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A B S T R A C T

Change point estimation in the area of statistical process control has received considerable attentions.
The assumption of uncorrelated observations is unrealistic in many cases. However, less attention has
been given to change point estimation in autocorrelated processes. Among the autocorrelated
processes, count data are most widely used in real-world. Different applications of count data are
discussed by many researchers such as syndromic surveillance data in healthcare, accident monitoring
systems and multi-item pricing models in management science. Poisson distribution for count
processes and the first-order integer-valued autoregressive (INAR (1)) model are considered in this
paper. We use a combined EWMA and C control chart to monitor the process. We propose change
point estimators for the rate and dependence parameters with linear trend under different magnitudes of
shifts. For this purpose, Newton’s method is used to estimate the paramaters of the process after the
change. Then, we develop the maximum likelihood estimators to estimate the real time of change in
the parameters. The accuracy and prescision of the proposed MLE estimators are evaluated through
simulation studies. In addition, the performance of the proposed estimators is compared with the ones
proposed for step change under linear drift. The simulation results confirm that the change point
estimators are effective in identifying linear trend in the process parameters. Finally, application of the
proposed change point estimators is illustrated through an IP counts data real case.

doi: 10.5829/idosi.ije.2015.28.07a.08

1. INTRODUCTION1

Statistical process control uses seven tools to reduce
variation leading to improvement in the performance of
processes. Improving in measurement systems and data
storage leads to taking observations very close to each
other in time and as a result increasing autocorrelation
between observations [1]. Nishina and Wang [2]
investigated the performance of cumulative sum
(CUSUM) control charts from the view point of the
change point estimation considering the autocorrelation.
Timmer and Pignatiello [3] develped an MLE approach
to determine the change point in the autoregressive
parameter, the variance of the white noise and the mean
of a first-order autoregressive process. Maximum
likelihood change point estimation for the pth-order
autoregressive model was proposed by Picard [4]. Perry
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and Pinatiello [5] extended an MLE to estimate the time
of a step change in the mean of stationary and invertible
ARMA processes. Perry [6] developed an MLE for the
time of polynomial drift in the mean of covariance-
stationary autocorrelated processes. Sometimes the
process is described by a count data. For instance, the
number of customers waiting in a line to be served [7],
number of failures in a unit of a product [8] and number
of complaints of customers in a service system [9] are
examples of count data processes. These cases are
usually modeled by the INAR (1) process which is
investigated by some researchers such as Al-Osh and
Alzaid [10] and Li [11]. Due to several applications of
INAR (1) processes in the recent years, this issue is
investigated by some researchers. Yontay et al. [12]
proposed a Two-sided CUSUM control chart for INAR
(1) processes to monitor this process with application to
hospital data. Andersson and Karlis [13] evaluated
INAR (1) model in the presence of missing data with an
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application to syndromic surveillance data. Yahav and
Shmueli [14] proposed a remedial solution for NORTA
method to generate Poisson count data with application
in management science. Morina et al. [15] used INAR
(2) model in order to investigate the number of hospital
emergency service arrivals caused by diseases. Also,
Weiß [16] proposed confidence regions for both
parameters of an INAR (1) model with real application
to IP counts data.

Torkamani et al. [17] proposed an MLE approach to
estimate the time of a step change in the autocorrelated
Poisson count processes modeled by first-order integer-
valued autoregressive (INAR(1)). Often deterioration in
a machine is shown by a linear change in the
parameters. Numerous applications of the autocorrelated
count data and Poisson processes were our motivation to
investigate this type of the processes. Hence, in this
paper we proposed an MLE approach to estimate the
time of a linear trend in the autocorrelated Poisson
count processes. To monitor the process, we apply the
C-EWMA control chart proposed by Weiß [8]. We
evaluate the proposed estimator compared to estimator
proposed by Torkamani et al. [17] under linear trend
disturbance. The results confirm the superiority of the
proposed estimator under linear trend. The structure of
the paper is as follows: Section 2 provides a description
of the INAR (1) model for autocorrelated Poisson count
processes. Also, the probability distribution function of
the INAR (1) process is introduced. In the next section,
maximum likelihood estimators of the change time for
the rate and dependence parameters are presented. The
performance of the proposed estimators is evaluated in
section 4. A real case study related to IP counts data is
presented in section 5. Our concluding remarks are
given in the final section.

2. THE INAR(1) MODEL AND DISTRIBUTION OF
AUTOCORRELATED POISSON COUNT PROCESSES

Common models for stationary real-valued processes
are the autoregressive moving average models.
However, this model is not usable for integer-valued
processes, because multiplication of a real number by an
integer value leads to a non-integer value [18]. To
overcome this problem, a thinning operation introduced
by Steutel and Harn [19] is applied to define integer-
valued ARMA models.

Consider X a discrete random variable with range
,...}1,0{0 N and  1,0 .

The thinning operation is defined as:

,
1
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j
jYX (1)

where,
jY is a sequence of independent identically

distributed (i.i.d). Bernoulli random variables and

independent of X . X arises from X by binomial
thinning and  is the binomial thinning operator.

Then, the INAR (1) process was introduced by
McKenzie [20], and Al-Osh and Alzaid [10]. The INAR
(1) model arises from // MM queuing system [21].
The recursion of the INAR (1) process is defined by the
equation

ttt XX   1 (2)

where, tX is the number of population at a time t , t is
the number of new population,

1tX is the number of
population of previous period which are still in the
queuing system. For instance, Brannas et al. [22]
applied this model for modeling and forecasting guest
nights in hotels. The stationary Poisson INAR (1) model
assumes that t follows an i.i.d. Poisson ( )
distribution and 0X Poisson ( )1/(   ). Then, tX is a
Markov chain with marginal distribution of Poisson (

)1/(   ) [18]. ,
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The probability distribution function of  YZ is a
convolution of a Poisson and a binomial distribution
[23]. Therefore, the probability density function for the
INAR (1) process is
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Function of an INAR (1) model, derived [24] by
multiplication of the probability generating function of
all taken samples, should be written based on its
conditional distribution as:
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The probability density function of first observation is
defined as follows:
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3. PROPOSED CHANGE POINT ESTIMATOR
UNDER LINEAR TREND

In this section, we derive a maximum likelihood
estimator to find the real time of the drift change point
in the rate ( ) and the dependence ( ) parameters,
where we consider a linear trend model for the
mentioned parameters.

3. 1 Change-point Estimator for the Rate
Parameter It is assumed that an INAR (1) process
initially is in-control status with known rate parameters
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0  . After an unknown point in time a change in the

process occurs and the value of
0  changes to an

unknown value where )(101   ii
for

Ti ...,,1  and T is the time when a control chart
signals an out-of-control status.

We propose a MLE approach to estimate the change
point when a linear trend occurs in the rate parameter of
an autocorrelated Poisson process. The log-likelihood
function for this process can be written as:
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Because the slope parameter
1 is unknown, by taking

the partial derivative of Equation (6) with respect to 1 ,
we obtain
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As it is obvious in the above equation, there is no
closed-form solution for the slope parameter ( 1 ).
Hence, to overcome this problem, we apply Newton's
method to approximate the slope parameter. For more
details; see [25] and [26]. Newton's method is a
derivative based algorithm that uses the linear
approximation in order to search and find the root of an
equation in the given model.

xxf
dx
dxfxxf  )()()( (8)

where kk xxx  1 . If set )( xxf  equal to zero,
the following equation is obtained:
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Note that the initial point 0x and an appropriate stopping
scheme lead the algorithm to converge at the root of

.f  Since  is unknown, for each potential  the

algorithm is repeated and the value of 1
ˆ is obtained

through the following equation:
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The computations of )(xf  and )(xf  are given in
Appendix A. Finally, substituting 1̂ for 1 in Equation
(11), we obtain the estimated change point as follows:
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3. 2. Change-point Estimator for the Dependence
Parameter It is assumed that an INAR (1) process
starts with value of the known dependence parameter

0  for the first  observations. A change in the
process occurs and the value of

0  changes to an
unknown value where )(201   ii

for

Ti ...,,1  where T is the time when a control chart
signals an out-of-control state. Note that the dependence
paramater is between zero and one. Derivation of the
log-likelihood function for the mentioned process is as
follows:
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The slope parameter 2 is unknown.  Hence, the partial
derivative of Equation (12) with respect to 2 leads to
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In Equation (13), there is no closed-form solution for
the slope parameter (

2 ). To approximate for the slope
parameter, we use Newton's method according to
Equation (14) and estimate 2

ˆ as:
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   (14)

See Appendix B for calculations of )(xf  and )(xf  .
We obtained the change point estimate of  by
Substituting 2̂ in the following equation:
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3. 3. Monitoring Scheme Weiß [10] proposed a
control chart based on a combination of the C and a
EWMA control chart to monitor the INAR (1) process.
Due to the suitable performance of the combined C-
EWMA charts, it is used in this paper to monitor the
rate ( ) and dependent ( ) parameters. The EWMA
statistic is defined as

))1(( 1 tEWMAtEWMAt QXroundQ  (16)

where, ))1/((0   roundQ and ]1,0(EWMA is the
smoothing parameter. We considered ),( tt QX as
statistics that are plotted simultaneously on a C-chart
and a EWMA chart.

4. PERFORMANCES OF THE PROPOSED CHANGE
POINT ESTIMATORS

In this section, the performance of the proposed
estimators for rate and dependence parameters is
investigated by a Monte Carlo simulation when a linear
trend change is occurred. MATLAB software2 is used
for comparison study through 5000 simulation runs. At
first, we indicate a diagnostic plot to illustrate the use of
the change point estimator for the rate and the
dependence parameters. Then, we use a Monte Carlo
simulation to make performance comparisons between
the proposed estimatorsand received signal from the C-
EWMA control charts. Also, we consider a comparison
study between estimator of linear trend and step change
when a linear trend occurs in the process.

4. 1. Evaluating the Change Point Estimator of the
Rate Parameter We present a diagnostic plot
shown in Figure 1. The time is indicated by horizontal
axis and vertical axis represents the value of statistic

)(tX . We assume there is an INAR (1) process and
generate 50 observations with 100  and 7.0 .
Then, the rate parameter changes to an out-of-control
status as )(101   ii where the slope parameter is
equal to 2.01  . The control chart signals at
observation 75. As shown in Figure 1, the maximum

2MATLAB and Statistics Toolbox Release 2009b, The MathWorks,
Inc.

log-likelihood value is obtained at t=54. The result
shows that the change point estimator performs well in
estimating the real time of the change and estimates the
change point closer to real change point respect to the
signal time. To evaluate the performance of the
proposed estimators, we consider an INAR (1)
processes with parameters 1.0 ,0.4 and 0.7, 6 ,4
and 10. Table 1 shows the control limits used for
monitoring autocorrelated Poisson count processes
proposed by Weiß [8]. The averages of change point
estimator for the linear trend and step change under
different values of dependence parameter and various
shifts of the rate parameter are indicated in Figure 2. As
shown in this figure when the shift size is small, the C-
EWMA control chart indicates a poor performance to
distinguish the signal. Furthermore, when the value of
the slope parameter increases, the estimator will provide
a more accurate and precise estimate of . Also, we
obtain that when a linear trend disturbance is occurred,

lt̂ is more accurate than the sĉ .
The precision of the proposed estimators is

investigated by standard deviation and mean square
errors (MSE), when a linear trend disturbance occurs in
the process. The results in Table 2 show that in most
cases under linear trend disturbance, the mean square
errors of the linear trend estimator are less than the ones
for the step change point estimator. Also, the accuracy
of the two change point estimators significantly
improves by increasing the value of the slope parameter.

(a)

(b)
Figure 1. (a) C control chart (b) EWMA control chart and the
change point estimator of the rate parameter ,7.0
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TABLE 1. Control limits of the C and EWMA control charts
(Weiß[8])

10
  EWMA lc uc le ue
0.1 0.1 2 21 9 14
0.4 0.1 5 29 14 21
0.7 0.05 18 50 30 39

6
0.1 0.75 0 15 4 13
0.4 0.1 1 19 8 14
0.7 0.1 8 34 14 25

4
0.1 0.25 0 11 3 8
0.4 0.75 0 15 1 13
0.7 0.1 4 24 10 18

(a)

(b)

(c)
Figure 2. Average change point estimates for the rate
parameter (a) 10 , (b) 6 , and  (c) 4

4. 2. Evaluating the Change Point Estimator of the
Dependence Parameter We generate observations
from the INAR (1) process with parameters 1.0 , 0.4
and 0.7, and 10 , 6 and 4. To monitor the process, the
C-EWMA control chart is used. As shown in Table 1,
the control limits proposed by Weiß [8] is used for
monitoring autocorrelated Poisson count processes. The
results of simulation runs for the average of change
point estimates for the linear trend and step change
under different values of dependence parameter and
various shifts of the rate parameter are illustrated in
Figure 3. We conclude from this figure that under small
magnitudes of shift, the performance of the C-EWMA
control chart in detecting signal decreases significantly.
However, by increasing the value of slope parameter,
the proposed estimator estimates the real change point
more accurately and precisely. Also, the lt̂ outperforms
the

sĉ under different linear trend disturbances.

(a)

(b)

(c)
Figure 3. Average of change point estimates for the
dependence parameter (a) 1.0 , (b) 4.0 and , (c)
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TABLE 2. Precision criteria including standard error and
MSE of the proposed rate parameter estimator in comparison
with the step estimator with 0.1,0.4,0.7  under different
shifts
 10

0.1

1 0.1 0.4 1.5 2.5
se(

lt̂
) 0.250 0.11 0.06 0.05

se(
sĉ ) 0.197 0.10 0.06 0.05

MSE(
lt̂
) 342.6 65.6 17.1 10.8

MSE(
sĉ
) 347.9 61.6 17.2 11.6

0.4

se(
lt̂
) 0.274 0.155 0.069 0.054

se(
sĉ ) 0.214 0.123 0.068 0.056

MSE(
lt̂
) 123.1 53.02 11.05 7.177

MSE(
sĉ
) 150.2 48.11 12.28 8.222

0.7

se(
lt̂ ) 0.245 0.11 0.05 0.03

se(
sĉ ) 0.191 0.09 0.04 0.03

MSE ˆ( )lt 305.8 66.4 13.4 9.5
MSE(

sĉ
) 407.3 61.5 11.5 8.8

 6

0.1

se(
lt̂
) 0.23 0.12 0.07 0.05

se(
sĉ ) 0.18 0.10 0.07 0.06

MSE(
lt̂
) 243.6 63.9 20.9 12.7

MSE(
sĉ
) 244.5 57.6 20.1 17.4

0.4

se(
lt̂
) 0.235 0.111 0.067 0.044

se(
sĉ ) 0.179 0.090 0.05 0.048

MSE(
lt̂
) 28.90 8.76 2.62 1.459

MSE(
sĉ
) 35.72 9.37 2.14 1.838

0.7

se(
lt̂
) 0.212 0.11 0.06 0.050

se(
sĉ
) 0.168 0.09 0.05 0.043

MSE(
lt̂
) 219.6 53.7 10.3 10.1

MSE(
sĉ
) 252.9 51.2 12.1 7.9

 4

0.1

se(
lt̂
) 0.1243 0.1223 0.0808 0.0366

se(
sĉ ) 0.1225 0.1137 0.0890 0.0829

MSE(
lt̂
) 11.960 12.745 4.1117 2.8653

MSE(
sĉ
) 12.869 12.658 4.911 5.5490

0.4

se(
lt̂
) 0.2233 0.1049 0.050 0.0493

se(
sĉ ) 0.1610 0.0939 0.061 0.0514

MSE(
lt̂
) 38.517 11.999 1.3523 1.3367

MSE(
sĉ
) 42.253 12.879 2.1303 1.5950

0.7

se(
lt̂
) 0.2362 0.1318 0.061 0.0511

se(
sĉ
) 0.1950 0.1015 0.0526 0.0510

MSE(
lt̂
) 33.409 10.766 6.8707 4.1113

MSE(
sĉ
) 36.527 8.461 5.7630 4.1923

TABLE 3. Precision criteria including standard error and
MSE of the proposed rate parameter estimator in comparison
with the step estimator with ,1.0 4.0 and 0.7 under
different shifts
 10

1.0

2 0.01 0.03 0.05
se( l̂t ) 0.2517 0.1622 0.1291

se( ˆsc ) 0.1338 0.0518 0.0396

MSE (
lt̂ ) 11.71 8.13 3.4830

MSE (
ŝc ) 36.00 13.83 3.8800

4.0

se( l̂t ) 0.1652 0.0921 0.0737

se( ˆsc ) 0.0674 0.0285 0.0197

MSE (
lt̂ ) 139.095 42.461 27.911

MSE (
ŝc ) 395.81 80.099 36.045

7.0

se(
l̂t ) 0.1336 0.0896 0.0722

se( ˆsc ) 0.0373 0.0168 0.0125

MSE (
lt̂ ) 92.167 43.680 31.086

MSE(
ŝc ) 161.831 32.114 15.034

6

1.0

se( l̂t ) 0.3143 0.2084 0.1789

se( ˆsc ) 0.1841 0.0706 0.0443

MSE (
lt̂ ) 304.204 130.27 96.103

MSE (
ŝc ) 1080 199.64 83.537

4.0

se( l̂t ) 0.2649 0.1245 0.0696

se( ˆsc ) 0.1148 0.0448 0.0304

MSE (
lt̂ ) 35.45 5.562 2.879

MSE (
ŝc ) 108.6 12.808 9.596

7.0

se(
l̂t ) 0.1922 0.1726 0.1536

se( ˆsc ) 0.0487 0.0322 0.0248

MSE (
lt̂ ) 158.84 65.8315 32.49

MSE(
ŝc ) 189.17 44.1650 20.67

4

1.0

se( l̂t ) 0.360 0.238 0.1683

se( ˆsc ) 0.188 0.068 0.0461

MSE (
lt̂ ) 98.534 29.341 7.625

MSE (
ŝc ) 333.901 41.444 8.413

4.0

se(
l̂t ) 0.249 0.138 0.121

se( ˆsc ) 0.138 0.051 0.035

MSE (
lt̂ ) 49.622 114.673 13.624

MSE(
ŝc ) 178.097 31.92 15.956

7.0

se(
l̂t ) 0.266 0.153 0.143

se( ˆsc ) 0.066 0.029 0.023

MSE (
lt̂ ) 76.867 51.028 21.508

MSE(
ŝc ) 125.838 36.709 7.858
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Finally, we use Monte Carlo simulation to evaluate

the precision of the proposed estimators through their
standard deviation and their mean square errors (MSE),
when a linear trend change occurs in the process. The
results are summarized in Table 3. We can conclude
from this table that the values of mean square errors
related to linear trend change point estimator are less
than the MSEs of the step change point estimator in
most cases. Also, the accuracy of two change point
estimators significantly improves by increasing the
value of the slope parameters.

Table 4 indicates percentage of the time, the
difference between the real and the estimated change
points falls within various intervals. Note that the first
and second rows in each cell show the precision of the
proposed and step estimators, respectively. The results
show that as the magnitude of the linear shift in the
process mean increases, the percentage of falling the
change point estimate in the specific interval from the
real change point decreases. It shows the proposed
estimator has more acceptable precision rather than the
step estimator. The same results are obtained for the rate
parameter and other values of dependence parameter
(not reported here).

5. A REAL CASE: IP COUNTS DATA

We use a real IP counts data that collected by the server
of the statistic Department University of Wurzburg [9].
This data collected on time interval of November and
December 2005, between 10 o'clock in the morning and
6 o'clock in the evening with 240 time series
observations. In this case, count data is defined as the
number of different users or IP addresses access the
server within period of length 2 min. If an INAR (1)
model is fitted on the data set, the parameters of the
model are estimated equal to 29.0 and 91.0 [11].
We adjusted ALR0 equal to 273.67 by setting the
control limits of C and EWMA control charts equal to
lc=0, uc=5, le=1, and ue=4 through 10000 simulation
runs.

Finally, the proposed change point estimators are
used to find the real time of linear trend changes in the
parameters of the INAR(1) process. A linear trend
change occurs in the process at observation 241 with the
slope parameter 3.01  . EWMA control chart signals at
250th observation. The maximum log-likelihood value
is obtained at t=244 by using the rata parameter change
point estimator. Also, the step change point estimator
find the real time of a change at t=248.

We also evaluate the performance of the change
point estimator under linear trend in dependence
parameter. A linear trend occurs in the process with the
slope parameter 05.02  . As illustrated in Figure 5, the
EWMA control chart signals at 248th observation. The

maximum log-likelihood value is obtained at t=242.
This value for the step change estimator  is obtained at
t=247. The results show that the proposed estimators
estimate the real change points accurately and it confirm
that the model is applicable for real world applications
as well.

TABLE 4. Precision of the change point estimator for the
dependent parameter
 10

1.0

2

u
0.01 0.03 0.05

0ˆ p 0.0023
(0.0003)

0.0083
(0.0003)

0.0063
0.0007)

1ˆ p 0.005
(0.0004)

0.0183
(0.0007)

0.0163
(0.0017)

2ˆ p 0.009
0.0007

0.0317
(0.001)

0.0260
(0.0027)

3ˆ p 0.0127
0.0003

0.0423
(0.001)

0.0340
(0.0043)

5ˆ p 0.0173
0.0007

0.0573
(0.0033)

0.0520
(0.0137)

6ˆ p 0.0203
0.0013

0.0643
(0.005)

0.0553
(0.0240)

4.0

0ˆ p 0.046
(0.0001)

0.097
(0.0003)

0.1468
(0.003)

1ˆ p 0.131
(0.0003)

0.283
(0.0007)

0.399
(0.009)

2ˆ p 0.220
(0.002)

0.436
(0.0023)

0.582
(0.015)

3ˆ p 0.301
(0.002)

0.573
(0.0013)

0.740
(0.0157)

5ˆ p 0.444
(0.0033)

0.773
(0.0033)

0.911
(0.031)

6ˆ p 0.508
(0.0047)

0.841
(0.0063)

0.936
(0.089)

7.0

0ˆ p 0.081
(0.0001)

0.129
(0.0003)

0.052
(0.0001)

1ˆ p 0.247
(0.0001)

0.335
(0.0007)

0.197
(0.00013)

2ˆ p 0.390
(0.001)

0.499
(0.0033)

0.434
(0.0103)

3ˆ p 0.505
(0.0011)

0.632
(0.01)

0.683
(0.066)

5ˆ p 0.673
(0.0013)

0.821
(0.083)

0.914
(0.184)

6ˆ p 0.732
(0.0037)

0.883
(0.148)

0.937
(0.188)



A. Ashuri and A. Amiri / IJE TRANSACTIONS A: Basics Vol. 28, No. 7, (July 2015) 1021-1030 1028

(a)

(b)
Figure 4. (a) C control chart (b) EWMA control chart and the
change point estimator for the rate parameter for IP counts
data

(a)

(b)
Figure 5. (a) C control chart (b) EWMA control chart and the
change point estimator for the dependence parameters for IP
counts data

6. CONCLUDING REMARKS

In this paper, a first-order integer-valued autoregressive
(INAR (1)) model was considered. We compared the
proposed estimators of linear trend with the
corresponding step change point estimators when a
linear trend occurs in the process. The results confirmed
the superiority of the proposed estimators to estimate
the real time of linear trend changes in the process
parameters rather than the step change point estimators.
We also investigated the effect of autocorrelation
coefficient, the smoothing parameter of the EWMA
control chart and the rate parameter of the Poisson
distribution on the accuracy and precision of change
point estimators. The results showed that the proposed
estimators outperform the corresponding step change
point estimators under all situations. As future
researches, we suggest developing change point
estimators for autocorrelated geometric, and binomial
distributions under different shifts. Also, investigating
the effect of missing data on the performance change
point estimators developed in this research as well as
the other researches in the area of change point
estimation such as Keramatpour et al. [27] and
Fallahnezhad et al. [28] and proposing some remedial
methods based on Ashuri and Amiri [29] can be a
fruitful area for future research.
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APPENDIX A

DERIVATIONS RELATED TO NEWTONS METHOD
FOR THE RATE PARAMETER

For the rate parameter, we assume
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then, the first derivative of the log likelihood function
with respect to the rate parameter is calculated as
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Also, the second derivative of the log likelihood
function is equal to
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APPENDIX B

DERIVATIONS RELATED TO NEWTONS METHOD
FOR THE DEPENDENCE PARAMETER

The appendix presents computations of )(),( xfxf  in
order to estimate the slope parameter in the newton's
method.
For the dependence parameter, we assume
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The first derivative of thelog likelihood function is
calculated as follows:
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Also, the second derivative of the log likelihood
function is
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هچکید

در بسیاري از کاربرد هاي دنیاي واقعی . تخمین نقطه تغییر در حوزه کنترل فرایند آماري مورد توجه زیادي قرار گرفته است
با این وجود تخمین نقطه تغییر در فرآیندهاي خود همبسته کمتر مورد توجه قرار . فرض استقلال مشاهدات غیر واقعی است

داده هاي نظارت بر . در بین فرآیند هاي خودهمبسته، داده هاي شمارشی بیشترین کاربرد را در دنیاي واقعی دارند. گرفته است
سندروم در حوزه بهداشت و درمان، سیستم هاي پایش تصادف و مدل هاي قیمت گذاري چند منظوره در علم مدیریت نمونه 

توزیع پواسان به همراه . که مورد بررسی و بحث توسط محققان قرار گرفته استهایی از کاربرد هاي داده هاي شمارشی است
-Cبه منظور پایش فرآیند از نمودار کنترل . عدد صحیح مرتبه اول دراین مقاله در نظر گرفته شده استنمدل اتورگرسیو

EWMAی تحت شیفت تدریجی ارائه شده تخمین زننده نقطه تغییر براي پارامترهاي نرخ وقوع و وابستگ. استفاده شده است
سپس تخمین زننده هاي ماکزیمم . روش نیوتن به منظور تخمین پارامترهاي فرآیند بعد از نقطه تغییر استفاده شده است. است

صحت و دقت تخمین زننده ارائه شده از . درستنمایی به منظور تخمین زمان واقعی تغییر در پارامتر ها توسعه داده شده است
هاي تحت شیفت تدریجی با تخمین زننده هاي بعلاوه، عملکرد تخمین زننده. بیه سازي مورد ارزیابی قرار گرفته استطریق ش

نتایج شبیه سازي کارآیی براورد کننده پیشنهادي را در کشف شیفت هاي تدریجی تایید . پله اي مورد مقایسه قرار گرفته است
.نشان داده شده است) داده هاي شمارشی پروتکل اینترنت(ي داده هاي واقعی در پایان کاربرد مدل پیشنهادي برا. می کند
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