Numerical Simulation of Cavitation in Mixed Flow Pump


Mechanical Engineering, Babol University of Technology


The purpose of this study is to investigate the performance and three-dimensional behavior of the flow in a mixed flow pump and the way cavitation phenomenon is affected by different parameters such as fluid temperature, pump speed and flow rate. Computational fluid dynamic software FLUENT 6.3 was utilized to simulate the whole flow field of the pump. RNG k-ε model combined with standard wall functions is chosen to deal with the turbulent feature of the problem. The studied pump has four blades mounted on a conical hub which form the rotary part and nine static vanes afterward as the stationary part. So the rotor-stator interaction was treated with a Multiple Reference Frame (MRF) technique. Different cases were analyzed for different flow rates and different pump speeds. While the flow rates variation and the pump revolution change cavitation occurrence widely, the temperature variations caused by weather changes during a year has little effect on cavitation. The cavitation region which is defined by the saturation pressure in that temperature was shown for various cases on a blade