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A B S T R A C T  
 

 

In this paper a novel method for construction of an exponential observer for nonlinear system is 
proposed. The method is based on direct solution of dynamic error without any linearizing of nonlinear 
terms. Necessary and sufficient conditions for construction of direct observer are presented. Stability of 
the observer is checked using Lyapunov theorem. Also, the ability of this observer is checked by 
implementing the observer for fault detection of micro tunable capacitor subjected to nonlinear 
electrostatic force. 
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1. INTRODUCTION1 

 
Fault expresses deviation of one or more system 
characteristics from their ideal measure. Besides 
decreasing efficiency, accuracy, and velocity of the 
system, fault is responsible for casualty and financial 
loss on occasions. So, quick and precise fault detection 
of a system is significant in function of a process. 

Fault detection and isolation (FDI) techniques can be 
broadly classified into two categories. These include 
Model-based FDI and Signal processing based FDI. In 
signal processing based FDI, some mathematical or 
statistical operations are performed on the 
measurements, or some neural network is trained using 
measurements to extract the information about the fault 
[1]. Model based techniques are based on comparison of 
the output of the system with the estimated one obtained 
from the mathematical model. There are three types of 
model based approaches, namely: observer-based, 
parity-space and the parameter identification. Recently, 
observer-based methods have received considerable 
interests. This particular attention is mainly due to the 
associated advantages of observer-based approaches, 
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such as quick detection, requiring no excitation signal, 
possibility of on-line implementation, etc. Moreover, 
control engineers are more familiar with the concepts of 
observer design [2]. 

One of the biggest challenges of observer based FDI 
and mathematical control theory has been the problem 
of constructing state observers for nonlinear systems. 
The problem of designing observers for linear control 
systems was first introduced by Luenberger [3] and it 
was extended for nonlinear control systems by Thau [4]. 
Over the past three decades, considerable attention has 
been paid in the literature to the design of observers for 
nonlinear systems. Xia and Gao obtained a necessary 
condition for the existence of an exponential observer 
for nonlinear systems [5]. They showed that an 
exponential observer exists for a nonlinear system only 
if the linearization of the nonlinear system is detectable. 
On the other hand, necessary conditions for nonlinear 
observers have been obtained from an impressive 
variety of points of view. Lyapunov-like method was 
used for design of nonlinear exponential observer by 
Kou et al. [6]. Nonlinear adaptive observers have been 
studied for the nonlinear systems whose dynamics can 
be linearized by coordinate change and output injection 
[7-10]. In some literatures [11-17], observer design 
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were carried out using proper coordinate 
transformations. In other researches [18, 19] observer 
designs are implemented based on quadratic Lyapunov 
function and solving the algebraic Ricatti equation. 
Most of the MEMS systems are nonlinear in nature. 
Nowadays these systems have shown remarkable 
popularity in engineering and industry for their 
significant advantages [20]. MEMS tunable capacitors 
are the main parts of RF integrated circuits such as 
tunable filters and resonators [21]. Also, electro 
statically actuated MEM devices are widely designed, 
fabricated, used and analyzed in: micro actuators [22, 
23] mems capacitive microphone [24-26], sensors [27], 
capacitive micro-plate [28, 29] and micro capacitors 
[30, 31]. In spite of the numerous works accomplished 
on MEMS, there are not enough and basic studies, 
concentrating on fault detection of such systems. In the 
development of MEMS fabrication, failure and fault 
analysis play a major role both in development time 
reduction, and in reliability evaluation. 

Some works have been done on fault detection of 
these structures. Asgary et al. [32] studied fault 
detection of nonlinear MEMS devices using neural 
network. Reppa and Tzes [33] applied set membership 
identification for micro electrostatic actuators. They 
assumed that the system is linearly parameterizable and 
the parameter vector contains the quantities that are 
susceptible to faults. Zahidul Islam et al. [34] studied 
fault detection of MEMS using frequency response. 
Izadian and Famouri [35] studied fault diagnosis of 
MEMS lateral comb resonators. Their valuable works 
are based on using multiple model adaptive estimators 
for fault detection of the resonators, which have linear 
electrostatic force proportional to state space. 

In this paper, a novel method is proposed for 
construction of an observer for nonlinear systems. The 
method is based on direct solution of dynamic error 
without any linearizing of nonlinear terms. Stability of 
the observer is checked using Lyapunov theorem. Also, 
the ability of this observer is checked with 
implementation of observer for fault detection of micro 
tunable capacitor subjected to nonlinear electrostatic 
force. 

 
 

2. CONSTRUCTION OF DIRECT OBSERVER FOR 
NONLINEAR SYSTEM WITH LINEAR OUTPUT: 
 
Consider the nonlinear system with form: 

( , ) ( , )x Ax x u x u
y C x

ϕ η= + +
=

&  
(1) 

where nx R∈ , ru R∈ and my R∈ are state, input and 
output vectors, respectively. A and C are known system 
matrices, ( , )x uϕ  represents the nonlinear function and  

( , )x uη is unknown nonlinear function which contains 

noises and uncertainties. It must be noted that ( , )x uη  is 
a bounded function. For implementation of direct 
observer, the following conditions must be satisfied: 
1. Matrices A and C are observable.  
2. The nonlinear function ( , )x uϕ  is continuously 
differentiable and satisfies the Lipschitz condition 
locally with constant  γ , i. e. [18]. 

ˆ ˆ( , ) ( , )x u x u x xϕ ϕ γ− ≤ −  (2) 

The following observer is proposed for state 
reconstruction of system (1).  
ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( )
ˆ ˆ
x A x x u K y y y y
y C x

ϕ= + + −
=

&  
(3) 

where x̂ and  ŷ  represent estimated state and output and 
ˆ( , )K y y  is the unknown gain of observer, which must 

be obtained. Defining the observer error as ˆe x x= − , 
we have: 

ˆ( ) ( , ) ( , )e A K C e x u x uϕ ϕ= − + −&  (4) 

where e&  is the dynamic error. We want to find an 
observer gain, ˆ( , )K y y , such that the observer error 
dynamics is asymptotically stable. The dynamic errors 
are nonlinear and its stability is now unclear. To check 
the stability of the nonlinear dynamic error in (4), 
Lyapunov stability theory is employed. This approach 
leads to results giving sufficient conditions for existence 
of observers for nonlinear system (3). If we can find 
continuous and differentiable function ˆ( , , )f x x u in 
which ˆ ˆ ˆ( , , )( ) ( , ) ( , )f x x u x x x u x uϕ ϕ− = − , Equation 
(4) can be rewritten as: 

[ ]ˆ( , , )e A K C f x x u e= − +&  (5) 

Theorem 1. Consider the nonlinear system (1), the 
nonlinear observer (3) and the dynamic error of (4). The 
observer error dynamics (4) is (globally) asymptotically 
stable. If there exists a constant n m×  matrix ˆ( , )K y y  
and a positive definite, symmetric n n×  matrix P  
such that: 

ˆ[ ( , , )] 0P A K C f x x u− + <  (6) 

i.e., it is uniformly negative-definite for all values of  
x and x̂ .Proof: consider the following Lyopunov 

function candidate: 
TV e P e=  (7) 

Then, time derivative of V for system (4) is: 

2 TV e P e=& &
{ }ˆ2 [( ) ( , ) ( , )]TV e P A K C e x u x uϕ ϕ= − + −&

{ }ˆ[ ( ) ] [ ( , ) ( , )]T TV e P A K C e e P x u x uϕ ϕ= − + −&  
(8) 

With attention to Equation (5) above equation can be 
rewritten as: 
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ˆ2 ( ) ( , , )

ˆ2 [ ( , , ) ]

T T

T

V e P A K C e e P f x x u e

V e P A K C f x x u e

 = − + 
= − +

&

&
 

(9) 

Since from Equation (6): ˆ[ ( , , ) ] 0P A L C f x x u− + <
so 0V <& , V is a Lyapunov function for system (4). 
Theorem 2. The dynamic error of the observer is 
(globally) asymptotically stable if eigen values of  

ˆ[ ( , , ) ]A K C f x x u− +  have negative real part. Proof: 
Theorem 2 can be proved easily, if matrix P set equal 
with identity matrix. 

 
 

3. NUMERICAL EXAMPLE  
In this section, ability of the direct observer is examined 
by implementing it for fault detection of micro tunable 
capacitor subjected to nonlinear electrostatic force. To 
this end, geometrical and mathematical model of the 
capacitor are presented. 

 
3. 1. Model Description       Figure 1a shows 
schematic view of a parallel plate capacitor, which 
consists of a movable electrode suspended over a 
stationary conductor plate, having primary distance, Go, 
between two electrodes. Attractive electrostatic force 
due to the applied bias voltage u pulls movable 
electrode down towards the stationary plate. Figure 1b 
shows top view of the movable electrode, which is 
suspended by four supporting beams (two at each side). 
The area and thickness of movable electrode are S and 
h, respectively. All supporting beams are identical, 
having width, thickness and length of b, h, and L, 
respectively. The effective stiffness of each beam is 

3
12EIk L= , in which EI is the flexural modulus. The 

movable electrode is considered isotropic with density 
ρ . 
 
 

 
a. Front view of capacitor 

 
b. top view of capacitor [36] 

 
Figure 1. Parallel plate tunable capacitor 

TABLE 1. Spatial properties of the micro parallel plate 
capacitor 
Properties Value 
Area of movable electrode (S) 400 400m mµ µ×  

Thickness of movable electrode 1 mµ  

Thickness of beam 1 mµ  

Length of beams 100 mµ  

young's modulus of beams 169GPa  
Go  

4 mµ  

density 32300 Kg
m

 

 
 

3. 2. Mathematical Modeling      The governing 
equation of motion of an electro-mechanical tunable 
capacitor such as the one in Figure 1a can be described 
as: 

2

2 eq elec
d z dzm c k z q
dt dt

+ + =  (10) 

where z, m, c, and eqk , are the deflection, mass, 
damping coefficient, and equivalent stiffness ( 4eqk k= ) 
of the movable electrode, respectively. Also, qelec 
represents electrostatic force. 

When the actuating voltage u is applied between the 
movable and stationary electrodes, the electrostatic 
force is computed using a standard parallel capacitance 
model, which yields [37]: 

2
0

2
02( )elec
Suq

G z
ε

=
−

 
(11) 

where 21212
0 10854.8 −−−×= mNCε  is the permittivity of the 

vacuum within the gap. For convenience, Equation (10) 
can be rewritten in a non-dimensional form by defining 
the following parameters: 

0

zw
G

=  ,  t
t

τ ∗=  (12) 

where τ is the dimensionless time, and 
eq

mt
k

∗ = . 

Therefore, Equation (10) may be written as:  
2 2

2 2(1 )
d w dw uc w

dd w
α

ττ
′+ + =

−
 (13) 

wherec′  and α are dimensionless damping and 
electrostatic coefficients, respectively, defined as: 

' :
eq

cc
t k∗=

   ,   
0

3
0

:
2 eq

S
k G
εα =

 
(14) 

 
3. 2. 1. Mathematical Model in State Space Form   
Consider 1x w=  and 2

dwx
dτ

= ; so, Equation (13) can be 

rewritten in the state space form as: 

[ ]

1 1 2

2 2 2
1

1

2

0
0 1
1 '

(1 )

1 0

x x
ux xc
x

x
y

x

α

  
      = +      − −       −  

   =    

&
&

 

(15) 
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In this paper, output is considered as the non-
dimensional deflection w. Pursuing the same procedure, 
the structure of the direct observer may be rewritten as: 

1 1 12

2 222
1

0ˆ ˆ0 1
ˆ( )

ˆ ˆ1 '
ˆ(1 )

ˆ

x x K
y yux Kcx x

r y y

α

          = + + −        − −          − 
 = −

&

&
 

(16) 

With attention to Equations (15) and (16), dynamic 
error can be obtained as: 

[ ]1 1 1 2 2

2 2 2 2 2
1 1

0
0 1

1 0
1 '

ˆ(1 ) (1 )

e K e
u ue K ec
x x

α α
 

         = − +         −− −         − − 

&
&

 
(17) 

The above equation can be rewritten as: 

[ ]1 1 1
21 1

1 12 2 2 2
1 1

1 1 1 1
21 1

2 2 2 2 2
1 1

0
0 1

1 0 ˆ2 ( ) ˆ( )1 ' ˆ[(1 )(1 )]

0 0
1

ˆ2 ( ) 01 '
ˆ[(1 )(1 )]

e K e
x x x x ue K ec

x x
or

e K e e
x x ue K c e e

x x

α

α

 
         = − + − +         −− −        − −  

  −       = + − +        − − −       − −  

&
&

&
&

 
 
 

 (18) 

so
21 1

2
1 1

0 0
ˆ( , , ) ˆ2 ( ) 0

ˆ[(1 )(1 )]
f x x u x x u

x x
α

 
 = − + 

− −  

 and Equation (18) can 

be presented in compacted form as: 

1
1 1

21 1
22 2 2

1 1

1
ˆ2 ( ) 1

ˆ[(1 )(1 )]

K
e e

x x u K ce e
x x

α

 − 
     = − +     − − −    − −   

&
&

 
(19) 

For the stability of dynamic error, following condition 
must be satisfied:  

1

21 1
22

1 1

1
ˆ 02 ( ) 1

ˆ[(1 )(1 )]

K
eig x x u K c

x x
α

 − 
   <− +  − − − − −   

 
(20) 

Following conditions guarantee the asymptotic stability 
of dynamic error. 

1

21 1
2 1 2

1 1

ˆ2 ( )1
ˆ[(1 )(1 )]

K c
x xK K c u

x x
α

> −
− +

> − − +
− −

 
(21) 

With attention to Equation (21), it is concluded that 2K
is a variable gain and depends on actual and estimated 
states of system.  
 
 
4. SIMULATION RESULTS  
 
In this section fault detection of parallel plate capacitor 
with nonlinear electrostatic term has been developed. 
Spatial properties of the capacitor are shown in Table 1. 
The system output is dimensionless position of the 
movable electrode with respect to the stationary 
electrode. Residual is obtained using direct observer as 

the difference of system output and the estimated one. It 
is assumed that the applied voltage is contaminated by 

20%±  noise, and also 5%±  uncertainty in 
determination of 0S G . So applied voltage and noise 
vary within 0.8 1.2u voltage u≤ ≤  and 0.2 0.2u noise u− ≤ ≤ +  
respectively. As mentioned before is a bounded and 
nonlinear function, which contains noise. Attention to 
above explanation it can be concluded that 

2 2

2 2
1 1

(0.2 ) (0.2 )( , )
(1 ) (1 )

u ux u
x x

α α
η− ≤ ≤ +

− −
. The simulated faults are 

suddenly decreasing of applied voltage, and change of 
the movable electrode mass. 

Residual is the index of an observer-based fault 
detection, which takes the information of faults. It is 
generated by comparing the outputs of the system and 
their estimates obtained by an observer. For fault-free 
system, with condition of no disturbances and modeling 
uncertainties, the outputs are equal with their 
estimations, resulting in zero residual. Any deviation of 
residual from zero will announce of presence of a fault. 
Existence of the disturbances and uncertainties are 
unavoidable and the residual signal is not completely 
decoupled from the effect of them; so even for fault-free 
system, residual deviates from zero. Therefore, a 
threshold is needed to handle the effect of disturbances 
and uncertainties [2]. In this paper threshold is obtained 
based on the asymptotic results of residual with extreme 
magnitude of the uncertainty and noise. 
 
4. 1. Determination of the Static Threshold      In 
this part, the static thresholds are determined. Upper and 
lower thresholds are obtained based on asymptotic 
results of the residual for fault-free capacitor 
(ARRFFC), considering maximum amount of noise for 
the upper threshold and minimum amount of noise for 
the lower threshold. The level of uncertainty was 
maximum (5%) for both of the cases. Figures 2 and 3 
show the convergence of ARRFFC and determination of 
upper and lower threshold for 1u V= . As shown in 
these figures upper and lower threshold equal with 

31.22 10−×  and 31.09 10−− × , respectively. 
 
4. 2. Actuator and Component Fault Detection      
In this section simulated results for fault detection of the 
capacitor are presented. The simulated fault is abrupt 
decreasing of the applied voltage (20%) occurred in 
4.57s. Figures 4-6 show residual versus time for various 
amount of applied voltage. As shown in these figures 
for 4.57time s≤  the residuals are within thresholds. 
Furthermore, as shown in these figures, direct observer 
has good ability in quick detection of fault. These 
indicate that direct observer is robust to noise and 
sensitive to fault. Dynamic pull-in phenomenon is an 
unstable condition which can occur in MEMS capacitor 
subjected to nonlinear electrostatic force [29]. In this 
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condition, movable electrode loses its stability and 
knocks up to the stationary electrode. Dynamic pull-in 
voltage for the capacitor is 4.71V. Figure 7 shows 
residual versus time for applied voltage 4.5u V= , 
which is in the vicinity of dynamic pull-in voltage. As 
shown in this figure, observer is robust to noise and 
sensitive to fault in the vicinity of dynamic pull-in 
voltage (unstable condition). 
 
 

 
Figure 2. ARRFFC considering maximum magnitude of noise 
and maximum amount of uncertainty versus time for 1u V= . 
 

 
Figure 3. ARRFFC considering minimum magnitude of noise 
and maximum amount of uncertainty versus time for 1u V= . 
 

 
Figure 4. Residual versus time for applied voltage 1u V=  

 

 
Figure 5. Residual versus time for applied voltage 2u V=  

 
Figure 6. Residual versus time for applied voltage 4u V=  

 

 
Figure 7. Residual versus time for applied voltage 4.5u V=  
 

 
Figure 8. Residual versus time for applied voltage 1u V=  

 

 
Figure 9. Residual versus time for applied voltage 2u V=  

 

 
Figure 10. Residual versus time for applied voltage 4u V=  
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Figure 11. Residual versus time for applied voltage 

4.5u V=  
 
 

In the reset of this section, the ability of the observer 
for additive mass detection is examined. As mentioned 
before, “Fault expresses deviation of one or more 
system characteristics (such as mass, stiffness, and 
damping coefficient) from their ideal measure”. So, 
additive mass may be considered as existence of fault 
for the capacitor. MEMS capacitive sensor have been 
devised to perform measurements of phenomena in their 
surrounding environment, such as presence of humidity, 
mercury vapor, hazardous gas, and volatile organic 
compounds (chemicals) [38, 39].  The presented micro 
tunable capacitor may be applied as a gas sensor. 

Mass-based sensors use a functional material to 
capture molecules of a target material. In this condition, 
equivalent mass of capacitor is increased and lead to 
exceeding of residual from thresholds.  The structure is 
then coated with a material that the chemical being 
measured will adhere to resulting in an increase of mass 
on the structure when the chemical is present. 
Subsequently, the resonant frequency of the MEMS 
structure will change indicating the presence of the 
chemical [40].  

Figures 8-11 show residual versus time for various 
amounts of applied voltages for 20% extra mass of the 
movable electrode. These figures show that direct 
observer has good ability in component fault detection. 
Figure 11 proves that this observer can detect fault of 
capacitor in the vicinity of dynamic pull-in voltage 
(unstable condition). The results presented in this 
section prove ability of direct observer as a suitable 
instrument for additive mass detection for micro 
capacitive sensors.  

 
 

5. CONCLUDING REMARKS 
 
In this paper, the observer based method for fault 
detection of parallel plate capacitor was accomplished. 
To this end, necessary and sufficient conditions for 
construction of direct observer have been presented. 
Stability of the observer was checked using Lyapunov 
theorem. The ability of observer for fault detection of 
tunable capacitor subjected to nonlinear electrostatic 

force was examined. To this end, governing dynamic 
equation of the capacitor was presented. The effects of 
noise and uncertainty were compensated by using 
thresholds. Upper and lower threshold limits were 
obtained based on asymptotic results of the residuals for 
fault-free case. The sensitivity of the observer to fault 
detection as well as robustness to the noise and 
uncertainty was examined. It was shown that direct 
exponential observer has good ability in fault detection 
of the micro tunable capacitor, even in the vicinity of 
dynamic pull-in voltage. 
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  چکیده
  

  
 برپایه شده ارائه روش. است شده ارائه غیرخطی سیستم براي نمایی گرروئیت ساخت براي جدیدي روش مقاله این در

 گرروئیت تشکیل براي کافی و لازم شرایط. باشد می سازي خطی گونه هر بدون دینامیکی خطاي دیفرانسیل معادله حل
 عیب در گرروئیت توانایی همچنین. است شده بررسی لیاپانوف وريئت از استفاده با گرروئیت پایداري و شده مشخص

 .است شده بررسی دارد قرار الکترواستاتیک خطی غیر نیروي تاثیر تحت که تنظیم قابل میکروخازن یابی
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