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A B S T R A C T  
 

 

The combined effects of nanoparticles and magnetic field on the nonlinear Jeffery-Hamel flow are 
analyzed in the present study. The basic governing equations are solved into series solution using a 
semi-numerical analytical technique called Hermite- Padé approximation. The velocity profiles are 
presented in divergent channel for various values of nanoparticles solid volume fraction, Hartmann 
number, Reynolds number and channel angle. The dominating singularity behavior of the problem is 
analysed numerically and graphically. The critical relationship between the parameters is studied to 
observe the instability of the problem for nanofluid. 
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1. INTRODUCTION1 

 
The study of flows in convergent-divergent channel is 
very important due to its industrial, aerospace, chemical, 
civil, environmental, mechanical and biomechanical 
engineering applications. Various applications of this 
type of mathematical model are to understand the flow 
of rivers and canals and the blood flow in the human 
body. Jeffery [1] and Hamel [2] first studied the two-
dimensional steady motion of a viscous fluid through 
convergent-divergent channels which is called classical 
Jeffery-Hamel flow in fluid dynamics. Later, this 
problem has been extensively studied by various 
researchers. A survey of information on this problem 
can be found in [3]. The theory of Magneto-
hydrodynamics (MHD) is inducing current in a moving 
conductive fluid in the presence of magnetic field; such 
induced current results force on ions of the conductive 
fluid. The theoretical study of MHD channel has been a 
subject of great interest due to its extensive applications 
in designing cooling systems with liquid metals, MHD 
generators, accelerators, pumps, and flow meters [4, 5]. 
                                                        
1*Corresponding Author’s Email: sarwardu75@gmail.com (M. S. 
Alam) 

The small disturbance stability of MHD plane-
Poiseuille flow was investigated by Makinde and Motsa 
[6] and Makinde [7]. Their results showed that magnetic 
field had stabilizing effects on the flow. Damping and 
controlling of electrically conducting fluid can be 
achieved by means of an electromagnetic body force 
(Lorentz force) produced by interaction of an applied 
magnetic field and an electric current that usually is 
externally supplied. Anwari et al. [8] studied the 
fundamental characteristics of linear Faraday MHD 
theoretically and numerically, for various loading 
configurations. Homsy et al. [9] emphasized on the idea 
that in such problems, the moving ions drag the bulk 
fluid with themselves, and such MHD system induces 
continued pumping of conductive fluid without any 
moving part.Apart from  using  numerical methods,  the 
Jeffery-Hamel flow  problem  was  solved  by  other  
techniques including  the  Homotopy  analytical  
method  (HAM),the Homotopy  perturbation  method  
(HPM), the Adomain  decomposition  method  (ADM)  
and  the spectral-Homotopy  analysis  method.  
Recently, the three analytical methods such as 
Homotopy analysis method, Homotopy perturbation 
method and Differential transformation method (DTM) 
were used by Joneidi et al. [10] to find the analytical 
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solution of Jeffery-Hamel flow. Moreover, the models 
on classical semi-analytical methods have experienced a 
revival, in connection with the scheme of new hybrid 
numerical-analytical techniques for nonlinear 
differential equations, such as Hermite– Padé 
approximation method, which demonstrated itself as a 
powerful benchmarking tool and a prospective 
substitute to traditional numerical techniques in various 
applications in science and engineering. 

The classical Jeffery-Hamel problem was extended 
in Axford [11] to include the effects of external 
magnetic field on conducting fluid. Motsa et al. [12] 
found the solution of the nonlinear equation for the 
MHD Jeffery-Hamel problem by using novel hybrid 
spectral-homotopy analysis method. Moghimi et al. [13] 
also solved the Jeffery-Hamel flow problem by using 
the homotopy perturbation method. Taking into account 
the rising demands of modern technology, including 
chemical production, power station, and 
microelectronics, there is a need to develop new types 
of fluids that will be more effective in terms of heat 
exchange performance. The term ‘nanofluid’ was 
envisioned to describe a fluid in which nanometer-sized 
particles were suspended in conventional heat transfer 
basic fluids [14]. Rahmannezhad et al. [15] investigated 
the effects of a magnetic field on mixed convection of 
Al2O3-water nanofluid in a square lid-driven cavity. An 
experimental investigation was carried out to study 
mixed convection heat transfer from Al2O3-water 
nanofluid inside a vertical, W-shaped, copper-tube with 
uniform wall temperature in Rostamzadeh et al. [16]. 
The role of a convective surface in modelling with 
nanofluids has been investigated over a wedge by 
Rahman et al. [17]. They found that the surface 
convection significantly controls the rate of heat transfer 
in nanofluid and increasing volume fraction of 
nanoparticles to the base-fluid may not always increase 
the rate of heat transfer. Rahman et al. [18] investigated 
numerically the steady boundary layer flow and heat 
transfer characteristics of nanofluids using 
Buongiorno’s model past a permeable exponentially 
shrinking/stretching surface with second order slip 
velocity.  

 
 

 
Figure 1. Geometry of the problem 

Sheikholeslami et al. [19] studied the laminar 
nanofluid flow in a semi-porous channel using 
Homotopy Perturbation Method. Moreover, the effects 
of magnetic field and nanoparticles on the Jeffery-
Hamel flow using a powerful analytical method called 
the Adomian decomposition method were studied by 
Sheikholeslami et al. [20]. 

The aim of this work is to apply the power series 
along with algebraic programming language MAPLE to 
find the approximate solutions into series of nonlinear 
differential equations governing the MHD Jeffery-
Hamel flow with nanofluid. The series is analyzed to 
show a comparison between the Hermite–Padé 
approximation (HPA) and ADM results. The series is 
also investigated to show the velocity profiles with 
effect of nanoparticles volume fraction φ  and 
Hartmann number Ha. The change in singularity graphs 
for channel angle α and flow Reynolds number Re by 
the effect ofφ  with the help of approximation method is 
an extension of Sheikholeslami et al. [20]. The critical 
relationship between the parameters in the flow using 
HPA is not addressed yet. 
 
 
2. MATHEMATICAL FORMULATION 

 
Consider a steady two-dimensional laminar 
incompressible flow of conducting viscous nanofluid 
from a source or sink between two channel walls 
intersect at an angle 2α in the axis of z. A cylindrical 
coordinate system ),,( zr θ is used and assume that the 
velocity is purely radial and depends on r and θ , so 
that there is no change in the flow parameter along the 
z-direction. It is presumed that there is a magnetic field 
acting in the vertical downward direction. The 
continuity equation, the Navier-Stokes equation and 
Maxwell’s equation in reduced polar coordinates are 
[13]. 
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where 0B is the electromagnetic induction, σ  the 
conductivity of the fluid, ),( θru  the velocity along 
radial direction, P the fluid pressure. The effective 
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density nfρ , the effective dynamic viscosity nfµ , and 

the kinematic viscosity nfν of the nanofluid are given as 
[21]:  

2.5(1 ) , , ,
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nf f s nf nf

nf

µ µ
ρ ρ φ ρ φ µ ν

φ ρ
= − + = =

−
 (4) 

Here,φ is the solid volume fraction. The boundary 
conditions are as follows: 

At the centerline of the channel: .0),(
=

∂
∂

θ
θru  

At the boundary of the channel: .0),( =θru  
Considering purely radial flow, the continuity Equation 
(1) implies that   

),()( θθ rruf =  (5) 

The dimensionless form of the velocity parameter can 
be obtained according to [2]: 

max
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f
ff θ

η = , where 
α
θ

η =  (6) 

whereα is the channel angle andθ is any angle. 
Substituting (5) into (2) and (3) and eliminating the 
pressure term P, the nonlinear ordinary differential 
equation can be written as [20]: 
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where ∗A  is a parameter, Ha Hartmann number, Re 
Reynolds number and α channel angle. The boundary 
conditions are reduced to the following form: 

.0)1(,0)0(,1)0( ==′= fff  (10) 

Physically, these boundary conditions mean that 
maximum values of velocity are observed at centerline 

0=η as shown in Figure 1. Also, the rate of velocity is 
zero at 0=η  and at the solid boundary, the no-slip 
condition is considered. 
 
 
 
3. SERIES ANALYSIS 
 
The following power series expansion is considered in 
terms of the parameter α   as Equation (7) is non-linear 
for velocity field  
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We then find that )(ηf has a singularity at cαα = of 

the form ccCf δααη )(~)( − with the critical exponent 

cδ .The non-dimensional governing equation is then 
solved into series solution by substituting the series(11) 
into Equation (7) and the boundary conditions (10) and 
equating the coefficients of  powers of α .With the help 
of MAPLE, we have computed the first 42 coefficients 
for the series of the velocity )(ηf  in terms ofα , Ha
,Re, φ , ∗A . The first few coefficients of the series for 

)(ηf  are as follows: 
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Applying differential and algebraic approximate 
methods to the series, we determine the comparison 
between HPA and ADM solution and the convergence 
of critical values and the change in singularity graph for 
the channel angle and flow Reynolds number by the 
positive effect of nanoparticles volume fraction. The 
critical relationship between the parametersis also 
shown graphically using differential approximate 
method. The utility of the series solution has widened 
using Hermite-Pade' approximants method described 
below. 
 
 
4. COMPUTATIONAL PROCEDURE 
 
In the present analysis, we shall employ a very efficient 
solution method, known as Hermite-Padé approximants, 
which was first introduced by Padé [22] and Hermite 
[23]. We say that a function is an approximant for the 
series 

n

n
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∞
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if it shares with S the same first few series coefficients 
at 1<α . Thus, the simplest approximants are the 
partial sums of the series S . When the series converges 
rapidly, such polynomial approximants can provide 
good approximations of the sum. Because of the 
continuation of analytical solution and dominating 
singularity behavior, the bifurcation study is performed 
using the partial sum of Equation (13). 
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TABLE 1. Comparison between ADM solution and HPA solution for velocity when o5and,25Re,0 === αφ  

  0=Ha   250=Ha   500=Ha  

η ADM HPA Difference ADM HPA Difference ADM HPA Difference 

0.0 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000 

0.1 0.986637 0.987221 0.000584 0.990196 0.988723 0.001473 0.992695 0.990224 0.002471 

0.2 0.947127 0.949319 0.002192 0.960841 0.955136 0.005705 0.970544 0.960953 0.009591 

0.3 0.883146 0.887563 0.004417 0.912079 0.899943 0.012136 0.912273 0.912323 0.00005 

0.4 0.797259 0.803959 0.0067 0.811225 0.824219 0.012994 0.832683 0.844478 0.011795 

0.5 0.692638 0.701095 0.008457 0.713799 0.729267 0.015468 0.743421 0.757440 0.014019 

0.6 0.572716 0.581931 0.009215 0.604866 0.616433 0.011567 0.643816 0.650935 0.007119 

0.7 0.440850 0.449556 0.008706 0.476625 0.486859 0.010234 0.515303 0.524163 0.00886 

0.8 0.300013 0.306907 0.006894 0.325834 0.341211 0.015377 0.361234 0.375515 0.014281 

0.9 0.152552 0.156476 0.003924 0.171160 0.179355 0.008195 0.194730 0.202234 0.007504 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
 
 
The dominating behavior of the function ( )αS  
represented by a series (13) may be written as 
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as ,cαα → where Aand B are some constants and cα is 
the critical point with the critical exponent cδ .    
Drazin –Tourigney [24] Approximants is a particular 
kind of algebraic approximants and Khan [25] 
introduced High-order differential approximant 
(HODA) as a special type of differential approximants. 
More information about the above mentioned 
approximants can be found in the respective references. 
 
 
5. RESULTS AND DISCUSSION 
 
The main objective of the current work is to analyze the 
effect of nanoparticles and high magnetic field on 
Jeffery-Hamel flow of viscous incompressible 
conducting fluid by using Hermite-Pade' approximants. 
Although there are four parameters of interest in the 
present problem the effects of nanoparticles volume 
fractionφ , channel angleα , Reynolds number Re and 
Hartman number Ha.  The series (12) is analyzed by 
differential approximation method to show the 
variations in the critical value cα and cRe with critical 
exponent cβ for various values of φ significantly. 
The results of the numerical computations of velocity 
profiles for different values of the aforementioned 
parameters are displayed graphically in Figures. (2)- (5) 
and the comparison between ADM and HPA solutions 

is shown in table by analyzing the series in (12) using 
Hermite- Padé approximation (HPA) method. The 
values by HPA and ADM method are compared in 
Table 1 when 25Re,0 ==φ and o5=α . Table1 shows 
that there is a good agreement between the HPA and 
ADM results. Hence, such results confirm the accuracy 
of Hermite- Padé approximation method. In this table, 
difference is defined as follows:  

HPAADM )()(Differece ηη ff −= .  
Table 2 displays the convergence of cα up to 15 

decimal places at 7=d using 42=N terms with 
0,286Re == Ha , 2.0=φ and the values of cβ

confirm that o50.08730158 ≈≈cα  is a simple pole 
using HODA.Moreover, it is seen from Table 3 that the 
critical channel semi-angle cα decreases uniformly for 
the nanoparticles volume fractionφ  with 0=Ha  at 

7=d  taking .42=N It is observed from Table 4 that 
the critical Reynolds number converges to 12 decimal 
places and cRe  is a pole verified by the values of cβ . 
Table 5 represents that cRe almost identical forφ  with 

0=Ha  at 7=d  taking .42=N  

 
 

TABLE 2. Convergence of critical angles cα  and 
corresponding exponent cδ at 2.0,0,286Re === φHa  

d N cα  cδ  

2 7 0.087791814807783 -0.81857308585 
3 12 0.087301495423310 -1.00000278437 
4 18 0.087301579020751 -1.00000000000 
5 25 0.087301587301587 -1.00000000000 
6 33 0.087301587301587 -1.00000000000 
7 42 0.087301587301587 -1.00000000000 
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TABLE 3. Numerical values of critical angles cα  and 
corresponding exponent 

cδ at .0,286Re == Ha  

φ  cα  cδ  

0 0.129532298313616 -1.000000000000 
0.05 0.105332830881605 -0.999999999999 
0.1 0.093857368991825 -1.000000000000 
0.15 0.088633460885129 -0.999999999999 
0.2 0.087301587301587 -1.00000000000 

 
 

TABLE 4. Convergence of critical Reynolds number cRe  
and corresponding exponent cδ at .2.0,0,0.0873 === φα Ha  

d N cRe  cδ  

2 7 288.957669152957 -0.6379425782386 
3 12 286.941934247595 -0.9995797263022 
4 18 286.939323918124 -0.9999999999996 
5 25 286.939323918119 -1.0000000000000 
6 33   286.939323918121 -1.0000000000000 
7 42 286.939323918121 -1.0000000000000 

 
 

TABLE 5. Numerical values of critical cRe  and 
corresponding exponent cδ  at .0,0.0873 == Haα  

φ  cRe  cδ  

0 286.939323918122 -1.00000000000 
0.05 286.939323918121 -1.00000000000 
0.1 286.939323918120 -0.99999999999 
0.15 286.939323918120 -0.99999999999 
0.2 286.939323918121 -1.000000000000 

 
 

Figures 2 and 3 show the effect of magnetic field 
and channel angle on the velocity profiles for divergent 
channels. The velocity curves show that the rate of 
alteration is significantly reduced with increase of 
Hartmann number.The transverse magnetic field 
opposes the alteration phenomena clearly. Because the 
variation of Ha leads to the variation of the Lorentz 
force due to magnetic field and the Lorentz force 
produces more resistance to the alternation phenomena. 
 
 
 

 
 (a) 0and,200Re,5.2 === φα o  

 
(b) ,0and,200Re,5 === φα o 

 
(c) 0and,200Re,5.7 === φα o  

Figure 2. Velocity profiles in divergent channel with different 
values of Ha and .α  
 

 
(a) 0and,75Re,5 === φα o  

 
(b) ,0and,150Re,5 === φα o  

 
(c) 0and,225Re,5 === φα o  
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(d) .0and,300Re,5 === φα o  

Figure 3. Velocity profiles in divergent channel with different 
values of Ha and Re.  
 
 

 
(a) 0and,100Re,5 === Haoα  

 
(b) ,0and,200Re,5 === Haoα  

 
(c) 0and,200Re,2 === Haoα  

Figure 4. Effects of nanoparticle volume fraction on velocity 
profiles for Cu-Water. 

 
 

It is seen from Figure 2 that the velocity increases 
moderately with rising Ha at a small angle o5.2=α , but 
the differences between velocity profiles are more 

noticeable at larger angles. However, the backflow does 
not occur in converging channel but it is detected in 
diverging channel for higher values of α at a critical 
Reynolds number when 0=Ha . However, to diminish 
the backflow an increased Ha is essential. It can be 
concluded from Figure 2 that as channel angle 
increases, the variation of velocity is observed more due 
to Ha. Figure 3 represents the consequences of magnetic 
field on velocity profiles at o5=α with different 
Reynolds numbers. In Figure 3(a) at 75Re,5 == oα as 
Hartmann number increases the velocity increases and 
no backflow is observed.   

It can be seen from Figure 3(b) that at 150Re,5 == oα
backflow starts when magnetic field is absent, these 
properties are abolished with rising Hartmann number. 
The backflow enlarges at high Reynolds number, hence 
larger magnetic field is required to abolish it. Moreover, 
it is detected from Figure 3(c) at 225Re,5 == oα that 
backflow is abolished at ,2000=Ha whereas there 
occurs backflow for each values of Hartmann number in 
Figure 3(d) at 300Re,5 == oα .Furthermore, a Cu-
Water nanofluid flow is considered and the effect of 
nanoparticles volume fraction is analyzed. It is assumed 
that the base fluid and the nanoparticles are in thermal 
equilibrium and no slip occurs between them. The 
densities of water and Cu are 

8933and1.998 == sf ρρ  respectively. Figure 4 
implies that as volume fraction of nanoparticles 
increases, the boundary layer thickness increases. It is 
also observed that at higher values of Reynolds number 
and channel angle, backflow starts with rising values of 
nanoparticles volume fraction.      

However, as the solid volume fraction increases, the 
velocity deceases which is consistent with physical 
phenomenon.Figure 5 predicts the combined effects of 
magnetic field and nanoparticles volume fraction on the 
velocity for divergent channel with fixed Reynolds 
number. The figure represents sensible increases in the 
velocity with rising Hartmann number for both viscous 
and nanofluid that coincide with those results of [20]. 
It is also observed that for all Hartmann numbers there 
is no backflow in the viscous fluid 0=φ , nevertheless 
backflow starts for nanofluid with 0=Ha at 

50Re,5 == oα and this phenomenon vanishes with the 
rising values of Hartmann number. Employing the 
algebraic approximation method to the series (12) we 
have obtained the singularity graphs of Reandα . 
Figure 6 shows the effect of nanoparticles on the 
singularity diagram of .α It is interesting to note that the 
curve turns at ,cα and as the values of φ  increase, the 
singular points as simple poles change from 

o7.50.12953229 ≈≈α  to o5.50.09385736 ≈≈α and 
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then to o50.08730158 ≈≈α  respectively. Moreover, 
from Figure 7 it is observed that the solution diagram of 
Re also turns at cRe .The singular points remain almost 
similar and the three curves coincide for different values 
ofφ . The conjecture of Figures 6 and 7 is consistent 
with the results shown in Tables 3 and 5 using 
differential approximation. The High-order Differential 
Approximant [25] is applied to the series (12) in order 
to determine the critical relationship between the 
parameters Reandα . Figure 8 displays the critical 
relation between the channel angular width α and 
Reynolds number Re for various values ofφ . It is found 
that as α  increases, then Re  decreases and conversely 
Re increases whenα decreases. This implies that both 
channel angle and Reynolds number are inversely 
proportional to each other which is in excellent 
agreement with classical Jeffery-Hamel flow when 

0=φ . There is a notable difference in the curves at 
1.0=φ and 2.0=φ  than in the curve at 0=φ . 

Therefore, nanofluid has a significant impact on 
stability of Jeffery-Hamel flow. 
 
 

 
Figure 5. Velocity profiles for several values of Hartmann 

number and solid volume fraction at 50Re,5 == oα . 
 
 

 
Figure 6. Approximate singularity diagram of α in the 

))5.0(( =− ηα f plane at 93.286Re,0 ==Ha with different
φ  obtained by Drazin-Tourigny method for 7=d  

 
Figure 7. Approximate singularity diagram of Rein the 

))5.0((Re =− ηf plane at 0.0873,0 == αHa with different
φ  obtained by Drazin-Tourigny method for 7=d . 
 

 
Figure 8. Critical relation betweenα  and Re for different 
values ofφ  at 1=Ha  obtained by HODA for 7=d . 
 
 
 
6. CONCLUSION 
 
The magneto-hydrodynamic Jeffry-Hamel flow problem 
with nanofluid is investigated using a special type of 
Hermite-Padé approximation technique. A comparison 
is made between the available results obtained by 
Adomian decomposition method and the present 
approximate solutions.The accurate numerical 
approximation of the critical parameters of the flow is 
obtained.  The numerical study indicates that HPA is a 
powerful approach for solving this problem. The 
influence of various physical parameters on the velocity 
field is discussed in detail. The basic conclusions are as 
follows:  
 Increasing Reynolds number leads to backflow near 

the walls in the channel. 
 Increasing Hartmann number produces to backflow 

reduction. High Hartmann number is required to 
decline of backflow in larger angles or Reynolds 
numbers. 

 The velocity decreases as nanoparticles volume 
fraction increases. 

 The dominating singularity behavior of the wall 
divergence semi-angle and flow Reynolds number is 
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analyzed with the effect of nanoparticles volume 
fraction. The critical relationship between the 
parameters with the effect of nanoparticles coincides 
with the conjecture of classical Jeffery-Hamel flow. 

Moreover, we provide a basis for guidance about new 
approximants idea for summing power series that 
should be chosen for many problems in fluid mechanics 
and similar subjects.  
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  چکیده
  

  
 .شده است یلهامل در مطالعه حاضر تحل-يجفر یانجر یخط یرغرفتار در  یسیمغناط یداننانوذرات و م یبیاثرات ترک

حل  Hermite- Padé یببه نام تقر يعدد یمهن یلیروش تحل یکبا استفاده از  يبه راه حل سر یمعادلات حاکم عموم
 ینولدزنانوذرات جامد، تعداد هارتمن، عدد ر یکسر حجم تلفمخ یرمقاد يبراواگرا سرعت در کانال  یلپروفا .شده است

 تعیین کنندهارتباط . تحلیل شده است یکیو گراف يعدد ي غالب مساله به صورتیکهرفتار . شده اند یکانال معرف یهو زاو
 .شده استیال بررسی نانو س ي ناپایداريمطالعهبه منظور  پارامترها ینب
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