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A B S T R A C T  
 

 

In this paper, we assume a firm tries to determine the optimal price, vehicle route and location of the 

depot in each zone to maximise its profit. Therefore, in this paper zone pricing is studied which 

contributes to the literature of location-routing problems (LRP). Zone pricing is one of the most 
important pricing policies that are prevalently used by many companies. The proposed problem is very 

applicable in the product distribution, such as fruit. The problem is formulated by two models 

consisting of a node and flow based model. The resulting nonlinear mixed integer models are 
approximated by a piecewise linearization method and the performance of them is compared. To cope 

with real-world cases, a variable neighborhood search (VNS) algorithm is developed and implemented 

in some instances. Three different combinations of local search are defined and the performance of 

them is compared with each other and two proposed models. The results of the computational study 

confirm that the suggested algorithm solves large instances efficiently compared to the proposed 

mathematical models. Moreover, the results show that the flow based model uses less computational 
time in comparison with the node based model.  

doi: 10.5829/idosi.ije.2015.28.11b.10 
 

 
1. INTRODUCTION1 
 

Nowadays, not only the quality of supplying demands and 

services is a key factor for customers, but, the price of products 

is also another factor which affects the customer satisfaction. 

Companies always pursue a strategy that helps them to have an 

efficient movement of goods or workers. This issue helps them 

to receive more profit in their market. Christian [1] stated that 

the distribution costs account for approximately 10% of the 

firms’ incomes and for more than 45% of  the total logistics 

expenses.  

Firms in spatial markets may implement a wide verity of 

pricing policies. Aras et al. [2] have used the pricing issue in the 

VRP. They integrated the concept of uniform delivered pricing 

and the selective multi-depot VRP. As another example, 

Lederer and Thisse [3] proposed a competitive situation in 

which, two firms try to optimize the location of their facilities 

and price of their products in order to maximize their profit. 

                                                           

*
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The market environment allows the firm to implement a wide 

variety of pricing policies, depending on the shipping costs 

passed to the customers such as delivery, milling, discriminatory 

and zone pricing. The first one implies that the same price is 

charged at the firm’s door to all customers, regardless of their 

location; thus, the customers are incurred full of shipping costs. 

The second one means that the firm bears some or all of the 

shipping costs and the same delivered price is charged to all 

clients. A prevalent pricing policy, named zone pricing, is 

examined in this article. Taking into account this policy, 

simultaneously, several delivered prices for some predetermined 

zones should be determined. An important situation arises in 

which zones are given a priori corresponding to countries, 

natural areas or the economic regions. In U.K., the London 

Brick Company uses this pricing policy to determine identical 

prices within zones placed at the center of the plant. Another 

application of zone pricing is found in the domestic fuel and 

cement industries [4, 5] . 

Zone pricing is a pricing policy with some advantages. The 

main advantage of zone pricing is diminishing the firm 

accounting costs. Another advantage is capturing high level of 
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the gain; it would be made under perfect discriminatory pricing. 

Last, zone pricing can be a good pricing policy in the 

competitive environment. Incumbents tend to deter entry of 

competitors to the extent. They can react by decreasing prices in 

the zones of encroachment without changing prices in the other 

zones.  

LRP is used frequently in many industries such as bill 

delivery [6] and Telecom network design [7] and so on. Readers 

in the field of LRP, can follow a valuable paper by Setak et al. 

[8, 9]. Decisions made in the LRPs influence on the price of 

products, so, this issue stimulated us to study about integrating 

pricing decisions and LRP. This issue is prevalently used in the 

companies that dispense vegetables, fruit, woolen garments, 

textile products, leather and shoes. When firms try to optimize 

the location of facilities, vehicle routing and product price 

simultaneously, they can improve the level of their profit and 

customer satisfaction in the market. In this problem, there is a 

firm that distributes goods to customers and needs to establish 

some depots in its vast market. The firm divided the market into 

some zones according to its policies. In the other hand, it 

decides to have a depot in each zone. Then, it should send goods 

with a vehicle to depots and after that, the firm should determine 

the route of the vehicle. Besides the depot location and routing, 

the price should be adopted in each zone separately. It is 

required to optimize its profit by applying a single depot vehicle 

routing problem in each zone. We assume a quadratic demand 

function in each zone. We suggest two models based on nodes 

and commodity flow. The objective function of them is mixed 

integer nonlinear programming, then we approximate and 

linearize it with the piecewise linearization method. If the price 

of products in each zone is equal to zero, the problem will 

clearly reduce to the LRP, which was proven to be NP-hard 

[10]. To handle the real-world cases, a heuristic VNS algorithm 

is proposed with four operators in its local search for solving the 

problem.  

The remainder of the paper is structured as follows. The 

literature of pricing problems with the location, routing and 

LRPs is provided in section 2. Section 3 describes the model 

formulations and provides two formulations consisting of a 

node based and flow based model. Section 4 extends a VNS 

algorithm for our problem in solving large-scale problems and 

presents the description of the proposed heuristic solution 

procedure. Computational studies are reported in section 5. 

Section 6 presents some concluding remarks and directions for 

further research. 

 

 

2. LITERATURE REVIEW  
 

In this section, first, we concisely narrate the literature of pricing 

policies in location and VRP area. Then, we state how much 

researchers attend to integrate pricing decision and LRP. 

In the location area, many researchers pursue the optimizing 

of the network by making decisions about prices of products 

and location of facilities simultaneously. Beckmann and Ingene 

[11] studied spatial monopoly and oligopoly market that had 

been overlooked in the literature on delivered pricing in 

location. Hansen et al. [12] worked on determining the uniform 

delivered pricing for a geographical system of demand 

functions, in order to maximize the firm profit. Beckmann and 

Ingene [11] studied spatial monopoly and oligopoly market that 

seems to be overlooked in the literature on delivered pricing in 

location. Hansen et al. [12] worked on determining the uniform 

delivered pricing for a geographical system of demand 

functions. Another pricing policy that entered to the location 

theory is discriminatory pricing. Hurter and Lederer [13] 

established a model that each firm has a production function. It 

sets discriminatory prices and locates in the plane. Afterwards, 

Kats [14] coped with a problem of finding location-price 

equilibrium in a market with a constraint on the number of 

various discriminatory prices. Hansen et al. [15] proposed a 

location problem under discriminatory pricing to maximize the 

firm profits.  

One of the notable pricing policy is mill pricing that 

excludes the cost of transporting the commodities from the 

point of sale. In this area, Beckmann and Ingene [11] and 

Hansen et al. [15] discussed the situation with mill pricing in the 

cited article. In a geographical space, Dasci and Laporte [16] 

analysed a monopolist location and pricing decisions, willing to 

open several stores. Moreover, Diakova and Kochetov [17] 

addressed the problem of determining the optimal facility 

location and price that facilities can charge the different mill 

prices. In addition, Luer-Villagra and Marianov [18] have 

formulated a hub location and pricing problem and proposed a 

genetic algorithm. Zone pricing has formed another part of the 

literature of pricing policies for location problems. It consists of 

simultaneous decision making about several delivered prices, 

along with the zones in which, the prices should be applied. As 

a remarkable work, Hansen et al. [19] studied another situation 

with zone pricing in the cited article. Then, Hansen et al. [5] 

proposed a model and algorithm to determine optimal facility 

locations, tariff-zones, market areas and prices to maximize the 

profit of the firm under zone pricing. 

Finally, in the VRP, Aras et al. [2] investigated the reverse 

logistics problem in which, a firm wishes to collect cores from 

its dealers. They proposed two flow-based and node-based 

models for their problem. 

We reviewed the relative literature of pricing decisions in 

the above mentioned areas. To the best of our knowledge, 

researchers in the LRP have paid little attention to the 

integration of pricing decisions (specially zone pricing) into the 

LRP. So, we work on integrating zone pricing into the LRP. 

Moreover, interested readers in pricing issues are referred to an 

applicable paper by Tofigh and Mahmoudi [20]. In the next 

section, we propose two mathematical models. 

 

 
3. MATHEMATICAL MODELS 

 
In this research, we examined the problem that a firm 

dispenses the product to customers. Moreover, it needs to 

establish some depots in its market. The firm divided the 

market into some zones according to its policies. Actually, it 
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wishes to have a depot in each zone. Then, it should send 

goods with a vehicle to depots and after that, the firm should 

decide on the vehicle route. Besides the depot location and 

routing, the price of products should be determined in each 

zone separately. It needs to optimize its profit by applying a 

single depot VRP in each zone. We assume a quadratic 

demand function in each zone. Moreover, we propose a flow-

based and node-based model for the problem in the following.       

Before we present two formulations of the problem, we 

list the same sets, parameters and variables utilized in both 

models. We have K zones and we follow a strategy to assign 

customer ki to depots in each zone. We have kM  potential 

location for constructing a depot in each zone k . So the sets, 

parameters and variables in these models are defined as 

follows: 

Sets: (set of zones), (set of customers),

(set of potential locations).  

Parameters:
kk jiC (travel cost between node ik and jk),

kmG

(initial cost for constructing depot at nod ik),
km0C (travel 

cost between firm and depot mk), )(df kk (demand function 

at zone k ), kd (represents all of independent variables 

such as price.) 

Variables:
 

(unit price of products in zone k),
 

(the 

binary variable is used to show that the customer is 

visited after , if ), (the binary variable is 

used to show that the potential location is selected as 

depot for zone k, if .). 

 

3. 1. Node-Based Model               This model (LRP with 

zone pricing (LRPZP1)) contains a special variable  
ki

U  in 

addition to previous. The variable  
ki

U helps us in 

constructing subtour elimination constraint according to the 

well-known MTZ constraint [21]. The first is given as 

follows: 

(1) 
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(8) 0  U
ki
  
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The objective function is shown as (1). It gives the profit of 

the firm which should be maximized. Constraints (2) and (3) 

represent the concept of visiting a node only one time. 

Constraint (4) ensures that each node should be used with 

one input and output edges. Each zone should employ a 

depot, as demonstrated by constraint (5). Constraints (6) are 

subtour elimination constraints based on MTZ. Constraints 

(7)-(10) represent the types of variables. 

The objective function includes two parts. The first 

represents the total income based on the demand function 

and the second one describes the total costs consisting of 

fixed and routing costs. There are different forms of non-

negative demand function such as linear, quadratic and 

exponential. The above mentioned demand functions are 

given in (11)-(13). Moreover, Θ  in exponential demand 

function, represents customers' sensitivity to price. 

1   kkkkkk     ,AWAC)(df  (11) 

12  kkkkkk     ,AWAC)(df  (12) 

)   ΘW()(df kkk  exp  (13) 

The demand function creates nonlinearity in the objective 

function. Therefore, the problem is mixed integer nonlinear 

programming. In the light of this nonlinearity, we try to 

approximate the objective function by a piecewise 

linearization method. Use of this method is required to add 

some sets, parameters, variables and constraints to model. 

New inputs are defined as follows. 

Sets:
kk Qq  (set for each interval ). Parameters: 

kqCoeffs 

(coefficient for interval kq  of zone k), 
kqConst (constant 

value for interval kq  of zone k),
kqLower (lower bound of the 

interval kq  of zone k),
kqUpper (upper bound of the interval 

kq  of zone k). Variables: 
kqY ' (the binary variable is used to 

show that the interval kq is selected at zone k, if 1' 
kqY .) And 

we should substitute the variable kW  by
kkqW . 

In this method, we divide the domain of nonlinear 

function to some intervals. Each interval has an upper and a 

lower bound. In each interval, we calculate the slope and 

intercept of the related linear piece. By defining above 

Kk kk Ii 

kk Mm 

kW
kk jiX

kj

ki 1
kk jiX

kmY

km

1
kmY
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mentioned parameters, variables and assumptions, the new 

objective function and constraints are approximated by (14)-

(18). 

(14) 
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3. 2. Flow-Based Model           An alternative 

formulation can be developed for LRP with zone pricing 

(LRPZP2) used in writing commodity flow constraint that 

Wong [22] for the first time used  ak (node of depot in 

each zone) to a node u in the zone k . The new 

formulation is given as follows: 
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The objective function (19) indicates the profit of the firm 

should be maximized. Constraint (20) shows maximum flow 

between any two nodes. Constraints (21)-(23) are the flow 

conservation constraints. Constraint (24) represents the types 

of variables that are available in the model.  

It is quite clear, when we put the demand function, either 

linear or nonlinear, into the constraint (20), this constraint 

converts to a nonlinear constraint. This nonlinearity can be 

approximated by changing the constraint (20) to two 

constraints (25) and (26). In the constraint (26), the value of 

M is set at maximum possible demand in each zone. 

(25) kkkkk au  , j ,  i,ji   )( kk
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dfF
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u
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When we use the linear demand function of the above 

corrected model, constraint (20) will be the nonlinear demand 

function. Therefore, the previous approximation method is 

used.   

To make a relation between selecting appropriate depot 

and price in each zone, we suppose the delivered price is 

related to shipping cost from the firm to depots. Therefore, the 

demand function is according to (27),  

2
0 ))(()(

k

k

k m

m

mkkkkkk YCWACdf    
1kA  (27) 

where, the coefficient k  is used for distributing shipping 

cost on all of the products. We assume that k is the 

inverse of maximum possible demand in each zone. Then, 

the delivered price in each zone is ))( 0 k

k

k m

m

kmk YCW   . 

As we know, the first term of objective function in (1) 

and (19) is the multiplication of demand function and 

price. Constraint (28) demonstrates this multiplication.  
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(28) 

In (28), 
kmY 2 is a quadratic term. We know 

kmY is a binary 

variable. Therefore, without any loss of generality, it is true 

that we consider
kk

mm YY 2 . Hence, constraint (29) is 

concluded. 
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Proposition 1. Constraints (30)-(30) are the same as (29).  

Proof. Without any loss of generality, we assume that

kmm WYr
kk

 . Subsequently, kmm WYr
kk

22  . Now we can 

rewrite constraint (29) as (30)-(33): 
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kk mm YMr '  
km  (31) 

)1('
kk mmk YMrW   kk,m  (32) 

0
kmr  km  (33) 

The maximum possible value for price in each zone can be an 

appropriate value for 'M . We know 
kmY is a binary variable, 

then, we have two cases. 

Case 1: The coefficient of 
kmr  and 

kmr 2 is negative in (30) 

and the objective function should be maximized. In this case, 

when 1
kmY , constraint (31) changes to Mr

km   and 

kmk rW  is the result of constraint (32). Therefore, according 

to maximizing the profit, the variable 
kmr will be kW . 

Case 2: When the variable 0
kmY , after simplification, the 

constraints (31) and (32) are equivalent to 0
kmr and

kmk rMW  ' , respectively. In conclusion, 
kmr  will be zero. 

 
Proposition 2.  Constraints (30)-(33) are approximated by 

(34). 
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In this approximation the variables and kW  are changed to

kkqW .  

Proof. In the light of the previous proof, we also have two 

cases. 

Case 1: km Wr
k
 : In this case, Equation (34) is equivalent to 

(35). 
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Case 2: 0 
kmr : Here, kW  is zero. Therefore, constraint 

(30) is the same as (32). 

0 k

k
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(36) 

The results of the cases (i.e., (35) and (36)) show that we 

encounter with a Boolean space. Therefore, we need a 

variable to select the cases. The best variable to handle this 

situation is
kmY . Now, the piecewise linearization method is 

used rely on constraints (15) - (18) and (37).  
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Proposition 3. Constraints (38) - (47) make correctly 

linearize (37). 
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Proof. Equation (37) is a nonlinear equation. We linearize it by 

defining two variables 
kkqmt and 

kk qmr  in which 
kkqmt is binary 

and equivalent to
kk qm YY ' and

kk qmr is nonnegative and equal to

kk kqm WY . In 
kkqmt four cases can occur for each kk qm , . 

Case 1. 0',0 
kk qm YY  : In this case, according to constraint 

(39) and (46), 
kkqmt will be zero. 

Case 2. 1',0 
kk qm YY  : The same as case 1. 

Case 3. 0',1 
kk qm YY  : The same as case 1and case 2.  

Case 4. 1',1 
kk qm YY : In this case, according to constraints 

(39) and (46), 
kkqmt will be one. 

Same as previous, for 
kkqmr four cases can occur for each

kk qm , . 

Case 1. 0',0 
kk qm YY : In this case, the constraints (42) 

and (43) change to 0
kkqmr  and constraint (44) becomes

'2MrW
kkk qmkq  , therefore, the variable 

kkqmr will be 

zero. 
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Case 2. 1',0 
kk qm YY : Here, constraints (42) and (43) 

convert to Mr
kkqm  and 0

kkqmr , respectively, and 

constraints (44) becomes 'MrW
kkk qmkq  , therefore, the 

variable 
kkqmr becomes zero. 

Case 3. 0',1 
kk qm YY : In this case, constraints (42) and 

(43) change to 0
kkqmr  and Mr

kkqm  , respectively and 

constraints (44) also become 'MrW
kkk qmkq  , so, the 

variable 
kkqmr becomes zero. 

Case 4. 1',1 
kk qm YY : In this case, constraints (42) and 

(43) change to Mr
kkqm  and constraints (44) also become

kkk qmkq rW  , and according to constraint (41), the variable 

kkqmr becomes one. 

In addition, in the constraint (20), we have the same 

nonlinearity that can be approximated like the objective 

function.  

 

 

4. THE SOLUTION METHOD 

 
Variable neighbourhood search (VNS) algorithm is a heuristic 

method for solving combinatorial and global optimization 

problems, which was primarily introduced by Mladenović and 

Hansen [23]. A variety of valuable applications of VNS can be 

found in Melián and Mladenovic [24]. 

 

4. 1. Initialization: Generating Initial Solution         
In the proposed algorithm, we need to generate initial 

solutions for the depot, route(s) and price in each zone. We 

apply a random permutation in determining preliminary depot. 

In our model, the potential locations for a depot in each zone 

are inputs. At this time, a random permutation of node 

k, ...,N, 21  is generated and used one by one to compare 

with the vector of potential locations.  

Afterward, the first element of this vector is chosen as an 

initial depot for the zone . Moreover, this algorithm 

generates initial route(s) for each zone by Clarke and Wright 

(C&W) method which is the most widely known heuristic for 

VRP [25]. Another important factor which should be 

determined is kW . Therefore, with regards to the total revenue 

)(R  of the firm in both models which is 
k

k

kk W) (dfR  , 

we calculate the gradient of R  for finding the best kW . 

Hence, if R  be zero, then, 
*

kW  is obtained.  

 

4. 2. Local Search           We propose the local search of our 

algorithm based on four operators. These operators improve 

the vehicle route in each zone. On the other hand, we can 

reduce the route cost of vehicle in each zone. Consequently, 

we improve the total firm profit by applying these operators. 

Four mentioned operators are 1-1 Move, 1-Exchange, 2-

Echange and 2-Opt, which are defined in Table 1. 

In this article, we consider three different types of orders, 

for the operators in the local search. In the first type (I), the 

algorithm generates a random number between 1 and 4. If the 

value of the random number is one, 1-1 Move should be 

operated. If the value of the random number is two, the 

algorithm operates 2-Opt. When the random number 

produced by the algorithm is three, 1-Exchange should be 

performed, and otherwise 2-Exchange should be operated. 

However, in the second type (II), the number and order of 

operators are given in generating random numbers. When the 

generated number is set at one, just 1-Exchange should be 

operated. For the other numbers, 1-1 Move, 2-Opt and 2- 

exchange are added, respectively. Finally the third one (III) is 

consisted of 1-1 Move, 2-Opt, 1-Exchange and 2-Exchange, 

respectively. 

The VNS works to improve the objective function by 

finding optimal price and depot in each zone after passing 

from one of the procedures. Now, the algorithm selects the 

depot in each zone by generating a random number between 1 

and the number of potential locations. The generated random 

number specifies which potential location should be chosen as 

a depot. Another part of the algorithm in the space of the 

objective function is finding the optimal price in each zone. 

The routes, prices, the cost of constructing depot and the 

shipment cost of products from the firm to the depot in each 

zone are determined. Then, the algorithm tries to reach the 

point that has more value in constraint (38). The price is 

selected as optimal price, if constraint (38) for this price has 

the highest value. 

The objective function obtained by each iteration of the 

local search should be compared with the best known 

objective value. Therefore, if the objective function is 

improved, the solution should be updated. Moreover, the 

maximum number of iterations (we set it at 150) of the local 

search should be checked at the end of each iteration. 

 

4. 3. Displaying The Solutions        When the 

termination condition is satisfied in the previous step, the 

algorithm is finished and the solution should be displayed 

in this step. 

 

 

5. COMPUTATIONAL STUDY 
 

All experiments are conducted on a PC equipped with an Intel 

Core i7 processor paced at 2.1 GHz, 6 GB of RAM and 

Windows operating system. The mixed integer linear 

programs are solved using CPLEX 12.2 and MATLAB 

ver.2012a software. The computational experiments are 

carried out on a set of randomly generated instances of the 

LRP. We consider instances having 49 nodes (consumers). A 

node is related to the firm. We assume the coordinate of the 

firm is )0,0( , and consumers are distributed in the plane. The 

k
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distances between the firm and other nodes are calculated by 

Euclidean distance. The demand function in each zone is 

different from others and each zone has a special demand 

function itself. The parameters of the problems are: 

37,...,32,31,20,...,17,16,5,..,2,1,19,15,15

,3,2,300 ,200 ,100

321321

321332211





mmmNNN

KAAACCC 
 

 
5. 1. Results             In Table 2 and Table 3, we report the 

results to provide a basis for comparing the accuracy and 

efficiency of the two models and the proposed algorithm. 

The exact solutions of each model calculated by CPLEX are 

shown in columns "Exact solution". Number of used nodes 

in the branch and bound tree is available in column "Node". 

Columns "Time" represents the solution time of each 

approach. After running LRPZP1 in CPLEX software, 

CPLEX cannot find the exact solution for some instances. 

Moreover, CPLEX cannot find the exact solution in one 

hour (3600s). However, LRPZP2 finds the exact solution in 

all of the instances in a reasonable time. Objective function 

in all of the instances except the above mentioned instances, 

is the same. The column "RG" shows the relative gap 

between the exact solution and the solution of VNS 

algorithm. More analysis and some statistical tests are shown 

in the next subsection.  

 
5. 2. Discussion and Statistical Analysis            The 

statistic is widely employed in the field of research. In fact, 

it is almost impossible to come to an informed deduction in 

any part of the research without statistics. In this research, 

the results from statistical hypothesis tests (i.e., paired 

student's T-tests), show LRPZP2 uses less time for 

obtaining an exact solution versus LRPZP1 with a 0.05 

significance level. The results of the hypothesis test are 

presented in Table 4. In addition, hypothesis test proves the 

used node for the branch and bound tree in LRPZP2 is less 

than LRPZP1. These results show the comparative 

superiority of LRPZP2 over LRPZP1 in performance. 
The proposed VNS algorithm shows a good performance 

in approximating the objective functions. The mean of RG 

for all instances in the VNS (type I), the VNS (type II) and 

the VNS (type III) are 0.02628, 0.01681 and 0.01935, 

respectively.   
 

 

TABLE 1. Description of operators 

Operator Definition 

1-1 Move 
For two selected nodes, the first node is omitted from its 
current position and is placed after the second node. 

1-Exchange For two selected nodes, they swap their positions. 

2-Exchange 
For two selected nodes, the first node and its successor 
exchange their positions with the second node and its 

successor. 

2-Opt 

For two selected nodes, the two arcs connecting them with 
their successors are omitted, the nodes are linked, their 

successors are linked, and finally the chain between the 

successor of the first node and the second node is reversed. 

TABLE 2. Results of running two models 

In
sta

n
c
e 

LRPZP1 LRPZP2 

Exact 

solution 
Node Time (s) 

Exact 

solution 
Node 

Time 

(s) 

1 684.30 1018 7.97 684.30 4453 396.55 

2 1174.99 1516 5.92 1174.99 1208 165.92 

3 1293.30 572 2.70 1293.30 4882 336.41 

4 916.98 810359 1000.02* 916.98 4203 310.13 

5 604.87 658355 1000.02* 604.87 3677 623.63 

6 930.20 756747 1000.02* 930.20 2379 239.68 

7 464.65 491 3.03 464.65 1819 187.64 

8 1073.61 535691 1000.02* 1074.63 3722 307.54 

9 1178.23 3680 16.74 1178.23 1983 242.50 

10 671.00 115333 178.76 671.00 6711 545.47 

11 299.00 491 3.94 299.00 1200 425.53 

12 879.09 8282 26.03 879.09 1634 251.16 

13 945.22 170447 287.40 945.22 1378 236.72 

14 1315.01 282091 1000.06 1315.01 4964 559.11 

15 834.02 468685 701.29 834.02 5740 378.98 

16 578.79 22524 44.08 578.79 2763 224.44 

17 1246.12 746398 1000.02* 1246.12 3016 290.10 

18 470.21 765691 1000.03* 470.21 2364 245.47 

19 1242.47 873430 1000.02* 1242.47 2691 231.01 

20 932.95 809465 1000.03* 932.95 4546 367.96 

21 1563.03 791583 1000.03* 1566.72 4616 449.41 

22 817.97 561279 1000.03* 817.97 2824 265.41 

23 610.20 703696 1000.02* 610.20 2551 340.49 

24 1569.78 52113 108.62 1569.78 2169 238.67 

25 1172.68 668819 1000.02* 1172.68 2638 289.33 

26 448.60 3194 14.63 448.60 5642 378.90 

27 947.81 687059 1000.02* 947.81 4055 308.69 

28 727.32 241583 890.84 727.32 2351 479.76 

29 1316.92 455612 1000.04* 1317.14 5285 1001.25 

30 880.96 537 12.47 880.96 3670 610.66 

* CPLEX cannot find exact solution for these instances and we run 

them for one hour (3600s) 

 

 

 

These values show a slight relative gap in finding 

solutions. Also, these values and results from hypothesis 

tests confirm the comparative superiority of the VNS 

(Type II) over the VNS (Type III) and the VNS (Type I), 

and the superiority of the VNS (Type III) over the VNS 

(Type I). Therefore, it is clear when the decision maker 

(DM) pays attention to the RG, the VNS (Type II) is 

comparatively better than VNS (Type III) and VNS (Type 

I) and the VNS (Type III) is comparatively better than 

VNS (Type I).  
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TABLE 3. Results of running VNS 

In
sta

n
c
e 

VNS (Type I) VNS (Type II) VNS (Type III) 

RG 
Time 

(s) 
RG 

Time 

(s) 
RG 

Tim

e (s) 

1 0.007 5.39 0.017 4.17 0.019 6.30 

2 0.018 5.58 0.017 4.35 0.032 6.53 

3 0.005 5.46 0.004 4.37 0.003 5.28 

4 0.004 5.32 0.002 4.38 0.004 5.31 

5 0.048 3.98 0.024 4.44 0.031 5.38 

6 0.016 3.99 0.005 4.54 0.000 5.38 

7 0.027 4.04 0.027 4.48 0.027 4.49 

8 0.021 4.19 0.009 4.48 0.023 5.41 

9 0.010 4.05 0.011 4.34 0.010 5.38 

10 0.095 4.17 0.022 4.29 0.016 5.65 

11 0.079 4.15 0.079 4.20 0.101 5.57 

12 0.010 4.19 0.010 4.35 0.010 5.44 

13 0.032 4.15 0.020 4.20 0.012 5.51 

14 0.010 4.13 0.010 4.29 0.010 5.46 

15 0.018 4.11 0.004 4.30 0.011 5.47 

16 0.013 4.10 0.013 4.22 0.050 5.45 

17 0.013 4.04 0.008 4.28 0.008 5.48 

18 0.069 4.04 0.066 4.26 0.066 5.42 

19 0.037 4.20 0.015 4.32 0.020 5.48 

20 0.038 4.35 0.011 4.23 0.002 5.46 

21 0.015 4.47 0.010 4.29 0.010 5.74 

22 0.015 4.21 0.007 4.47 0.007 5.71 

23 0.030 4.36 0.019 6.41 0.028 5.63 

24 0.012 4.41 0.027 5.80 0.012 5.56 

25 0.024 4.33 0.024 4.47 0.018 5.64 

26 0.042 4.38 0.037 5.10 0.032 5.59 

27 0.030 4.30 0.000 4.48 0.004 5.39 

28 0.035 4.23 0.001 4.51 0.011 5.72 

29 0.011 4.22 0.001 4.69 0.002 5.83 

30 0.005 4.17 0.005 4.63 0.005 5.87 

Mea
n 

0.026 
 

0.017 
 

0.019 
 

 

 

Moreover, the results confirmed when the solution time 

is the main factor for DM, the best alternatives are VNS 

(Type II) and VNS (Type I) between all proposed models 

and approaches. Another advantage of our algorithm is 

using less time compared to LRPZP1 and LRPZP2 and 

hypothesis tests accept this claim at the significance level 

0.05. 

TABLE 4. Results of hypothesis tests      

Hypothesis test P-value 

H0: Solution time of LRPZP2 is greater than or equal to 

solution time of  LRPZP1 
0.019 

H0: Used nodes for B&B in LRPZP2 is greater than or 

equal to LRPZP1 
0.000 

H0: The solution time of  the VNS (Type I) is less than or 
equal to the solution time of LRPZP1 

1.000 

H0: The solution time of  the VNS (Type I) is less than or 

equal to the solution time of LRPZP2 
1.000 

H0: The solution time of  the VNS (Type II) is less than 

or equal to the solution time of LRPZP1 
1.000 

H0: The solution time of  the VNS (Type II) is less than 
or equal to the solution time of LRPZP2 

1.000 

H0: The solution time of  the VNS (Type III) is less than 

or equal to the solution time of LRPZP1 
1.000 

H0: The solution time of  the VNS (Type III) is less than 

or equal to the solution time of LRPZP2 
1.000 

H0: The solution time of  the VNS (Type II) is equal to 

the solution time of  the VNS (Type I) 
0.108 

H0: The solution time of  the VNS (Type II) is less than 
or equal to the solution time of  the VNS (Type III) 

1.000 

H0: The solution time of  the VNS (Type I) is less than or 

equal to the solution time of  the VNS (Type III) 
1.000 

H0: The RG of  the VNS (Type II) is less than or equal 

the RG of  the VNS (Type I) 
0.998 

H0: The RG of  the VNS (Type II) is less than or equal 
the RG of  the VNS (Type III) 

0.911 

H0: The RG of  the VNS (Type I) is less than or equal the 

RG of  the VNS (Type III) 
0.031 

 

 

 

6. CONCLUSION 

 
This paper extends the literature of the LRP by providing two 

models of LRPZP. In this problem, we have a firm that tries to 

supply its market to maximize its profit. The firm tries to 

make decisions about the following three issues: (i) which 

strategy can be good for routing of vehicle in each zone? (ii) 

what price should be selected for demands in each zone? (iii) 

which potential location can be the best alternative for 

constructing a depot in each zone? In this article, we present 

two formulations consisting of node-based and flow-based 

model. In addition, a heuristic VNS algorithm for solving large-

scale problem is proposed. Some test instances are solved by two 

models and the VNS algorithm. Then, some hypothesis tests are 

carried out. Two models are compared based on solution time 

and the used node in branch and the bound tree method. The 

results of the tests show the comparative superiority of LRPZP2 

over LRPZP1. Other consequences of test instances are related to 

the comparison between models and the VNS algorithm. Results 

of hypothesis tests show the comparative superiority of the VNS 
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algorithm over two models based on solution time. We suggest 

three types of combinations for the local search of the algorithm.  

The second type gets the best performance between all of 

them. In this type, order of operators is indicated by generating 

random integer numbers between one and four.  

If the generated number is set at one, 1-Exchange should be 

operated. In case of two, 1-1 Move is run after 1-Exchange. In 

the case of three, 2-Opt is also performed. Finally, in the case of 

four, 2-Exchange should be applied after the previous operators. 

The performance of this heuristic in terms of both accuracy and 

efficiency is considered to be quite promising, according to our 

computational results obtained on 30 randomly generated 

instances. As a future research direction, we intend to focus on 

LRPZP in a competitive situation. The firm can be considered 

as an entrant that wants to enter a big market in the presence of 

incumbents. It should make a decision about price, vehicle 

route and selecting depots. Another research direction is to 

examine our problem by taking into account the quality-

dependent price of demands, since, another key factor for the 

customers is the level of feature and quality. 
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هچكيد
 

این مقاله، شرکتی در نظر گرفته شده که به دنبال تعیین بهینه قیمت، مسیر وسیله نقلیه و مکان دپو در هر ناحیه، با هدف بیشینه سازی  در

گذاری یابی کرده است. قیمتمسیر-یابیای را وارد ادبیات مسائل مکانگذاری منطقهبنابراین این مقاله، موضوع قیمت؛ باشدسود می

گیرد. مساله پیشنهادی ها مورد استفاده قرار میگذاری است که توسط بسیاری از شرکتهای قیمتای یکی از مهمترین سیاستمنطقه 

ریزی امهیوه کاربرد فراوان دارد. مساله توسط دو مدل مبتنی بر گره و جریان فرمولبندی شده است. مدل برنم در توزیع محصولاتی مثل

خطی تقریب زده شد و عملکرد آنها مورد مقایسه قرار گرفته است. به قظعهعدد صحیح غیرخطی بدست آمده، توسط یک روش قطعه

دنیای واقعی، یک الگوریتم جستجوی همسایگی متغیر توسعه یافت و برای تعدادی مساله اجرا گردید. سه ترکیب  با منظور سازگاری

فی شد و عملکرد آنها با هم و نیز با دو مدل پیشنهادی مورد مقایسه قرار گرفت. نتایج حاصل از محاسبات مختلف جستجوی محلی معر

دهند که مدل به علاوه نتایج نشان می .نمایدهای پیشنهادی را تایید میکارایی الگوریتم پیشنهادی در حل مسائل بزرگ به جای مدل

 نماید.تری را به نسبت مدل مبتنی بر گره استفاده میمبتنی بر جریان زمان محاسباتی کم
doi: 10.5829/idosi.ije.2015.28.11b.10 

 

 

 

 


