui is the tabu list for current iteration. 

Long term and short term tabu lists are used here. In 

long-term tabu list, the centers that vehicle passed 

before this iteration and at this iteration are listed and 

must not be selected any more until the tour finishes. 

Short-term tabu includes the centers that truck can not 

go from the current center and lasts only one iteration. 

For example, if a truck does not have remaining 

capacity, all Gs are at short-term list. If truck delivers a 

part of its returns, at the next iteration some Gs can be 

removed from this list. A truck starts its tour at CC and 

can pick up some returns. If sum of amounts that must 

be picked from Gs is more than sum of deliveries at Rs, 

the amount of loads to pick up at CC will be zero. 

Otherwise, it is calculated by Equation (31). 

   iiCCCC LUTPIL ,,min  (31) 

Step 3. When a truck moves into another center, its load 

will be updated and the next center (j) will be 

determined according to remained pheromone of each 

route based on Equation (32). b is a constant that stands 

for the importance ratio between distance and 

pheromone amount and considered 1 in our model.  


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j
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(32) 

q is a random number between zero and one and q0 is a 

constant that helps in finding a random route with 

distribution function shown in Equation (33). 
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
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(33) 

Step 4. After each answer, the pheromone amount for 

routes are updated, short-term and long-term tabu lists 

are deleted and fitness function (total cost) is calculated.  

Step 5. For the next ants (trucks), the remained 

pheromone at each route is considered as the initial 

pheromone amount and the previous steps are repeated. 

Each answer is shown as a two row matrix. The first 

row shows the number of centers that returns are picked 

up or delivered. CC is the first and last cell of this row, 

meaning that start and finish of a tour is at CC. The 

second row stands for the amount of pick up (-) or 

deliver (+) at each center. The general answer matrix 

and a sample answer are shown in Figure 2. This answer 

means that 50 units of returns are picked up at CC, then 

truck goes to center 1, picks up 200 units, goes to center 

2 picks up 250 units and delivers 200 units at center 5 

and 300 units at center 7 and comes back to CC. 

Step 6. The minimum amount of fitness function is 

selected as f
best

 and its route as r
best

. 

Step 7. To increase the number of anwers and 

improve them, differnet permutations of the centers 

between start and finish are created. If fitness function 

of one answer is better than f
best

, it replaces r
best

. The 

second row of the answer matrix, the number of 

columns, minimum and maximum of each cell are 

shown by hi, nn, LLLi and ULLi, respectively. By these 

symbols, the permutations with the following situations 

are acceptable: 

jh
j

i i  
0

1
  (34) 

0
1

 

n

i ih  (35) 

iii ULLhLLL   (36) 

Equation (34) shows that the sum of pick up at each 

point must be more than or qual to deliveries. 

 
Figure 1. The state matrix 
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Figure 2. The answer matrix 

 

 

Also the total amount of picked up returns are delivered 

to ceters (35). The upper and lower bound of xi are 

shown in (36). For Gs, upper level is the inventory of 

center and lower level is CP. for Rs, upper level is EOQ 

and lower level is OP. 

Step 8. The best route and fitness function are 

shown by r
best

 and f
best

. By finding these values, the best 

solution (di) will be achieved. Answer (D) obtained 

from ACO is used to calculate the next state by (25) and 

S', D and objective function. For each iteration, total 

cost is the result of summing this iteration fitness 

function and previous steps'. Finaly 2
n
 costs are 

calculated (n: number of periods). Optimal route is the 

minimum cost.  

 

 

6. NEUMERICAL EXAMPLE 
 

Since the model is a MINLP with a lot of integer, binary 

and continuous variables, solving with commercial 

solvers to compare with our algorithm is not possible. 

Therefore, the solved problems in previous cases [16, 

17, 19, 23, 29] are evaluated against the current 

algorithm. In searching for solved IRPs, it is shown that 

the type of usual IRPs are differnt from our problem. 

The literature cases usually took place in forward supply 

chains and contained one producer and some customers. 

But in current problem there is another type of center 

(CC), that is not producer and not customer. Some other 

differences are at Table 2. The distinctions also show 

the model innovation beside previous IRPs. 

With the differences, in order to compare the current 

solution by previous ones, we have to change some 

assumptions and relax the model. Therefore, CC is 

deleted, just one G is considered as a producer since it 

makes returns. By these assumptions, the algorithm is 

coded and solved via Matlab 2013. 
 

 

TABLE 2. Characteristics of studied problems 

Characteristic Previous cases Current problem 

Centers' kind Producer, customer 
Producer, customer, 

collection center 

Number of Producers Single Multiple 

Start and finish of each 

tour 
One point (producer) One point (CC) 

Inventory policy OU2/ML3 EOQ 

Pick up time at Gs No matter CP and MP points 

Deliver time at Rs No matter Order point 

                                                           
2Order-Up-To Level 
3Maximum Level 

Also Rs are considered as customers. Production and 

consumption rates, initial inventory levels, distance 

between centers, holding and transportation costs are 

known in the solved examples. Furthermore, to validate 

our model by the inventory policies of literature, EOQ is 

considered as maximum inventory, production rate as 

OP and truck capacity as MP point. 

The instances of Archetti et al. are driven from 

coelho site
4
, solved for at least 50 times and the time 

and objective functions are calculated. Table 3 shows 

some of the comparisons between instances for high 

holding costs, solved by the proposed algorithm and 

three previous researches. The first column reports the 

instance code, as suggested by Archetti et al. [23]. The 

tables show about 35% decrease in the average 

objective function (total cost) and 100% decrease in 

average solving time. The objective function in these 

three references contains holding cost at different 

centers and transportation between them. In some works 

[23] it contains also penalty for infeasibility of routes, 

and Coelho's [30] objective function added 

transshipment cost. Our objective function also consists 

of the first two costs plus penalty for not covering Gs, 

stock out, loading, unloading and starts costs. To be 

comparable, the loading, unloading and start costs are 

omitted.  

Despite the differences between solved instances 

and our problem in reverse supply chain, the high 

decrease in time and objective function prove the 

algorithm's capability to solve similar problems. To 

solve our problem in reverse supply chain, we consider 

a small problem by three return generators (G), three 

recovery centers (R) and one CC as described in Table 

4.  

The problem is solved for about 300 times and the 

results show that permutation decreases objective 

function just about 0.04%, but increase the solution time 

about 240%. 

 

 
TABLE 3. Comparing answers for high holding costs 

Instance 
code 

Archetti [23] Coelho [30] Archetti [29] 
Our 

algorithm 

Z* time Z* time Z* time Z* time 

abs1n10h6 8480 86 8480 8 8870 11 5093 1 

abs1n30h6 22838 1922 22837 73 23184 4947 20895 3 

abs2n20h6 14477 392 14477 24 14647 354 10670 1.9 

abs4n20h6 14390 398 14390 36 14539 327 10625 1.9 

abs1n20h3 6859 44 6859 .01 7353 10 4505 0.2 

abs1n30h3 12066 234 12066 2 12635 164 8162 0.2 

abs2n20h3 7087 77 7087 2 7385 8 4373 0.1 

abs4n20h3 6952 88 6952 14 7050 4 4095 0.3 

                                                           
4http://www.leandro-coelho.com/instances/inventory-routing/ 
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TABLE 4. Characteristics of centers in our problem 

 

 

By this result, removing permutation from 

algorithm, may optimize the algorithm's performance. 

In order to define the optimum parameters of ACO 

in our algorithm, design of experiments is used. Four 

factors: number of initial solutions, evaporation rate, Q 

in the formula of pheromonesamount (step 2) and q0 in 

the formula of next point (step 3) and three levels for 

each are assumed. Then about 10 combination of these 

facors are made, each model run for twenty times and 

average total cost and solution time is calculated. 

Results of the analysis by minitab 13 illustrate that the 

best combination of parameters for ACO is as: 

ant number =10      ρ = 0.5     Q = 10      q0 = 0.9 

To describe the robustness of our algorithm, Equation 

(37) is used as suggested by [12]. 

(37)  OO OORobustness   ,  

In this formulation O  is the average and O  is the 

variance of objective function in different runs. A 

smaller range illustrates more robustness of the 

algorithm. Results of different trial combinations 

demonstrate that the selected one is the third according 

to its robustness and is equal to (52122530, 52124546). 
 

 

7. ANALYSIS AND DISCUSSION 
 

Inventory-Routing Problems are of the important 

probelms, especially by gaining acceptance of VMI in 

supply chains. However, these type of problems are 

seldom studied in reverse supply chains. Since the 

members and relationships between them are different 

in reverse supply chains, the probems and solving differ 

in these chains. In the current paper, firstly a method to 

collaborate beween different members of reverse supply 

chains is developed and modeled mathematically. Since 

the IRP model is categorized as NP-hard, a hybrid 

huristic model is proposed to solve the model by a 

combination of DP, ACO and TS. To evaluate the 

model, firstly instances from earlier papers are solved 

and their time ad cost are determined. After assuring the 

performance of model by decreasing costs, the model is 

used for a small problem in a reverse supply chain and 

the best combination of factors for ACO part of 

algorithm is identified. 

The results suggest that IRP in reverse supply chains 

could be extended to consider other variations of 

collaboration by future researhers. For example by new 

inventory policies for different members, removing CC, 

adding more CCs and for multiple products and 

recovery policies. Since uncertainty is a characteristic of 

reverse supply chains, considering it in future studies 

can be a wide research area. 
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 هچكيد
 

 
(، تزکیجی اس هسیزیبثی ٍسبیل ًقلیِ ٍ هذیزیت هَجَدی ثزای ثْیٌِ ًوَدى ّوشهبى ایي IRPهَجَدی ) -هسبئل هسیزیبثی

ّبی تأهیي هؼکَس، اس رٍضی هؼبدل  ای اس سًجیزُ هسبئل است. در هقبلِ پیص رٍ ثِ هٌظَر هذلسبسی هطبرکت در ضجکِ

ّبی تأهیي سٌتی استفبدُ ضذُ است. ًتیجِ هذلسبسی ریبضی ایي  ( در سًجیزVMIُدی تَسط فزٍضٌذُ )هذیزیت هَجَ

ّبی تأهیي هؼکَس هَرد هطبلؼِ، چٌذیي تَلیذکٌٌذُ کبلای ثبسگطتی،  ثَدُ است. در سًجیزُ IRPای اس ًَع  هطبرکت، هسئلِ

ّبی  آٍری ایي کبلاّب ٍجَد دارًذ. ثِ دلیل پیچیذگی سیبد هذل، حل آى اس رٍش کٌٌذُ ٍ یک هزکش جوغ چٌذیي ثبسیبثی

ریشی پَیب، الگَریتن  تزکیت ثزًبهِ گیز ٍ ثزخی اٍقبت غیزهوکي است. لذا یک رٍش اثتکبری اس هؼوَل پیچیذُ، ٍقت

هَرچگبى ٍ جستجَی هوٌَع ثزای حل هذل پیطٌْبد ضذُ است. ثِ هٌظَر اطویٌبى اس ػولکزد رٍش پیطٌْبدی، هسبئل 

دّذ کِ  ّب ًطبى هی حل ًوًَِ طزح ضذُ در هطبلؼبت پیطیي ثب استفبدُ اس ایي الگَریتن ًیش حل ضذ. هقبیسِ ًتبیج ایي راُ

ّب ٍ سهبى حل داضتِ است. ثِ هٌظَر تؼییي هقذار هتغیزّبی هختلف  ای ثز کبّص ّشیٌِ تأثیز قبثل هلاحظِ رٍش پیطٌْبدی

الگَریتن ثب استفبدُ اس طزاحی آسهبیطبت، چْبر ػبهل ٍ سِ سطح ثزای ّز کذام اًتخبة گزدیذُ ٍ هقذار ثْیٌِ پبراهتزّبی 

 ست.الگَریتن هَرچگبى ثزای حل ایٌگًَِ هسبئل تؼزیف ضذُ ا
doi: 10.5829/idosi.ije.2016.29.10a.12 

 

 


