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A B S T R A C T  

 
 

A complete investigation on the free vibration and stability analysis of beams made of functionally graded 
materials (FGMs) containing open edge cracks utilizing four beam theories, Euler-Bernoulli, Rayleigh, 
shear and Timoshenko, is performed here. It is assumed that the material properties vary along the beam 
thickness exponentially and the cracked beam is modeled as two segments connected by two mass-less 
springs, extensional and rotational spring. Afterward the equations of motion for the free vibrations and 
buckling analysis are established and solved analytically for clamped-free boundary conditions. A detailed 
parametric study is also performed to examine the influences of the location and depth of the crack, 
material properties and slenderness ratio of the beam on the free vibration and buckling characteristics of 
cracked FGM beams for each of the four engineering beam theories. 
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1. INTRODUCTION 
1 
Cracks as a defect in a structure, change the structural 
characteristics of the material, reduce the natural 
frequencies and affect the vibration mode shapes. 
Therefore, using the data of vibration analysis is a non-
destructive method in order to recognize the position 
and depth of the edge cracks. Vibration investigations 
on cracked structures were performed by many 
researchers utilizing analytical, numerical and 
experimental methods. Although the early works were 
started by Kirmsher [1] and Thomson [2] who studied 
the role of crack and local discontinuity on structural 
characteristics, different methods were then utilized to 
study vibration analysis of cracked beams. These 
methods consist of finite element [3], Galerkin and local 
Ritz [4], approximate analytical approach [5], transfer 
matrix [6] and dynamic stiffness matrix approach [7]. 

In vibration analysis, cracks are usually modeled 
utilizing rotational and extensional spring to exhibit the 
reduction of the beam bending stiffness where the 
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equivalent lumped stiffness could be calculated using 
fracture mechanics. In this context, Yokoyama and 
Chen [8] calculated the vibration characteristics of 
Euler-Bernoulli beam with a surface crack using lumped 
flexibility method and modified line-spring model. They 
determined the natural frequencies and the 
corresponding mode shapes for beams having edge 
cracks of different depths at different positions. In more 
recent studies, Zheng and Fan [9] and El Bikri et al. [10] 
studied free vibration analysis of beams with an edge 
crack while the effect of multiple cracks in a cracked 
beam on natural frequencies was studied by Lee [11] 
later. 

Another aspect of present research is the stability 
analysis that plays an important role in many 
engineering structures. It is well known that cracks have 
undeniable effects on the equivalent stiffness and 
consequently the buckling load of the columns. In early 
works, Liebowitz et al. proposed an experimental [12] 
and also an analytical method [13] to determine the 
buckling loads of notched columns subjected to axial 
compressive loading.Then the stability of the cracked 
columns subjected to follower and vertical loads is 
investigated by Anifantis and Dimarogonas [14] using 
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flexibility matrix. In more recent studies, Fan and Zheng 
[15] investigated the stability of a cracked Timoshenko 
beam column using a new modified Fourier series. Also 
Skrinar [16] presented a new geometrical stiffness 
matrix for finite element modeling of a transversely 
cracked beam in buckling analysis according to the 
Euler’s elastic flexural buckling theory. In addition, it 
should be mentioned that, FG materials are one of the 
latest advanced materials composed of two or more 
different phases. Since the materials volume percentage 
continuously varies from one surface to another, the 
material properties are varied continuously along those 
dimensions [17]. Considering the increasing application 
of FG materials in industry, many researches were 
performed in order to analyze their characteristics 
including vibration [18, 19]. Due to the enormous 
literature on FG materials, recent researches closely 
related to the current study are reviewed here. Yang and 
Chen [20] studied the vibration and buckling 
characteristics of a cracked FG beam based on the 
Euler-Bernoulli displacement field utilizing a rotational 
spring model.  

Sina et al. [21] used an analytical method to 
investigate the free vibration of FG beams using the first 
order shear deformation beam theory. Then,Ke et al. 
[22] studied free vibrations, buckling and post-buckling 
of FGM Timoshenko beam containing open cracks by 
assuming an exponential variation of material properties 
in the thickness direction. Also,Simsek [23] studied free 
vibrations of FG beams using different higher-order 
shear deformation theories and derived governing 
equations using Hamilton’s principle. Recently, Ferezqi 
et al. [24] presented an analytical approach based on the 
wave method to study the free vibrations of a FG 
Timoshenko beam. They investigated transverse 
vibration characteristics of the cracked FG Timoshenko 
beam with power law material property distribution. 
Finally analytical relations between the critical buckling 
load of a FG Timoshenko beam and that of the 
corresponding homogeneous Euler–Bernoulli beam 
subjected to axial compressive load have been studied 
by Li and Batra [25]. 

In the present research, an analytical method using 
four engineering beam theories; Euler-Bernoulli, 
Rayleigh, Shear and Timoshenko beam theory, are used 
to study the free vibration and stability of FG beams 
with an edge crack. A brief historical review of these 
engineering beam theories could be found elsewhere 
[26]. Afterwards the crack is modeled by two mass-less 
springs; extensional and rotational springs, and the 
equations of motion are derived using minimum total 
potential energy principle and solved analytically. The 
effects of crack position, crack depth, material 
properties and geometric properties of the beam on free 
vibration and buckling characteristics of the cracked FG 
beam with clamped-free boundary condition are then 
investigated. 

2. MATERIAL PROPERTIES 
 

The geometry of an FG beam with length  L, width   0b
and thickness h is shown in Figure 1. The material 
property variation is assumed to be in terms of a simple 
power law distribution, that first introduced by 
Wakashima et al. [27]: 
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where 1E and 1ρ are the corresponding elasticity 
modulus and mass density of the metal and 2E and 2ρ
are elasticity modulus and mass density of the ceramic, 
respectively, and n is the non-negative variable 
parameter that is named volume fraction exponent. 

The FG elasticity modulus and mass density of the 
beam could be found according to Equation (1) while 
considering the small variations in Poisson's coefficient, 
its value for an FG material is supposed to be constant 
along the thickness.  

 
 

3. LINEAR AND ROTATIONAL SPRING MODEL 
 
In the present analysis, the cracked FG beam is treated 
as two separate beams connected by two elastic springs; 
a rotational and an extensional spring, at the cracked 
section. As it is shown in Figure 2, the mass and length 
of springs are ignored and the crack is considered to be 
perpendicular to beam surface and is always open. 

 
  
 

 
Figure 1. Cantilever FG beam containing an edge crack. 

 
 

 
Figure 2. Model of the cracked beam section with the 
rotational and extensional springs. 
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The stiffness constant of the torsional and extensional 
springs used to model the edge crack is evaluated based 
on the relations of the fracture mechanics, considering 
the flexibility constants on the crack location ( ,b tc c ) 
as follows: 

1 1,      b t
b t

K K
c c

= =  
(2) 

where ,b tK K are the stiffness of the beam cracked 
section subjected to pure bending and tension. To 
calculate the stiffness constants, stress intensity factors 
evaluated by Erdogan and Wu [28] for a cracked FG 
beam subjected to pure bending and tension are used: 
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Based on the formulation of  the J-integral in plane-
stress state together with considering the fact that the 
elastic modulus of an FG beam is function of the beam 
thickness (z), the value of the J-integral can be 
approximated by its weighted average, as [29]: 
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Based on the fundamental relations of fracture 
mechanics, it is well known that the strain energy (U) 
for a certain value of elastic modulus ratio ( 2 1/E E ) can 
be obtained by integration of J as follows: 
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where to simplify the formulation the following 
constants are introduced: 
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Also, the shape function ( )/if a h  introduced in the 
formulation of the stress intensity factor is a famous 
polynomial function evaluated by Erdogan and Wu [28]. 
Finally to find the flexibility constants of the springs (

,b tc c ), since all relations are linear elastic, the second 
hypothesis of Castigiliano could be employed and the 
flexibility constants of the springs are found as: 
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4. FREE VIBRATION ANALYSIS 
 
4. 1. Equations of Motion              The FG beam with 
length L, thickness h and an edge crack in the distance b 
from the clamped end is considered as shown in Figure 
1. Utilizing the principle of minimum total potential 
energy, the equations of motion for each of the four FG 
beam theories and the expression for boundary 
conditions are obtained. As mentioned earlier, the four 
beam theories are the Euler-Bernoulli, Rayleigh, shear 
and Timoshenko. The displacement field is defined 
based on shear deformation beam theory [26]: 
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where 0 ( , )u x t and ( , )w x t  are the axial and transverse 
displacement of the mid-plane of the beam and 1u , 2u  
and 3u  are mid-surface displacements in the x, y and z 
directions. The rotation function of ( , )x tζ describes the 
difference between first order shear deformation and 
classic beam theory as follows: 
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where ( , )x tϕ  denotes the rotation of the cross section 
and  ,( ) x indicates the derivative with respect to x. 
Utilizing the linear strain-displacement relation, non-
zero terms of strain field could be found as: 

0, ,
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Beam problems commonly are considered as plane 
stress problems, so by enforcing the plane stress 
conditions of 0yσ =  the only non-zero term of stress 
field that participates in the strain energy of the beam is: 
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υ
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(11) 

Also, governing equations of the system are derived 
using principle of minimum total potential energy 
described as [30]: 

( )2

1

0
t

t
U V T d tδ δ δ+ − =∫  (12) 

whereU, T  and V are the potential, kinetic energy and 
external work of the system respectively, and 1t and 2t
are two arbitrary times. The variation of strain energy in 
Equation (12) utilizing Equations (10) and (11) could be 
shown to be: 

( ) ( ) ( )0 , , ,0

L

x x xU N u M Q Q w dxδ δ δζ δζ δ = + + + ∫  (13) 
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whereN,M and Q  are the normal resultant force, 
bending moment and transverse shear force, defined as: 
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To rewrite the stress resultants in terms of the 
displacement field, the stiffness coefficients are defined 
as: 
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And the stress resultants could readily be obtained as: 
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Introducing the displacement field of Equation (10) into 
the standard form of kinetic energy and performing 
integration by parts with respect to the time, it may be 
shown that variation of kinetic energy has the following 
form [30]: 

( )
( )

2 2

1 1
0 0 1 00

1 0 2 0            

t t L

t t
Tdt I u I u

I u I I w w dxdt

δ ζ δ

ζ δζ δ

= − +

+ + + 

∫ ∫ ∫ &&&&

&&&& &&
 (17) 

In which super-script of dot shows the derivatives with 
respect to t and kI  is the generalized inertia moment 
defined as: 
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Considering free vibration analysis of the beam in the 
absence of any external forces, the variation term 
related to work of the external force is zero. So the final 
form of the equations of motion in terms of the 
displacement field isobtained by substitution of 
Equations (13) and (17) into Equation (12) and 
performing some integrations by parts as follows: 
For Euler-Bernoulli beam theory, 
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For Rayleigh beam theory, 

0 10 0, 11 , 0 0 1 ,

11 0, 12 , 0 1 0, 2 ,

: 0

: 0
xx xxx x

xxx xxxx x xx

u D u D w I u I w
w D u D w I w I u I w

δ

δ

− − + =

− − − + =

&& &&
&& && &&

 (20) 

For shear beam theory, 
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For Timoshenko beam theory, 
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Also, final form of the essential and natural boundary 
conditions is obtained as: 
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whereV% is the effective shear force andζ%  is the slope 
or rotation of the cross section of beam. The parameters 
of ζ% and V% for each of four beam theories are obtained 
as: 
For Euler-Bernoulli beam theory, 

, ,     x xw V Mζ = =% %  (24) 

For Rayleigh beam theory, 

, , 2 , 1 0     x x xw V M I W I uζ = = + −% % && &&  (25) 

For Shear and Timoshenko beam theory, 

     V Qζ ϕ= =% %
 (26) 

 
4. 2. Analytical Solution             It is well known that, 
for harmonic vibrations, the displacement field can be 
expressed as: 
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where in the above equation ( 1i = −  ) and Ω is the 
natural frequency of the beam. After substituting 
Equation (27) into Equation (19) through Equation (22), 
the equations of motion for harmonic free vibrations are 
rewritten as: 
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where in Equation (28), for Euler-Bernoulli beam 
theory, terms of { }3 4 5 2 4 5, , , , ,ς ς ς ℘ ℘ ℘ and the last 
relation of Equation (28), for Rayleigh beam theory, 
terms of{ }3 4 4, ,ς ς ℘  and the last relation of Equation 
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(28), for Shear beam theory, terms of 
{ }3 5 6 3 5 6 3, , , , , ,ς ς ς χ℘ ℘ ℘ and finally for Timoshenko 

beam theory, terms of { }5 6 3 5 6, , , ,ς ς ℘ ℘ ℘ must be 
omitted. Then the coupled system of Equations (28) is 
solved and it may be shown that, axial displacement 

0 ( )U x , transverse deflection ( )W x and rotation ( )xφ are 
obtained as: 
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and 
2 3

0 1 2 3 0ϑ ϑ λ ϑ λ ϑ λ+ + + =  (30) 

where iλ ’s are roots of Equation (30) and have different 
function forms of Ω for each of four beam theories. The 
form of ( )if λ , ( )ig λ  and iϑ  that are functions of 
stiffness coefficients, generalized inertia moments and 
frequency are expressed for each of four beam theories 
in Appendix A. 

To determine the exact values of constants 1C through

6C appeared in Equation (29), the appropriate form of 
the boundary conditions must be used as described 
below. According to Figure 2, an FG beam with an edge 
crack modeled by extensional and rotational springs, is 
divided in two regions where the deflection ( )W x  and 
slope for each of the two regions of the beam are 
named using super script, i.e. for part 1 deflection and 
slope are denoted by  { }1 1( ) , ( )W x xφ , respectively. For a 

clamped-free boundary condition, first the clamped 
boundary condition at x=0 is applied to the first part of 
the cracked beam, then the free-end boundary condition 
at x=L is applied to the second part of the cracked beam. 
These boundary conditions are extracted from the 
general form of the boundary conditions described in 
Equation (23) as: 

1 1 1
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The other boundary conditions at x=b near the crack 
position, based on spring model are described as: 
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Replacing of Equation (16) and Equation (24) through 
Equation (26) and Equation (29) into Equation (31) and 
Equation (32) will result in a matrix of equations of: 

[ ( )]{ } 0B Cλ =  (33) 

Using the familiar concepts of linear algebra, it may be 
shown that this set of equations has a non-trivial 
solution when its determinant is equal to zero: 

det[ ( )] ( ) 0B Bλ λ= =  (34) 

Finally natural frequencies and the different mode 
shapes of the cracked FG beam are obtained bysolving 
Equation (34). 
 
 
 
5. BUCKLING ANALYSIS 

 
5. 1. Equilibrium Equations             To analyze the 
stability of the FG beam with an edge crack, an axial 
compressive load is applied to the beam. For bulking 
analysis, non-zero terms of strain field can be expressed 
utilizing Von-Karman theory as [31]: 
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u u

ε
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 (35) 

Substituting displacement field of Equation (8) into 
Equation (35) and utilizing the results in stress-strain 
relations of plane stress conditions, the only non-zero 
term of stress field that participates in the strain energy 
of the beam is xzσ  with the same relation of Equation 
(11). Also the equilibrium equations are obtained using 
the principle of minimum total potential energy. It 
should be noted that, since stability analysis is a static 
analysis, the term of kinetic energy is omitted from 
principle of minimum total potential energy of Equation 
(12), while the effect of external compressive load on 
the total virtual work is considered in the potential 
energy [32]. The virtual work of the external 
compressive load P (per unit width) is given by: 
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And the variation of strain energy may be shown to be: 

( )xφ
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where in Equation (37), the stress resultants  N, M and 
Q have the same definition as Equation (14).  

The equilibrium equations may be obtained using 
principle of minimum total potential energy while 
performing integration by parts and omitting the kinetic 
energy and work of external force in buckling analysis. 
For each of the four beam theories, the equilibrium 
equations may be shown to be: 
For Euler-Bernoulli and Rayleigh beam theories, 

0 10 0, 11 ,

11 0, 12 , ,

: 0

: 0
xx xxx

xxx xxxx xx

u D u D w
w D u D w Pw

δ

δ

− =

− − =
 (38) 

For Timoshenko and Shear beam theories, 
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The final form of the geometry (kinematic) boundary 
conditions and the force (static) boundary conditions are 
also obtained as: 
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where the axial resultants  { },N V% % are defined for Euler-

Bernoulli and Rayleigh beam theories as, 

, ,,      x xN N P V M Pw= − = −% %  (41) 

and for Timoshenko and Shear beam theories as, 

,,       xN N P V Q Pw= − = −% %  (42) 

 
5. 2. Analytical Solution        The coupled system of 
equations (Equations (38) and (39)) are then solved 
separately and it may be shown that, the axial 
displacement 0 ( )u x , transverse deflection ( )w x  and 
rotation ( )xφ are obtained as: 
For Euler-Bernoulli and Rayleigh beam theories, 
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where λ% and ς% are expressed as, 
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For Timoshenko and Shear beam theories, 

1 2
3 4

, ,

0 , 5 6

sinh( ) cosh( )( )

( )

( )

x xxx

x

C x C xw x C x C

x w w

u x w C x C

λ λ

λ λ

ϕ
λ

χ

+
= + +

℘
= − +

= + +

% % % % % %
% %

%
%
% %%

 (45) 

where λ% ,℘%  and χ%  are expressed as, 
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(46) 

The unknown coefficients, 1C% to 6C%  appeared in 
Equations (43) and (45), could be determined utilizing 
the similar procedure described in previous section 
using appropriate forms of  the boundary conditions. 
Again the cracked FG beam is divided by an edge crack 
into two regions. Boundary conditions for each part of 
the cantilever cracked beam at x=0, x=L and x=b are 
similar to the Equation (31) and Equation (32), 
respectively. For the stability analysis, similar to the 
vibration analysis, critical buckling load and buckling 
mode shapes are obtained solving Equation (33) and 
Equation (34). 

  
 
 

6. NUMERICAL RESULTS AND DISCUSSION 
 
To compare the results of the current study with other 
researches, the dimensionless frequency and 
dimensionless critical buckling load are defined as 
fundamental frequency ratioω1/ω10and critical buckling 
load ratioPcr/ Pcr0whereω1, ω10, , PcrandPcr0are 
representations of first natural frequency and critical 
buckling load of cracked and flawless (un-cracked) 
beam, respectively. 

In Table 1 dimensionless first natural frequencies are 
calculated for a homogeneous cracked beam with 
clamped free boundary condition and the results are 
compared to the experimental data obtained by 
Wendtland [33]. The geometric and material properties 
of the sample beam are supposed to be the same as 
given by Wendtland [33] that are reported as, length 200 
mm, thickness 7.8 mm, Young modulus 206 GPa, 
density 7800 Kg/m3, Poisson ratio 0.29 with different 
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crack depths and locations. The predicted frequencies 
are in excellent agreement with the experimental results. 
Again to examine the accuracy of the present analytical 
results, dimensionless first natural frequencies and 
critical buckling loads are compared to Yang and Chen 
[20] and tabulated in Table 2. To this end, a functionally 
graded cantilever beam with an edge crack is considered 
with material and geometrical characteristics of L/h=10, 
a/h=0.2, E1=70GPa, n=1.9, 0.33ν = and position of the 
crack b/L=0.4, similar specifications to Yang and Chen 
[20]. Also, to match the exponential material behavior 
of Yang and Chen [20] with power law material 
behavior of current study, Equation (1), the value of 
volume fraction exponent n is considered to be 1.9. As it 
may be seen from Table 2, the results are in good 
agreement with Yang and Chen [20] and little 
differences observed in the results is due to different 
crack models used. 

Natural frequencies, buckling critical loads and 
vibration and buckling mode shapes of the four beam 
theories; Euler-Bernoulli, Rayleigh, shear and 
Timoshenko are then compared together and presented 
in the followings. The material properties and geometry 
data used here in free vibration and stability analysis of 
the cracked FG beam are selected as elastic modulus of 
metal, E1=70GPa, Poisson’s ratio, 0.3ν = , mass density 
of metal, 3

1 2700 /Kg mρ = , elastic modulus (and mass 
density) ratio, ( ) ( )2 1 2 1/ , / 0.2E E ρ ρ = with crack depth 
ratio of a/h=0.3 and beam slenderness ratio of L/h=10 
with crack located at b/L=0.4. The metal phase material 
properties are selected similar to Yang and Chen [20]. 

The dimensionless k-th natural-frequency ratio 
(

0k kω ω ) and dimensionless buckling load ratio    
(

0p pcr cr
) are respectively shown in Figures 3 and 5 

versus the crack location. In should be noted 
thatωkrepresents the k-th natural frequency of the 
cracked FG beam whileωk0denotes the k-th natural 
frequency of the beam with no crack. Similarly, the 
buckling load of the functionally graded beam with 
and without crack is represented byPcrandPcr0, 
respectively. Also the first three transverse vibration 
mode shapes are exhibited in Figure 4. 

It is inferred from Figure 3 that as the crack location 
approaches the clamed end, the effect of the crack on 
the reduction of the frequency ratio is more obvious. 
Moreover, when the crack location is close to the free-
end, the cracked beam natural frequencies approaches 
the natural frequencies of the flawless (un-cracked) 
beam. Again from Figure 3 it can be seen that the order 
of the natural frequency ratio values of four theories 
from maximum to minimum is Shear, Timoshenko, 
Euler-Bernoulli and Rayleigh. Also it is interesting to 
note that the second and the third frequency ratios have 
two and three maximum value with different crack 
location, while the location of edge crack where the 

second and the third frequencies achieve maximum 
value is different for four models. Furthermore, it is 
important to note that, since the ratio of the first natural 
frequency increases continually as the crack location 
approaches the free-end, it can be concluded that the 
first natural frequency will be more useful in order to 
detect the crack location experimentally. 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 3.The first three frequency ratio of cantilever FG 
beams for four beam theories at varying locations of crack: a) 
first frequency ratio, b) second frequency ratio and c) third 
frequency ratio 
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Figure 4 shows the first three transverse vibration 
mode shapes of the cracked FG beam while the mode 
shapes are normalized with respect to their maximum 
values. It is interesting to note that as expected and seen 
from Figure 4, the first vibration mode shapes of all 
beam theories are very close together, while the second 
and the third ones are different meaningfully.The effect 
of the crack location on the buckling load ratio is 
exhibited in Figure 5.  

It is observed that the crack location has a significant 
effect on the buckling load of the FG beam. In addition, 
it can be seen that the buckling load decreases as the 
crack location approaches the clamped-end of the beam. 
Also when the crack is located close to the free-end, the 
difference between the buckling loads of the cracked 
beam and those of the beam without crack diminishes. 
Figure 5 shows that buckling load ratio of Timoshenko 
beam is higher than that of Euler-Bernoulli beam, which 
was observed in results of Zheng and Fan [9] for a 
column with an open crack with variable location. 

The ratios of the first natural frequencies of a 
cracked FG beam ( 1 1 0ω ω ) are given in Table 3 for 
different Young's modulus ratios and for n=0.2,5 . The 
Young's modulus ratio ( 2 1/E E ) is defined as the ratio of 
the elastic modulus of the bottom surface, the surface 
without crack, to the elastic modulus of the top surface, 
the surface with crack. As it is expected, the values of 
fundamental (first) frequency ratio of Timoshenko and 
Shear theories are close to each other while results of 
Euler and Rayleigh theories are close together too.  Also 
it is clear from Table 3 that the effect of the crack on the 
reduction of the natural frequencies of the FG beam is 
more obvious when the modulus ratio ( 2 1/E E ) is low. 

 
 

 
 

 
 
Figure 4.The first three transverse vibration mode shapes of a 
cantilever FG beam with b/L=0.6, a) first, b) second and c) 
third transverse vibration mode shape. 
 

 
 
 
TABLE 1. Comparison of fundamental frequency ratio ( 1 10/ω ω )  of a cracked beam with experimental results of Wendtland [33]. 

b/L=0.4 b/L=0.2 b/L=0.025  

0.4 0.26 0.13 0.4 0.26 0.13 0.4 0.26 0.13 a/h 

0.968 0.988 0.997 0.926 0.970 0.992 0.878 0.949 0.986 Present study (Timoshenko model) 

0.970 0.989 0.997 0.931 0.973 0.991 0.891 0.957 0.987 Wendtland [33] 

 
 
 
TABLE 2. Comparison of fundamental frequency and critical buckling load ratio of a cracked FG beam with results of Yang and 
Chen [20] 

Buckling load ratio Fundamental frequency ratio  

20 10 20 10 L/h 
5 0.2 5 0.2 5 0.2 5 0.2 2 1/E E  

0.990 0.931 0.981 0.870 0.997 0.974 0.993  0.951  Present study (EB beam) 

0.998 0.977 0.997 0.956 0.999 0.992 0.998 0.985 Yang and Chen [20] 
 

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle

Dear-User
Rectangle



987                                                  K. Sherafatnia et al. /IJE TRANSACTIONS C: Aspects  Vol. 27, No. 6, (June 2014)  979-990 

 
Figure 5.The critical buckling load ratio of cantilever FG 
beams for two beam theories versus varying locations of the 
crack. 

 
  
 

TABLE 3. Fundamental frequency ratio of cantilever FG 
beams with an edge crack for various elastic modulus ratios 

Timoshenko Shear Rayleigh Euler-
Bernoulli n E2/E1 

0.9137 0.9139 0.9129 0.9130 0.
2 

0.2 

0.9863 0.9863 0.9861 0.9862 10 

0.8885 0.8889 0.8873 0.8877 
5 

0.2 

0.9880 0.9880 0.9879 0.9879 10 

 
 

 

TABLE 4. The fundamental frequency ratio of cantileverFG 
beams with an edge crack for various slenderness ratios 

Timoshenko Shear Rayleigh Euler-Bernoulli n L/h
 

0.8489 0.8501 0.8436 0.8448 
0.2 

5 

0.9537 0.9538 0.9537 0.9537 20 

0.8102 0.8129 0.8035 0.8062 
5 

5 

0.9391 0.9392 0.9390 0.9390 20 

 
 
TABLE 5. The fundamental frequency ratio of cantilever FG 
beams with an edge crack for various crack depth ratios 

Timoshenko Shear Rayleigh Euler-Bernoulli a/h 

0.9513 0.9515 0.9508 0.9510 0.2 

0.8390 0.8395 0.8377 0.8382 0.4 

 
 

TABLE 6. The critical buckling load ratio of cantilever FG 
beams with an edge crack for various elastic modulus ratios 

Timoshenko Euler-Bernoulli n E2/E1 

0.7618 0.7607 
0.2 

0.2 

0.9585 0.9583 10 

0.7022 0.7009 
5 

0.2 

0.9637 0.9635 10 

TABLE 7. The critical buckling load ratio of cantilever FG 
beams with an edge crack for various slenderness ratios 

Timoshenko Euler-Bernoulli n L/h
 

0.6146 0.6093 
0.2 

5 

0.8659 0.8657 20 

0.5403 0.5343 
5 

5 

0.8267 0.8265 20 

  
 

In Table 4, the variation of the fundamental 
frequency ratios with length to thickness ratio (L/h) are 
shown for two values of power law exponent, n. The 
results in Table 4 show that, when the beam becomes 
more slender, the first natural frequency of the beam 
becomes closer to the natural frequency of the flawless 
(un-cracked) beam.It is also clear that for high values of 
length to thickness ratio, difference among all four 
beam theories becomes negligible.It is observed from 
Table 5 that by increasing the depth of crack, natural 
frequency ratios decreases exhibiting that natural 
frequency of cracked beam differ more from a flawless 
(un-cracked) beam, as it was expected. 

Tables 6 and Table 7 tabulate the critical buckling 
load ratio of a cracked FG beam with different Young's 
modulus ratios and slender ratios, respectively. As it is 
shown in analytical solution of the stability analysis, the 
results of Euler-Bernoulli and Rayleigh models are 
identical and also the buckling load ratios and mode 
shapes of the shear model are identical to those of the 
Timoshenko model. 

As it is seen from Table 6, when the modulus ratio    
( 2 1/E E ) becomes higher, the buckling loads of the 
cracked beam approaches those of the beam without 
crack. Moreover, it is deduced that the reduction of the 
elastic modulus of the cracked surface has an increasing 
effect on the buckling load.Also, results of Table 7 
indicate that as the ratio of the beam length to the beam 
thickness (L/h) increases, the effect of the crack on the 
reduction of the buckling load diminishes and for the 
high values of (L/h), the beams with and without cracks 
and also Timoshenko and Euler-Bernoulli modelshave 
approximately the same responses. By the way, it can be 
deduced from Tables 6 and Table 7 that the buckling 
ratios of Timoshenko model has more value rather than 
those of Euler model. 

  
 
 

7. CONCLUSIONS 
 

In the present research, an analytical method is 
presented to investigate the free vibration and buckling 
analysis of FG beams with an open edge crack. A 
comprehensive study is done here to examine the effects 
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of parameters such as location of cracks, depth of 
cracks, material properties of FG and slenderness ratio 
on the natural frequencies, critical buckling load and 
their mode shapes for each of the four engineering beam 
theories; Euler-Bernoulli, Rayleigh, shear and 
Timoshenko. 

It is generally observed that the natural frequency 
ratios obtained using shear model is greater than those 
of others considering effects of different parameters. 
After shear model, Timoshenko, Euler-Bernoulli and 
Rayleigh model are next in rank, respectively. It can be 
also deduced that considering the shear deformation in 
cracked beam model leads to increase the natural 
frequency ratio while adding the rotary inertia in model 
decreases the frequency ratio. However, it seems that 
the results of Timoshenko beam theory are in better 
agreement with the experimental results. Also, results 
confirm that the effect of shear deformation is more 
dominant than the effect of rotary inertia on frequency 
ratio. By the way, the effect of shear on buckling ratios 
of cracked FG column in stability analysis is similar to 
vibration analysis. 

In addition, the results confirm that existence of 
cracks in the beam reduces natural frequencies and 
critical buckling loads and causes significant change in 
vibration and buckling mode shapes. The results also 
show that cracked FG beams with lower slenderness 
ratio and beams with the edge crack closer to the 
support and beams with lower elasticity modulus ratio 
in the surface containing the edge crack, are more 
affected by the crack and their natural frequencies and 
critical buckling loads is reduced further. 
 
[1-33] 
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APPENDIX 
 
Forms of the functions ( )if λ , ( )ig λ and iϑ  in four 
engineering beam theories, appeared in Equation (29) 
and Equation (30), may be shown to be, for Rayleigh 
theory: 
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(A.1) 

Functions ( )if λ , ( )ig λ and iϑ  for Euler-Bernoulli 

theory are the same as relations (A.1) except that 1I and 

2I are equal to zero . 
For Timoshenko theory: 
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(A.2) 

Functions ( )if λ , ( )ig λ and iϑ for Shear theory are the 
same as relations (A.2), except that 1I  and 2I are equal to 
zero. 
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  چکیده
  

 
با استفاده از چهار  FGدر پژوهش حاضر ارتعاشات آزاد و آنالیز پایداري تیرهاي داراي ترك لبه اي و ساخته شده از مواد 

 رفتار مادي تیر در راستاي ضخامت آن. برنولی، رایلی، تئوري برشی و تیموشنکو بررسی شده اند-تئوري مهندسی تیر اویلر
سپس . بصورت نمایی فرض شده و ترك لبه اي نیز به کمک دو فنر بدون جرم کششی و پیچشی مدلسازي شده است

معادلات حاکم بر ارتعاشات آزاد و تحلیل کمانش تیر به کمک روش انرژي بدست آمده و به صورت تحلیلی براي شرایط 
ترك، خواص مادي و نسبت رعنایی تیر بر فرکانس  هم چنین تاثیرات مکان و عمق. مرزي تیر یکسر درگیر حل شده اند

طبیعی و شکل مود هاي ارتعاشات آزاد و مشخصه هاي کمانشی تیر نیز با استفاده از هر یک از چهار تئوري مهندسی تیر 
 .کاملا بررسی شده اند
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