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A B S T R A C T  
 

 

The facility location problem is a strategic decision-making for a supply chain which determines the 

profitability and sustainability of its components. This paper deals with a scenario where two supply 

chains, consisting of a producer, a number of distribution centers and several retailers provided with 
similar products, compete to maintain their market shares by opening new distribution centers because 

of increasing demand. The competition problem is formulated as a non-linear integer bi-level 

mathematical model, where the upper level represents the decisions of the leader producer and the 
lower level administrates the decisions of the follower producer. It has been shown that even in small-

scale problems, bi-level mathematical programming problems are strongly NP-hard, so an adapted bi-

level ant colony algorithm with inter-level information sharing is developed to solve the problem.To 
evaluate the performance of the developed ant colony algorithm, the upper bound of the competitive 

facility location problem is determined by solving the upper-level problem as an integer linear 

programming model without considering the follower’s decision. Comparing the computational results 
of the developed ant colony algorithm with those of the determined upper bounds shows the 

satisfactory capability of the proposed approach for solving even medium- and large-scale problems. 

doi: 10.5829/idosi.ije.2016.29.08b.13
 

 
1. INTRODUCTION1 

 

The facility location problem is a branch of operation 

research with great significance from both practical and 

combinatorial optimization perspectives. Facility 

location is an effective tool which easily facilitates its 

goal by reducing transportation costs and accelerating 

the rate of return of investment [1]. The classical 

location problem is concerned with determination of the 

location of a project to optimize the allocation of 

facilities to customers. Competitive facility location is a 

special case of the location problem where at least two 

decision-makers, simultaneously or consequently, start 

to seek maximum market shares to optimize their 

objective functions by opening new distribution centers, 

but not before giving due consideration to the strength 

of the competitors. The special case where only two 

competitors attempt to open their distribution centers is 

                                                           

1*Corresponding Author’s Email: babak.yaganeh@uok.ac.ir (B. 

Yousefi Yegane) 

known in the literature as the bi-level competitive 

facility location (CFL) problem. The CFL problem was 

first introduced by Hotelling [2] and then developed 

extensively by other researchers. Tietz [3] developed the 

Hotelling’s model by discussing the location of multiple 

facilities. Huff [4] studied the CFL problem obtaining 

the highest market share among competitors by defining 

a function for the attractiveness of facilities from the 

viewpoint of customers by considering parameters such 

as quality and distance. Hakimi [5] studied the 

competitive facility location problem where the leader 

first opens a certain number of facilities and the 

follower responds by opening its own facilities, and 

each customer satisfies his own demands from the 

nearest facility available in the market. Labbé and 

Hakimi [6] studied the competitive facility location 

problem at multiple markets in the context of cournot 

competition. Pal and Sarkar [7] developed cournot 

competition by allowing the location of multiple 

facilities and assuming that each producer can supply all 

markets. Aboolian et al. [8] studied competitive facility 
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location with regard to the number of facilities, their 

locations and their types (product variety and capacity 

of the facility); they formulated the problem as a 

nonlinear integer programming model and obtained its 

solutions through two heuristic algorithms, the greedy 

algorithm and the steepest descent algorithm. Beresnev 

[9] followed a new approach by formulating the CFL 

problem as a bi-level programming model, and then 

presented a new method for determining the upper 

bound of the problem; in this model, both competitors 

were seeking to maximize their profits. 

Saidani et al. [10] studied the facility location 

problem by considering the responses of competitors in 

the market and used Huff’s attractiveness function to 

determine the market share. Ashtiani et al. [11] used 

robust programming to determine the optimum solution 

of the competitive facility location problem with the aim 

of maximizing market share for competitors, under 

assumption of an unknown number of follower centers. 

Beresnev [12] continued his research on the competitive 

facility location problem by developing a branch and 

bound method to determine an optimum solution. 

Rahmani and MirHassani [13] studied the competitive 

facility location problem as a bi-level mathematical 

programming model; using Lagrangian relaxation 

method they obtained acceptable solutions for their 

mathematical model; their results indicated that the 

proposed method was highly efficient. MirHassani et al. 

[14] used a modified particle swarm optimization 

algorithm to solve the competitive location problem and 

compared their results with the upper bound obtained 

from solving a mathematical model; based on the 

conducted analysis, their results showed the capability 

of the proposed meta-heuristic algorithm of obtaining 

high-quality solutions. Although the competitive 

location problem has been the subject of much research, 

analyzing the problem as a bi-level mathematical 

programming model is a somewhat neglected approach 

(Beresnev [12]), and few studies on this subject include 

the studies of Beresnev ([9, 12, 15, 16]), Rahmani and 

MirHassani [13] and MirHassani et al. [14]. 

Increase in consumption of foodstuff such as dairy 

products and prepared or semi-prepared food and even 

introduction of a new product by one or several 

producers can affect the market balance. Thus, when the 

level of production or the capacity of existing 

distribution centers cannot meet the market’s demand, 

each producer, depending on its strength, attempts to 

survive in the competitive market by increasing the 

value of production or opening new distribution centers; 

on the other hand, in markets of products such as food 

and medicine, each customer may satisfy his own 

demand with more than one producer or distributer 

center, and each producer seeks to gain the maximum 

market share in order to keep its customers and increase 

their satisfaction level, supplying the demands of one or 

all of its customers through more than one distribution 

center; as these assumptions are not considered in 

studies similar to this research, our developed 

mathematical model can be used by numerous industries 

such as dairy manufacturers, pharmaceutical producers 

and cosmetic and healthcare industries. 

The main objective of the current study is to develop 

a mathematical model for the competitive facility 

location problem with the highest degree of adaptability 

to real-world applications; for example, each producer 

can spend a limited budget on expanding the 

distribution centers or production sites, which has not 

been considered by many researchers up to now. As a 

results of budget limitation, the producer can open only 

a few distribution centers among the set of candidate 

locations. In distribution of commodities such as dairy 

products, supplying a customer with only one 

distribution center may not be economically justified, so 

in this paper, we assume that each distribution center 

can cover more than one customer and each customer 

can satisfy his demand with more than one distribution 

center. 

In view of the above points, the bi-level competitive 

facility location problem presented by Beresnev [12] 

will be studied and developed as a bi-level mathematical 

programming model through applying the following 

changes: 

1. Facility location will be subject to budget constraint; 

2. The two competitors have an initial market share and 

try to keep it by creating new centers; 

3. New distribution centers only cover customers that 

are being covered by the current distribution centers of 

each producer (the new distribution centers of the leader 

are only used to supply the customers that are covered 

by the existing distribution centers of the leader, and 

vice versa); 

4. Each customer can satisfy his demand from more 

than one distribution center of each producer (only the 

leader or the follower); 

5. Each distribution center can cover more than one 

customer; 

6. The profit gained from covering different customers 

with distribution centers may be different. 

Further information about competitive facility location 

can be found in the works of Kress and Pesch [17] and 

Drezner [18]. 

 

 
2. BI-LEVEL MATHEMATICAL PROGRAMMING 
MODEL FOR COMPETITIVE FACILITY LOCATION 
PROBLEM 

 
In this study, it is assumed that both competitors 

currently have several distribution centers, which are 

used to transfer the products to their customers. Each 

customer acquires his products through the distribution 

centers of the leader or the follower. Now, suppose that 
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the two competitors start to open new distribution 

centers to deal with growth of market demand. 

Suppose that the two competitors operate with a 

non-cooperative behavior based on game theory 

approach; the main feature of the non-cooperative 

games is that each player looks for his own benefit. The 

Nash and Stackelberg equilibriums are the most 

important methods used in many non-cooperative 

games. The Nash equilibrium is used when the players 

of a game choose their strategies simultaneously; but in 

a leader-follower scenario, the leader can act before the 

follower; in this case, the optimal strategy of each 

player can be determined through the Stackelberg 

equilibrium. 

The Nash equilibrium applies when the players do 

not cooperate with each other and determine their 

decisions simultaneously (like in playing rock-paper-

scissors). A Stackelberg game is used in a non-

cooperative and sequential decision making process.  In 

this game, one player acts as a leader and another plays 

as a follower. The leader first chooses his decision 

taking the follower’s reaction into account, and then the 

follower sees this decision and selects his best decision 

[19]. The Stackelberg equilibrium consists of two 

concepts: the leader and the follower. This equilibrium 

is applicable when one of the players can move before 

the other players and play as the leader. 

In other words, the leader has more power than the 

follower, and hence in this game, the leader makes the 

first decisions. Afterwards, the follower makes his own 

decisions according to the decisions of the leader. In a 

leader-follower environment, the follower chooses the 

best response to the decision of the leader, and the 

leader optimizes his objective function according to the 

follower’s response. 

Accordingly, the competitive location problem will 

be formulated as a non-linear integer bi-level 

programming model with regard to the following 

assumptions (It should be noted that bi-level 

programming is a representation of Stackelberg game). 

1. Two supply chains each of them with one producer, 

multiple distribution centers and several retailers are 

considered; 

2. The decision-making of the competitors is based on 

the Stackelberg game; 

3. Each distribution center can cover more than one 

customer; 

4. Each customer is covered only by leader or follower 

distribution centers; 

5. The demand of each customer can be satisfied 

through more than one distribution center; 

6. Distribution must be done through distribution 

centers, and direct shipping  from producers to retailers 

is not allowed; 

7. Each producer supplies only a part of the market. 

First, the parameters of the problem are introduced, and 

following that, the bi-level formulation of the 

competitive facility location problem is presented.  

 
 

Indices 

  Indices for leader 

  Indices for follower 

    Indices for customer 

    
Indices for distribution 

centers 

Parameters 

  
Number of potential 

locations; 

   Number of existent DCs of 
leader; 

   Number of existent DCs of 
follower; 

  Number of customers; 

  
The maximum number of 

customers that each DC can 

serve; 

   Setup cost of    DC of leader; 

   
Setup cost of    DC of 

follower; 

   Total budget of leader to 

open new DCs; 

   Total budget of follower to 

open new DCs; 

    
Net profit of delivered 

products from new DC i 
tocustomer j; 

 ̃   
Net profit of delivered 
products from  existent 

leaders’ DC i to customer j; 

 ̌   
Net profit of delivered 

products from  existent 

followers’ DC i to customer j; 

Decision variable 

      {
                           
                                        

 

    

   

 {
                                                   

                                                             
 

 ̂   

 ̂  

 {
                                                        

                                                             
 

      {
                             
                                            

 

    

   

 {
                                                     

                                                             
 

 ̂   

 ̂  

 {
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According to the definitions of the parameters, a 

non-linear integer bi-level programming model of the 

competitive facility location problem is presented as 

follows: 

   [∑ (∑ ∑       (     
 ) 

     
   

 
   

∑ (∑  ̃   ̂  (   ̂  
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   )]   ∑   
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∑  ̂  
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      ̂                            (6) 

   *   +                        (7) 

    *   +                         (8) 

 ̂   *   +                         (9) 

   [∑ {∑        ∑  ̌   ̂  
  
   

 
   } 

   ]  

*∑   
 
      +  

(10) 

      

                         (11) 

∑       
 
           (12) 

                                    (13) 

 ̂    ̂                         (14) 

      ̂                              (15) 

∑  ̂  
  

   
                      (16) 

∑  ̂  
 
                           (17) 

   *   +                           (18) 

    *   +                          (19) 

 ̂   *   +                         (20) 

Equation (1) determines the objective function of the 

leader with respect to lost profit due to customer served 

by the new and existing distribution centers of the 

follower; the leader’s budget constraint to open new 

centers is presented by Equation (2); constraint (3) 

ensures product distribution through opened distribution 

centers; constraints (4) indicates that the demand of 

each customer can be supplied by all of the distribution 

centers of the leader; constraint (5) indicates the 

maximum number of customers served by each of the 

existing distribution centers of the leader, Equation (6) 

states that new distribution centers deliver products only 

to customers who are covered by existing centers; 

Equations (7) to (9) represent the status of upper-level 

decision variables; Equation (10) states the objective 

function of the follower producer, which aims to 

maximize profit through opening new distribution 

centers and also through using existing distribution 

centers; Equation (11) ensures that at every candidate 

location, only the leader or follower can open a new 

distribution center; constraint (12) represents the budget 

constraint of the follower; constraint (13) acts like 

constraint (3) but at the upper level; customer 

segmentation for the two competitors based on existing 

distribution centers is stated by Equation (14), meaning 

that for each customer, the product will be delivered 

only by one of the two competitors; constraint (15) acts 

like constraint (6) but at the upper level; constraints (16) 

and (17) act like constraints (4) and (5); constraints 

(18)-(20) define lower-level decision variables just like 

constraints (6) -(8).  

In this model, the upper-level decision-maker 

determines his strategy, and then the lower-level 

decision-maker, knowing this strategy, determines his 

policy to optimize his own objective function, and 

lastly, the optimum response of the leader is determined 

based on the best response of the follower. 

Jeroslow [20] proved that even in small scale, a bi-

level mathematical programming problem is strongly 

NP-hard; thus, several heuristic and meta-heuristic 

methods have been developed to deal with the high 

complexity of bi-level mathematical programming 

problems.   

Beresnev [12] used a branch-and-bound algorithm to 

solve the bi-level competitive facility location problem 

and introduced a technique to determine an upper bound 

for the problem. MirHassani et al. [14] used a modified 

version of particle swarm optimization algorithm to 

solve the competitive facility location problem as a bi-

level mathematical programming model. Farvaresh and 

Sepehri [21] presented a branch-and-cut method by 

defining valid inequalities based on Steiner tree for the 

bi-level mathematical programming problem. Several 

researchers have used meta-heuristic techniques to solve 

bi-level mathematical programming; more information 

about numerous metaheuristic methods proposed to 

solve bi-level mathematical problems can be found in 

the work of El-Ghazali [22]. 

Considering that this study follows a meta-heuristic 

approach to solve the bi-level programming problem, in 

the following, several metaheuristic approaches 

developed for this purpose are briefly reviewed. The 

prominent metaheuristic-based solutions developed for 
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bi-level mathematical programming problems can be 

classified into four categories: 

 
I. Nested Sequential Approach       In this category, 

the lower-level problem must be solved by an exact, 

heuristic or metaheuristic method based on the results 

generated for the upper-level problem, and the result of 

the lower-level problem must be used to re-solve the 

upper-level problem, and this process must be repeated 

until the stopping criteria are met.The main flaw of this 

approach is the complexity of the process, since for each 

solution obtained at each stage for the upper-level 

problem, the optimal solution of the lower-level 

problem must also be determined. 

 

II. Single-level Transformation Approach         In 

this approach, first, a technique such as Karush–Kuhn–

Tucker conditions must be used to transform the bi-level 

mathematical programming problem to a single-level 

model, and it must then be solved by an exact, heuristic 

or metaheuristic method. 

 

III. Multi-objective Approach         In this category, 

the bi-level problem must be transformed into a single-

level multi-objective model; linking between the pareto-

optimal solution of a multi-objective problem and 

solution space of a bi-level problem is the most 

important part of the method. This technique has been 

used in only a few studies (El-Ghazali [22]). 

 

IV. Co-evolutionary Approach        In this approach, 

each level of the problem must be solved by a separate 

meta-heuristic algorithm; the information of the two 

levels must then be shared, and the process of parallel 

solution must continue until a termination criterion is 

achieved.The most important point in this approach is 

how to share information between two levels of the 

problem.This approach also requires a particular 

segment of memory to be dedicated to shared 

information. Figure 1 shows the general framework of 

this method. 

In this study, the bi-level mathematical model is 

solved by a co-evolutionary approach in which both 

levels are solved by ant colony algorithm 

simultaneously.  

 

Metaheuristic 1 Metaheuristic 2

Upper level population of 

solutions

lower level population of 

solutions

Evaluation of solution (x,y)

Generate (x,y)

Evaluation of solution (x,y)

Generate (x,y)

Information 

exchange

 
Figure 1. General framework of co-evolutionary solution to 

bi-level problem [22] 

To evaluate the performance of the proposed 

algorithm, the upper bound of the problem is developed 

based on the approach described in Section 4, and the 

results of ant colony algorithm are compared with this 

bound. 

 

 

3. THE PROPOSED ANT COLONY ALGORITHM  
 

In this study, each level of the bi-level mathematical 

problem is solved by the ant colony algorithm proposed 

by Dorigo and Gambardella [23]. The discussed 

problem is a three-level supply chain consisting of a 

producer for each supply chain, a number of distribution 

centers and several retailers, which can all be 

represented on a network.The arcs between the first and 

second levels represent the products flowing from 

producers to distribution centers, and those between the 

second and third levels represent delivery of the 

products from distribution centers to retailers. It should 

be noted that in this network, direct shipment from 

producers to retailers is not allowed.The general 

structure of the used ant colony algorithm is described 

in the following: 

 

Algorithm (1) 
 
Step 0. Set all problem parameters (including the 

number of ants of the two competitors, the initial 

pheromone path, etc.) 

Until termination condition holds do: 

Step 1. Given the number of leader (follower) ants, 

repeat the following steps: 

Step 1. 1. Use the selection rule to generate an initial 

solution; 

Step 1. 2. If this solution is not acceptable
2
, go to step 

1-3; otherwise, use algorithm (2) to convert it into an 

acceptable solution; 

Step 1. 3. Add the resulting acceptable solution to the 

Tabu list
3
; 

Step 2. If the solution of the previous step pertains to 

the leader, repeat step 1 for the follower; 

otherwise, go to step 3; 

Step 3. Alter the pheromone path with both local and 

global updating rules; 

Step 4. If the termination condition does not hold, go to 

step 1; otherwise, go to step 5; 

Step 5. Select the best solution; 

Step 6. End. 

 
                                                           
2
-Acceptable solution is a solution whose cost does not exceed the 

total available budget. 
3
-Tabu list includes those new leader or follower distribution centers 

that cannot be selected in the next iteration by either the follower or 
the leader. 
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1. 3. Selection Rule     Artificial ants use a probability 

law inspired by the behavior of natural ants for 

consecutive selection of distribution centers for both 

competitors and construction of a solution with respect 

to data obtained via a pheromone path which is updated 

over time. Based on the system designed by Dorigo and 

Gambardella [23], each ant of the leader or the follower 

uses the following rule to select the new distribution 

center   with probability of   
 (         ), where   

signifies the follower and   signifies the leader. 

        {    
 
}  (21) 

where    denotes the pheromone path,    represents the 

heuristic information of distribution center   and   is a 

value between 0 and 1, signifying the importance of    ; 

in a particular iteration of the algorithm, distribution 

center   is selected with a probability of  (  
  

 ) according to the following probability distribution: 

   
    

 

∑     
  

   

  (22) 

Parameter    is determined based on the two rules of 

nearest and most profitable distribution center, as shown 

below. 

Parameter    is calculated for each potential location: 

   
        

∑        
  (23) 

In addition, based on the rule of nearest location, 

parameter   is calculated as follows: 

   
     

∑     
  (24) 

and finally: 

      {     }  (25) 

After generating solutions based on algorithm (1), the 

costs of some of the generated solutions may exceed the 

total available budget, so algorithms (2) is used to 

convert these solutions into acceptable solutions. 

 

Algorithm (2) 
Step 1. Select among the not-selected centers the one 

with the highest benefit-cost ratio for the leader 

(follower), and insert it in place of selected center with 

the highest cost. 

Step 2. As long as cost is higher than budget, repeat 

step 1. 

The following rule is used for local updating of 

pheromone in each iteration: 

   (    )         (26) 

where     is considered for each competitor. The 

following relationship is used for global updating of the 

pheromone path based on the best found solution,which, 

at this stage, is the most profitable distribution center: 

   (    )       (
   

      
⁄ )  (27) 

After the termination of both algorithms 1 and 2, a new 

ant colony algorithm is run to maximize the profits of 

product delivery. 
 

Algorithm (3) 
Step 0. Set all parameters for all new and existing 

distribution centers of the two competitors 

(number of ants, initial pheromone value, and 

probability of acceptance); 

Step 1. Repeat the following steps for all new and 

existing leader (follower) centers and all ants in 

these centers; 

Step 1. 1. Use the selection rule to generate an initial 

solution for the existing distribution centers 

(specifying the customers to which each 

distribution center is allowed to send the product); 

Step 1. 2. Use the selection rule to generate a solution 

for new distribution centers only for customers 

selected in the previous step; 

Step 1. 3. Add the resulting solution (selected 

customers) to the ban list; 

Step 2. If the solution of the previous step pertains to 

the leader, repeat step 1 for the follower; 

otherwise, go to step 3; 

Step 3. Alter the pheromone path with both local and 

global updating rules; 

Step 4. If the termination condition does not hold, go to 

step 1; otherwise, go to step 5; 

Step 5. Select the best solution (the objective function, 

new distribution centers and covered customers); 

Step 6. End. 

Local and global pheromone path updating rules are 

similar to those used for selection of new distribution 

centers but do not necessarily employ the parameters of 

the previous step. 

It should be mentioned that the profits gained from 

delivery through new and existing distribution centers 

are expressed as a     matrix, where   is the number 

of existing or new distribution centers of the two 

competitors, and   is the number of customers. Each 

distribution center covers only a certain number of 

customers, which is based on its profit threshold; in this 

study, this threshold is defined as    {      } for all 

existing and new distribution centers of the two 

competitors. 
 

 

4. DETERMINING AN UPPER BOUND FOR THE 
COMPETITIVE LOCATION PROBLEM 

 

The optimality of solution of the proposed mathematical 

model is not clear, so to evaluate the efficiency of the 

proposed algorithm, an upper bound will be found, and 

the computational results will be compared with this 

value. 
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Theorem. The upper bound for the objective function 

of the competitive location problem can be determined 

by solving the following problem: 

   [∑ (∑        ∑  ̃   ̂  
  
   

 
   ) 

   ]     

∑   
 
        

(28) 

∑       
 
          (29) 

                                (30) 

∑  ̂  
  
                        (31) 

∑  ̂  
 
                        (32) 

      ̂                             (33) 

   *   +                        (34) 

    *   +                         (35) 

 ̂   *   +                      (36) 

Proof. Please see appendix A.  

 
 

5. COMPUTATIONAL RESULTS 
 

To evaluate the performance of the developed ant 

colony algorithm, 20 test problems were generated, and 

then, the upper bound of each problem was determined 

by the mathematical programming model presented in 

Section 4. 

These values were then compared with the results of 

the developed ant colony algorithm. Table1 shows the 

obtained upper bound for the objective function of the 

leader-follower problem and the objective function 

values of the upper-level and lower-level problems 

calculated by ant colony algorithm. 
The proposed ant colony algorithm was coded in VB 

6.0, and was run ten times for each test problem on a 

computer with Core i5 processor and 4GB RAM under 

64-bit Windows 7 operating system.The upper bound of 

each instance problem was determined with Lingo 9.0 

software. 

In all instances, the profit of the existing and new 

distribution centers and the cost of setting up a new 

distribution center were generated randomly from the 

intervals [500,2500], [1000,3500], and [2000,4000] in 

that order.  

TABLE 1. Computational results for test problems 

Ant colony results 
 Upper level problem  

Problem no. 
CPU time(s) 

Obj. of lower level problem Obj. of upper level problem 

Min Max Min Max CPU time(s) constraints integer Upper Bound 

<1 S 2800 2800 7710 7710 <1 S 440 50 14800 1 

<1 S 2800 2800 8060 8060 <1 S 672 60 15290 2 

<1 S 7190 7190 10060 10060 <1 S 954 70 16420 3 

<1 S 4900 4900 12710 12710 <1 S 1834 96 22110 4 

<1 S 4950 4950 15715 15715 2 1834 96 22310 5 

<1 S 7520 9850 23770 25090 2 3224 128 29770 6 

<1 S 10750 11450 20670 20670 3 4194 144 32250 7 

1.23 14175 14475 30800 34310 3 6518 176 77915 8 

1.6 15710 15710 44260 45665 4 8230 198 145105 9 

1.87 24385 28575 44585 46880 5 11816 234 163615 10 

4.26 18875 21727 64403 69064 7 44370 448 347685 11 

4.49 38305 39516 60263 60823 10 50912 480 334893 12 

4.94 38559 39369 67025 70189 12 65346 540 402339 13 

5.54 39277 41981 66252 67089 26 83880 612 558403 14 

8.62 35970 36017 82345 83457 24 105374 684 627325 15 

13.45 44900 45678 94302 96788 46 130760 760 672393 16 

33.98 62789 65146 109870 11067 606 160482 840 737893 17 

41.5 77456 77893 114567 115980 673 176904 880 770517 18 

73.65 81706 82341 120890 121345 719 194126 920 801692 19 

135.28 87256 89612 124976 126789 >3600 195008 924 822430* 20 
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6. CONCLUSION 
 

This paper deals with a location problem with two 

supply chains consisting of one producer, a number of 

distribution centers and several retailers, where each 

producer obtains a portion of the market share by 

delivering its products through distribution centers. The 

leader producer establishes new distribution centers to 

exploit the new market demand due to increase in 

market demand, and the follower reacts by opening its 

own new distribution centers. These two competitors 

choose new distribution centers among several potential 

locations based on the rules of Stackelberg game and 

their own strength. The problem was described as a bi-

level mathematical model, and then, because of its high 

complexity, an adopted ant colony algorithm was 

developed to achieve high-quality solutions. Compared 

to similar researches, the bi-level mathematical model 

of this paper is more compatible with the real world 

because new distribution centers are opened based on 

budget constraint, such as what happens in real world, 

each distribution center in the model can serve more 

than one customer or retailer whilst each retailer could 

be supplied by more than one distributor.To evaluate the 

capability of the proposed ant colony algorithm, an 

upper bound was developed for the problem, and the 

results were compared with the upper bound; the 

comparison showed the high performance of the 

proposed approach to obtain high-quality and near-

optimal solutions. Our suggestions for future research 

on this problem include examination of other problems 

such as relocating of one or more than one distribution 

center, development of better upper bounds with 

different approaches, use of different methods of 

product distribution such as vehicle routing and hybrid 

delivery approaches as well as other methods of 

transport that could make the problem more conforming 

with real-world applications. 
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8. APPENDIX  
 

Determination of the Upper Bound for the Problem 

 

The upper bounds of the problem instances were 

determined by a method similar to the one proposed by 

Beresnev and Mel'nikov [15]. Each customer could be 

covered by both new and existing distribution centers of 

one of the two competitors. 

We show each acceptable solution of the upper-level 

problem with an ordered triple of   (        ̂  ), for 

which the lower-level problem will have an optimum 

solution in the form of    (  
     

   ̂  
 ). In addition, we 

denote each acceptable solution of the follower problem 

with  ̃  (        ̂  ). An admissible solution to the 

above leader-follower problem will be expressed as 

(   ̃), the value of which can be determined by 

replacement in Equation (1) and is represented by 

 (   ̃). Also, the optimum solution of the problem is 

shown with  (    ̃ ), and for each acceptable 

solution  (   ̃), the relationship  (    ̃ )   (   ̃) 

holds. 

Supposing that the two competitors are not of equal 

strength, we assume that to maximize the profit, the 

follower producer selects the locations with lower 

importance to the leader; so a non-cooperative game 

will be played between the two competitors. Thus, for 

each arbitrary solution  , there is an optimum non-

cooperative solution in the form of    ̅̅ ̅which applies in 

the relationship  (   ̃)   (   ̅). According to the 

above definition, an acceptable non-cooperative solution 

is defined in the form of (   ̅), and an optimum non-

cooperative solution is defined in the form of (    ̅ ). 

We show the optimal value of the objective function 

with  (    ̅ ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 1. For each possible solution to the problem 

and for each customer, the following relationship is 

true: 
∑       (  ∑    

  
   )  ∑  ̃   ̂  (  ∑  ̂  

   
   )

  
     

   

 (   {      }     { ̃   ̂  })  

Proof. If customer   is covered by at least one of the 

follower’s centers, i.e.          and  ̃   ̂    , the 

proof is completed, because one of the two equations 

∑    
  

      and ∑  ̂  
   

      or both of them will be 

true; suppose that for a set of candidate locations      

and a set of existing locations       , one of the equations 

         (              ) and  ̃    ̂      (           

      ) or both of them are true; in this case, we will 

have: 

∑       (  ∑    
  

   ) 
     (   

 
             )  

  (   
   

{        ̃   ̂  }  ̂  ̂      )  

 ((    {      }     
 

{ ̃   ̂  })   ̂  ̂      )  

∑  ̃   ̂  (  ∑  ̂  
   

   )
  
     (   

   
 ̃   ̂    ̂  ̂  )  

 

  (   
   

{        ̃   ̂  }  ̂  ̂      )  

  ((      {      }     
   

{ ̃   ̂  })   ̂  ̂      )  

If each customer   is covered by one of the existent or 

new distribution centers or both of them, the following 

equation is true: 
∑       (  ∑    

  
   )  ∑  ̃   ̂  (  ∑  ̂  

   
   )

  
     

   

 (    {      }     
 

{ ̃   ̂  })  
The proof is complete, so the quantity of  

     (∑ (    {      }     
 

{ ̃   ̂  })
 
   )  ∑   

 
        

is an upper bound for the optimal value of the objective 

function of competitive facility location. 
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 چكيده
 

 
ضًد ي سًدآيری ي َمچىیه تقاء  َای تامیه محسًب می گیزی استزاتژیک تزای سوجیزٌ  مکاویاتی تسُیلات یک تصمیم

میکىذ. در ایه تحقیق دي سوجیزٌ تامیه سٍ سطحی رقیة ضامل یک تًلیذکىىذٌ در َز  تامیه را تضمیه  اعضاء سوجیزٌ

وظز گزفتٍ ضذٌ است کٍ َزیک محصًلات مطاتُی را تزای فزيش در  سوجیزَثٍ َمزاٌ تعذادی مزکش تًسیع ي چىذ خزدٌ

کىىذ ي تٍ دلیل تغییز در سطح تقاضای تاسار اس وظز میشان تقاضا تزای محصًلات فعلی، دي رقیة  تاسار َذف خًد ارسال می

تاسار را اس دست گیزوذ تا تا جلًگیزی اس ایجاد کمثًد، مطتزیان ي تٍ دوثال آن سُم  تصمیم تٍ افشایص مزاکش تًسیع خًد می

َا اس تیه  وذَىذ. تا در وظز گزفته ایه وکتٍ کٍ دي رقیة اس قذرت یکسان تزخًردار ویستىذ رقاتت تزای اوتخاب تُتزیه مکان

ضًد؛ مسالٍ مکاویاتی رقاتتی تًصیف ضذٌ تصًرت یک  تعذادی مکان کاوذیذا تعىًان مزاکش تًسیع جذیذ ایجاد خًاَذ می

گیزی تًلیذکىىذٌ رَثز ي سطح  دَىذٌ تصمیم ديسطحی گسستٍ فزمًلٍ میطًد کٍ سطح تالا وطانریشی ریاضی  مذل تزوامٍ

 NP-hardریشی ديسطحی حتی در اتعاد کًچک  دَذ. اس آوجا کٍ مسایل تزوامٍ پاییه تصمیمات تًلیذکىىذٌ پیزي را وطان می

وذٌ، الگًریتم مًرچگان ديسطحی تزای حل مسالٍ گیز َستىذ،  لذا تا استفادٌ اس ريیکزد تثادل اطلاعات تیه ديسطح تصمیم

تًسعٍ ضذٌ است. تٍ مىظًر حصًل اطمیىان اس کارآیی الگًریتم مًرچگان تًسعٍ یافتٍ، مسالٍ سطح تالا تصًرت یک مذل 

ضًد. مقایسٍ وتایج محاسثاتی حاصل اس  گیزی پیزي، حل می ریشی خطی عذد صحیح ي تذين در وظز گزفته تصمیم تزوامٍ

دَىذٌ  تًاوایی تالای ريیکزد پیطىُادی در حل مسایل حتی تا اتعاد  یتم مًرچگان تا کزان تالای تذست آمذٌ، وطانالگًر

 تاضذ. متًسط ي تشرگ می
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