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A B S T R A C T

In the present paper, damped vibrations of non-homogeneous infinite rectangular plate of parabolically
varying thickness resting on elastic foundation has been studied. Following Lévy approach, the
equation of motion of plate of varying thickness in one direction is solved by quintic spline method.
The effect of damping, elastic foundation and taperness is discussed with permissible range of
parameters. The frequency parameter Ω decreases as damping parameter Dk increases and  it decreases
faster in clamped-simply supported as compared to clamped-clamped boundary conditions. It was also
observed that in the presence of damping parameter Dk the frequency parameter Ω decreases
continuously with increasing value of taper parameter for both the boundary conditions but variations
were found in the absence of damping parameter.

doi: 10.5829/idosi.ije.2015.28.07a.15

1. INTRODUCTION1

In this era of science and technology, due to the
significant role of plate vibration in every field of
applied sciences, it is required of an accurate
determination of their natural frequencies and mode
shapes. Thus, the knowledge of natural frequencies of
plate is of considerable importance at the design stage in
order to avoid resonances. The study of vibrational
behavior of plate of variable thickness has great
importance due to their increasing use in aerospace
industry, electronic and optical equipments and missile
technology, as plates with variable thickness have
significantly greater efficiency for bending, buckling
and vibration as compared to plate with uniform
thickness. Non–homogeneous elastic plates have
acquired great importance as in many practical
situations particularly in aerospace industry, naval ship
design and telephone industry, etc.; require a
phenomenal increase in the development of fiber
reinforced material due to desirability high strength,
light weight, corrosion resistance and high temperature

1*Corresponding Author’s Email: robin1986sr@gmail.com (Robin)

performance. An extensive review of the work up to
1985 on linear vibration of isotropic/anisotropic plates
of various geometries has been given by Liessa in his
monograph [1] and in a series of review articles [2-5].
In an up to date survey of literature, the author has come
across various models to account for infinite plate
proposed by researchers dealing with vibration. In 1973,
Jain and Soni [6, 7] investigated the free vibration of an
infinite strip of variable thickness and they also
analyzed the free vibrations of rectangular plate of
parabolically varying thickness. On the other hand,
Sobczyk [8] has considered the free vibrations of elastic
plate of uniform thickness whose elastic modulus varies
randomly whereas Poisson’s ratio and density of the
material of the plate remain constant. Plates resting on
elastic foundation have applications in pressure vessels
technology such as petrochemical, marine and
aerospace industry, building activities in cold regions
and aircraft landing in arctic operations [9, 10]. In this
order, Chen [11] solved the problem of bending and
vibrations of plates of variable thickness and Tomar and
Gupta [12] have studied the vibrations of isotropic
homogeneous infinite plate of parabolically varying
thickness resting on elastic foundation. In a series
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Tomar and Gupta[13] studied the free vibration of an
isotropic non-homogeneous infinite plate of
parabolically varying thickness.

Thermal buckling analysis of thin functionally
graded rectangular plates is presented by Kazerouni et
al. [14] in 2010 andnonlinear free and forced vibration
of a transversely isotropic rectangular magneto-electro-
elastic thin plate with simply supported boundary
conditions and closed circuit electro-magnetic boundary
conditions at top and bottom surfaces of the plate is
analyzed by Shooshtari and Razavi [15]. It has been
observed that much less work has taken place on
damped vibrations of plates. Damped vibrations of plate
has highly interested because, no vibration can be
thought of being in existence without damping.
Recently O’ Boy [16] have analyzed the damping of
flexural vibration, and Robin and Rana [17, 18]
discussed the damped vibration of rectangular plate
variable thickness resting on elastic foundation.
Recently, Shooshtari et al. [15] observed that in design
and fabricate drive shafts with high value of
fundamental natural frequency, using composite
materials instead of typical metallic materials could
provide longer length shafts with lighter weight.

Keeping this in view and practicality of problem,
damped vibration of infinite plate is analyzed by
employing the Lévy approach and the equation of
motion of plate is solved by Quintic spline method. The
plate is assumed to be of infinite extent in one of the
directions (along y-axis).

The non homogeneity of the plate material is
assumed to arise due to the variation in Young’s
modulus and density which varies exponentially. The
effect of damping, non-homogeneity, elastic foundation
and taperness is discussed with permissible range of
parameters. Maximum deflection for the different
values of the fundamental frequency of vibration is
computed for clamped-clamped and clamped-simply
supported boundary conditions for various values of
plate parameters.

2. MATHEMATICAL FORMULATION

Consider a non-homogeneous isotropic rectangular plate
of length ‘a’, breath ‘b’, thickness ‘h(x,y)’ and density ‘
ρ’, with resting on a winkler- type  elastic foundation
‘kf‘ occupying the domain 0 ,0x a y b    in xy
plane. The x-and y axes are taken along the principal
directions and z–axes is perpendicular to the xy plane.
The middle surface being z=0 and the origin is at one of
the corners of the plate. The differential equation which
governs the damped transverse vibration of such plates
is given by:
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and K is the damping constant, ( , , )w x y t the
transverse deflection and D the flexural rigidity at any
point in the middle plane of the plate. The plate is of
infinite dimension in one of the directions, i.e. in the
direction of y-axis. Thus, thickness of plate ‘h’,
Young’s modulus E and density ρ  of the plate vary
along x-axis only, the standing waves will be
independent of the y-coordinate. For a harmonic
solution, the deflection function w , satisfying the
condition at y=0 and y=∞, is assumed

( , , ) ( ) costw x y t W x e pt (2)

where ‘p’ is the circular frequency of vibration and ‘m’
a positive integer. Thus Equation (1) becomes Equation
(3).Introducing the non-dimensional variables

 H h a , X x a , E E a , W W a , a  , and

 22 2 2 am b  . On equating the coefficient of sin(pt)
and cos(pt) independently to zero, Equation (3) reduces
to Equation (4).
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Figure 1. Boundary conditions and vertical cross-section of
the parabolic tapered plate.

Substituting,  2
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   and ‘ ’ is

the taper constant due to parabolically varying thickness
of plate, and equating the coefficient of following
equation is formed:
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and elastic foundation parameter, respectively. The
solution of Equation (5) together with boundary
conditions at the edge X=0 and X=1 constitutes a two-
point boundary value problem. As the differential
equation has several plate parameters, therefore it
becomes quite difficult to find its exact solution. Keeping
this in mind, complex for the purpose of computation, the
Quintic spline interpolation technique, is used.

3. METHOD OF SOLUTION

Let f(x) be a function with continuous derivatives in the
range [0,1] and interval [0,1] be divided into ‘n’

subintervals by means of points iX such that

0 1 20 ... 1.nX X X X     

where 1 , ( 0,1,2,..., )iX X i X i nn     .

Let the approximating function ( )W X for the ( )W x be a
quintic spline with the following properties:
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interval 1( , )k kX X 
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In view of above axioms, the quintic spline takes the
form:
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are (n+5) unknown constants. Thus for the satisfaction
at the nth knot, Equation (5) reduced to:
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For m=0(1)n, above system contains (n+1)
homogeneous equation with(n+5) unknowns, ai ,
i=0(1)4, bj, j=0, 1, 2, …, (n-1), and can be represented
in matrix form as:

[A][B]=[0] (8)

where [A] is a matrix of order (n+1) × (n+5) while [B]
and [0] are column matrices of order (nx5).

4. BOUNDARY CONDITIONS AND FREQUENCY
EQUATIONS

The following two cases of boundary conditions have
been considered:
(i) (C-C): clamped at both the edge X=0 and X=1.
(ii) (C-SS): clamped at X=0 and simply supported
at X=1.
The relations that should be satisfied at clamped and
simply supported are:
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0dWW

dX
  ; 2

2 0d WW
dX
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respectively. Applying the boundary conditions C-C to
the displacement function by Equation (6), one obtains a
set of four homogeneous equations in terms of (n+5)
unknown constants which can be written as:

[Bcc][B]=[0] (10)

where Bcc is a matrix of order 4x(n+5). Therefore, the
Equation (8) together with Equation (10) gives a
complete set of (n+5) homogeneous equations having
(n+5)unknowns which can be written as:

[ ] [0]cc

A B
B
    

(11)

For a non-trivial solution of Equation (11), the
characteristic determinant must vanish, i.e.

0cc

A
B
 (12)

Similarly, for (C-SS) plate the frequency determinant
can be written as:

0ss

A
B
 (13)

where Bss is a matrix of order 4 × (n+5).

5. NUMERICAL RESULTS AND DISCUSSION

The frequency Equations (12) and (13) provide the values
of frequency parameter Ω for various values of plate
parameters. In the present paper, first three frequency
modes of vibration have been computed for the above
mentioned two boundary conditions for different values
of foundation parameter Ef=0.0(0.005)0.02, damping
parameter Dk=0.0(0.025)0.01 and taper parameter
α=0.0(0.1)0.4 for non-homogeneity parameter β=0.0, 0.4,
Poisson ratio’s ν=0.3, thickness of plate h=0.03 and
aspect ratio a/b=0.25.

The numerical method provides approximate
values.Therefore, in order to minimize the error, there is
an urgent need to determine the optimum size of
interval length ΔX. In the present problem, a computer
program was developed and executed for n=10(10)150
and observed that no consistent improvement in results
while n≥140 for clarity (Figure 2a -2b). Therefore, the
results are obtained for n=140 and depicted through
graphs (3-7). It is found that frequency parameter for
clamped plate is greater than that of simply supported
plate whatever the values of other parameters are.

(a)

(b)
Figure 2. Percentage error in frequency parameter Ω: (a) C-C
plate (b) C-SS  plate, for a/b=0.25, α=0.0, Dk=0.0,
Percentage error=[(Ωn- Ω140)/ Ω140]x100; n=10(10)140.

(a)

(b)
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(c)
Figure 3. Natural frequencies for C-C and C-SS plates: (a)
First mode (b) Second mode (c) Third mode ,for a/b=0.25 .
―,C-C; --,C-SS;, α=0.0 , Ef=0.0, β=0.0;, α=0.0 , Ef=0.0,
β=0.04;o, α=0.0 , Ef=0.01,β=0.0; ●, α=0.0 , Ef=0.01, β=0.01;
□, α=0.4 , Ef=0.0, β=0.0;, α=0.4 , Ef=0.0, β=0.01; Δ, α=0.4
, Ef=0.01, β=0.0;  , α=0.4 , Ef=0.01, β=0.01.

Figure 3 shows the values of frequency parameter
Ω with the increasing value of damping parameter (Dk)
for the fixed value of  non homogeneity parameter β,
taper constant α and foundation parameter Ef for first
three modes of vibration of C-C and C-SS plates. Figure
3a shows the behavior of frequency parameter Ω which
decreases with the increasing values of damping
parameter Dk  for two different values of  taper
parameter α=0.0, 0.4,  foundation parameter Ef   =0.0,
0.01 and non homogeneity parameter β=0.0, 0.4 for
both plates. The rate of decrease of Ω with damping
parameter Dk for C-SS is higher than that for C-C plate
keeping all other plate parameters fixed. This rate
decreases with the increase in the value of non
homogeneity parameter β. A similar inference can be
drown from Figure 3b and 3c, when the plate is
vibrating in the second mode as well as in the third
mode of vibration except that the rate of decrease of Ω
with Dk is lesser as compared to the first mode. Figure 4
provides the inference of foundation parameter Ef on
frequency parameter Ω for two values of damping
parameter Dk=0.0, and 0.01, for the fixed value of taper
parameter α=0.0, 0.4 and non homogeneity parameter
β=0.0, 0.4. It is noticed that the frequency parameter Ω
increases continuously with the increasing value of
foundation parameter Ef for C-C and C-SS plates,
whatever be the value of other plate parameters. It is
found that the rate of increases of frequency parameter
Ω for C-SS plate is higher than C-C plate for three
modes. Figure 4a gives the inference of foundation
parameter Ef on frequency parameter Ω for the first
mode of vibration. This rate increases with the increase
in the value of foundation parameter Ef, it decreases
with the increases in the number of modes, as clear from
3b and 3c when the plate is vibrating in the second and
third mode of vibration. From Figure 4b, the effect of

foundation parameter is found to increase the frequency
parameter Ω, however the rate of increase reduces to
more than half of the first mode for both boundary
conditions. In case of the third mode, this rate of
increase further decreases and becomes nearly half of
the second mode as is evident from Figure 4c.

(a)

(b)

(c)
Figure 4. Natural frequencies for C-C and C-SS plates: (a)
First mode (b) Second mode (c) Third mode ,for a/b=0.25 .
―,C-C; ----,C-SS; , α=0.0 , Dk=0.0, β=0.0; , α=0.0 , Dk
=0.01, β=0.0; ○, α=0.0 , Dk =0.0,β=0.4; ●, α=0.0 , Dk =0.01,
β=0.4; □, α=0.4 , Dk =0.0, β=0.0;  , α=0.4 , Dk =0.1, β=0.0;
Δ, α=0.4 , Dk =0.0, β=0.4; , α=0.4 , Dk =0.01, β=0.4.
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Figure 5 shows the effect of taper parameter α on

frequency parameter Ω for two different values of
damping parameter Dk =0.0 and 0.01respectively, for
the fixed value of taper parameter α=0.0, 0.4,
foundation parameter Ef =0.0, 0.01and β=0.0, 0.4.
Figure 5a provides the graphs of frequency parameter Ω
verses taper parameter α for the first mode of vibration.
It is observed in the presence of damping parameter Dk,
i.e. for Dk =0.1,that the  frequency parameter Ω
decreases continuously  with increasing values of taper
parameter α for both the boundary conditions, whatever
be the value of other plate parameters. In the absence of
damping parameter Dk, .i.e for Dk =0.0, it has been
observed that the frequency parameter Ω decreases with
increasing values of taper parameter α for C-C plates
and it has also been observed that for C-SS plate, there
is a continuously decrement in the value of frequency
parameter Ω for fixed values of Ef =0.0, and β=0.0, 0.4.
But, fluctuations in results we have found with Ef as
constant and with β=0.0, 0.4. The values were found to
be increasing in Ef=0.01 and β=0.0. In case where
Ef=0.01 and β= 0.4, the results had both increasing and
decreasing values. The local minima was observed as
α=0.3. Figures 5b and 5c show the continuous
decrement in frequency parameter Ω with the increased
value in α, for second and third mode, respectively.

The normalized displacements for the two boundary
conditions C-C and C-SS, considered in this paper are
shown in Figure 6 and 7, respectively. The plate
thickness varies parabolically in X-direction and the
plate is considered resting on elastic foundations
Ef=0.02 with damping parameter Dk=0.01. Mode
shapes for a rectangular plate i.e, a/b=0.25 have been
computed and observed that the nodal lines are seen to
shift towards the edge, i.e. X=1 as the edge X=0
increases in thickness for both the plates. No special
change was seen in the pattern of nodal lines by taking
different values of β and Ef. As normalized
displacements were differing only at the third or fourth
place after decimal for both boundary conditions.

(a)

(b)

(c)

Figure 5.Natural frequencies for C-C and C-SS plates: (a)
First mode (b) Second mode (c) Third mode ,for a/b=0.25 .
―,C-C; ----,C-SS;, Dk=0.0 , Ef=0.0, β=0.0; ,Dk=0.01 ,
Ef=0.0, β=0.0; ○,Dk =0.0 , Ef=0.01,β=0.0; ●,Dk =0.01 ,
Ef=0.01,β=0.0; □,Dk =0.0 , Ef=0.0, β=0.4; ,Dk =0.01 ,
Ef=0.0, β=0.4; Δ,Dk =0.0 , Ef=0.01, β=0.4;  ,Dk
=0.01,Ef=0.01, β=0.4

Figure 6. Normalized displacements for C-SS-C-SS plate, for
a/b=0.25; h=0.03,Dk=0.01, Ef=0.02 ;―,First mode;
――,second mode ; ……,third mode; ●,α=-0.5,β=-0.5; □,
α=0.5, β=0.5;, α=0.5,β=-0.5;, α=-0.5,β=0.5;
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Figure7. Normalized displacements for C-SS-SS-SS plate, for
a/b=0.25; h=0.03,Dk=0.01, Ef=0.02;―,First mode;――,
second mode; ……,third mode;●,α=-0.5,β=-0.5; □, α=0.5,
β=0.5;, α=0.5,β=-0.5;, α=-0.5,β=0.5;

6. CONCLUSION

In the present study, results are computed using
MATLAB within the permissible range of parameters
up to the desired accuracy (10-8), which validates the
actual phenomenon of vibrational problem. Variation in
thickness, elastic foundation and damping parameter are
of great interest since it provides reasonable
approximation to linear vibrations. One of the major
causes of plate failures in industrial machines is from
undamped/damped vibration, which results in high
cyclic fatigue. Determination of vibration frequencies is
of utmost importance for assessment of failure life. The
present paper finds the required damping to reduce the
plate vibrations. After assessment of inherent material
damping, the balance damping may be provided by
external means e.g. friction damping or lacquer
damping. Thus, the present study may be helpful in
designing plates which requires an accurate
determination of their natural frequencies and mode
shapes also by proper choice of these parameters
required natural frequency can be achieved for
vibrational model.Thus, the present study may be useful
for design engineers especially in rigid roadway
pavement under moving traffic loads.

7. REFERENCES

1. Leissa, A.W., Vibration of plates. 1969, DTIC Document.
2. Leissa, A., "Recent research in plate vibrations, 1973-1979:

Classical theory", (1977).

3. Liessa, A., "Recent research in plate vibrations, 1973–1976:
Complicating effects", The Shock and Vibration Digest,  Vol.
9, No. 11, (1977), 21-35.

4. Leissa, A., "Plate vibration research, 1976-1980: Complicating
effects", Shock and Vibration Inform. Center The Shock and
Vibration Digest,  Vol. 13, No. 10, (1980).

5. Leissa, A.W., "Recent studies in plate vibration, 1981-1985:
Complicating effects", Shock and Vibration Digest,  Vol. 19,
(1987), 10-24.

6. Jain, R. and Soni, S., "Free vibrations of an infinite strip of
variable thickness", Aeronautical Society of India, Journal,
Vol. 24, (1972), 344-351.

7. Jain, R.K. and Soni, S.R., "Free vibrations of rectangular plates
of parabolically varying thickness", Indian Journal of pure
applied Mathematics,  Vol. 4, No. 3, (1973), 267-277.

8. Sobczyk, K., "Free vibrations of elastic plate with random
properties—the eigenvalue problem", Journal of Sound and
Vibration,  Vol. 22, No. 1, (1972), 33-39.

9. McFadden, T.T. and Bennett, F.L., "Construction in cold
regions", Wiley, New York, (1991).

10. Civalek, O., and Acar, M.H., "Discrete singular convolution
method for the analysis of mindlin plates on elastic
foundations", International Journal of Pressure Vessels and
Piping,  Vol. 84, No. 9, (2007), 527-535.

11. Chen, S., "Bending and vibration of plates of variable
thickness", Journal of Manufacturing Science and
Engineering,  Vol. 98, No. 1, (1976), 166-170.

12. Tomar, J., Gupta, D. and Jain, N., "Free vibrations of an
isotropic nonhomogeneous infinite plate of linearly varying
thickness", Meccanica,  Vol. 18, No. 1, (1983), 30-33.

13. Tomar, J . , Gupta, D. and Jain, N., "Free vibrations of an
isotropic non-homogeneous infinite plate of parabolically
varying thickness", Indian Journal of pure Applied
Mathematics,  Vol. 15, No. 2, (1984), 211-220.

14. Kazerouni, S., Saidi, A. and Mohammadi, M., "Buckling
analysisof thin functionally graded rectangulare plates with two
opposite edges simply supported", International Journal of
Engineering Transactions B: Applications,  Vol. 23, (2010),
179-192.

15. Shooshtari, A. and Razavi, S., "Nonlinear vibration analysisof
rectangular magneto-electro-elastic thin plates", International
Journal of Engineering-Transactions A: Basics,  Vol. 28, No.
1, (2014), 136-144.

16. O’Boy, D. and Krylov, V.V., "Damping of flexural vibrations in
circular plates with tapered central holes " , Journal of Sound
and Vibration,  Vol. 330, No. 10, (2011), 2220-2236.

17. Robin, R.U., "Damped vibrations of rectangular plate of variable
thickness resting on elastic foundation: A spline technique",
Journal of Applied & Computational Mathematics,  Vol. 2, No.
130, (2013).

18. Robin and Rana, U.S., "Numarical study of damped vibration of
orthotropic rectangular plates of variable thickness", Journal of
Orissa Mathematical Society,  Vol. 32, (2013), 1-17



1089 U. S. Rana and Robin/ IJE TRANSACTIONS A: Basics Vol. 28, No. 7, (July 2015) 1082-1089
.

Damped Vibrations of Parabolic Tapered Non-homogeneous Infinite
Rectangular Plate Resting on Elastic Foundation

RESEARCH
NOTE

U. S. Ranaa, Robinb
aDepartment of Mathematics, D.A.V. (PG) College, Dehradun, India
bDepartment of Applied Science, Quantum School of Technology, Roorkee, India

P A P E R  I N F O

Paper history:Received 24May 2014Received in revised form 25April 2015Accepted 11 June 2015
Keywords:TapernessElastic FoundationDampingIsotropic

چکیده

سانمتکی بر پایه کشمتغیر سهمويضخامتبا نهایتبیمستطیلیصفحههمگنناشدهمیراارتعاشاتحاضر،مقالهدر
نوارروشازاستفادهباجهتیکدرمتغیرضخامتباصفحهحرکتمعادلهلوي،کردرويازپس. استشدهمطالعه
متغیر.استشدهبحثپارامترهامجازمحدودهباشیبوسانپایه کشکم،نوساناتاثر. استشدهحلquinticباریک

-گیرهمرزيشرایطبامقایسهدر، سادهگیرهدرویابدمیکاهش، DKافزایشبا میراییپارامترعنوانبهΩفرکانس
پیوستهطوربهΩفرکانسپارامتر،DKپارامترنوساناتحضوردرکهشدمشاهده،همچنین. یابدمیکاهشسریعترفشرده

.شدمیرایی مشاهدهپارامترغیابدرتغییراتاما،یابدمیکاهشمرزيشرایطدوهربرايدارشیبپارامترمقدارافزایشبا

.doi: 10.5829/idosi.ije.2015.28.07a.15


