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A B S T R A C T  

 
 

This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of 
temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab 
subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic 
conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the first 
time, the analytical solution of DPL model of heat conduction equation is obtained adopting Laplace 
transform method and inversion theorem. The temperature profiles at the front and rear surfaces of the slab 
are calculated for various temperature gradient relaxation times. The phase and amplitude difference 
between the front and the rear surface are calculated numerically as a function of the temperature gradient 
relaxation time, which have been reported previously as a function of heat flux relaxation time. The results 
demonstrate that increasing the temperature gradient relaxation time leads to the lower phase difference 
and upper amplitude difference between the temperature responses of the front and rear surfaces. 
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1. INTRODUCTION1 
 
The non-Fourier dual-phase-lag (DPL) model of heat 
conduction is used to extend the results of non-Fourier 
conduction in the study of Tang and Araki [1] with a 
finite slab subjected to a periodic thermal disturbance 
that was reported with hyperbolic conduction. Since the 
DPL model has been shown to give good agreement 
with experiments across a wide range of length and time 
scales for engineering materials [2, 3], it provides a 
more comprehensive treatment of the non-Fourier heat 
conduction compared to the interpretation [1] where 
hyperbolic conduction model is applied. 

Applying heat sources such as laser and microwave 
with extremely short duration or very high frequency 
has numerous applications for practical engineering 
problems such as surface melting of metal [4] and 
sintering of ceramics [5]. In these situations, the 
Fourier’s law of heat conduction fails to describe the 
heat transfer process and the non-Fourier effect 
becomes significant [6-9]. Thus describing the heat 
conduction process in such conditions with non-Fourier 
                                                        
*Corresponding Author's Email: ahmadikia@eng.ui.ac.ir (H. 
Ahmadikia ) 

models (especially by DPL model since it is supported 
experimentally [2]) is essential. 

Analytical solution of DPL model of heat 
conduction equation is more complicated in compare 
with the hyperbolic case and to the best of authors' 
knowledge there is not any closed form solution of this 
model in the literature. Consequently, the motivation for 
the work here is to extend the analysis of the previous 
work[1] that is aimed at eventually developing better 
tools to predict transient temperature in finite slab.   

In theory, the Fourier’s heat conduction equation 
leads to the solutions exhibiting infinite propagation 
speed of thermal signals. In order to eliminate this 
paradox, two different kinds of models are usually 
adopted in the related literatures. One is the 
macroscopic thermal wave model, postulated by 
Cattaneo[10] and Vernotte[11]: 

q
д

q λ T τ q
дt

= − ∇ −  (1) 

where, q is the heat flux, T is the temperature, λ is the 
thermal conductivity and τq is the heat flux relaxation 
time. Although the non-Fourier thermal wave model can 
remedy the physically unreasonable heat penetration 
speed, in some cases introduces unusual behaviors [12], 
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physically impossible solutions like negative thermal 
energies [13, 14], violates the second law of 
thermodynamics by yielding negative values for entropy 
[15, 16], does not consider the relaxation times between 
electrons and the atomic lattice [9] and when it comes to 
the importance of microstructural interaction effects, is 
not capable to describe the fast transient heat transfer 
process [17]. To provide a macroscopic description free 
from the aforementioned defects, Tzou [9] developed a 
dual-phase-lag (DPL) model by generalizing the 
Fourier’s law and supported it experimentally [2]. 

The non-Fourier dual-phase-lag (DPL) model is 
deduced by adding two time constants, namely the 
phase-lags of temperature gradient and heat flux, in the 
Fourier heat flux equation to provide a macroscopic 
description that can capture the microscopic interaction 
effects in heat transfer process and suggest some 
behaviors of heat conduction, while neither the 
macroscopic thermal wave model nor the Fourier 
thermal diffusion model can do [9]: 

T q
д дq

q λ T λτ T τ
дt дt

= − ∇ − ∇ −   (2) 

where, τT is the temperature gradient relaxation time. 
Equation (2) and the conservation equation of energy 
lead to the following equation to describe the lagging 
behavior: 

T q
д дT д T

a T aτ T τ
дt дt дt

∇ + ∇ = +
2

2 2
2

 (3) 

where, a  is the thermal diffusivity and √a /τq is the 
propagation speed of temperature wave. In addition to 
its application in the ultrafast pulsed-laser heating, the 
DPL heat conduction equation arises in describing and 
predicting phenomena such as temperature pulses 
propagation in superfluid liquid helium, non-
homogeneous lagging response in porous media, 
thermal lagging in amorphous materials, and the effects 
of material defects and thermomechanical coupling 
[18].  

Since the DPL model developed, the analysis of it 
has been a concern for various kinds of mediums and 
dimensions under different conditions. Tang and Araki 
[18] introduced a generalized macroscopic model and 
solved it analytically using green functions in treating 
the transient heat conduction problems in finite rigid 
slabs irradiated by short pulse lasers. They illustrated 
wavy, wavelike, and diffusive behavior predicted by the 
model. Antaki[19] considered various thermal lagging 
behaviors in a semi-infinite slab under step surface heat 
flux. In addition,Antaki[20]employed the DPL heat 
conduction model, which is based on the well-known 
two phase lags concept [9], to interpret the non-Fourier 
heat conduction phenomena in processed meats against 
thermal wave model which was used by Mitra et al. 
[21]. The spatial behaviour of solutions of some 

problems for the DPL heat equation on a semi-infinite 
cylinder is studied by Horgan and Quintanilla [22]. Liu 
[23] analyzed the DPL thermal behaviors in two-layered 
thin films with an interface thermal resistance by 
considering the radiation boundary condition. Wang et 
al. [24] developed two solution structure theorems for 
the DPL equation under linear boundary conditions. 
Ang[25] considered the numerical solution of a two-
dimensional thermal problem governed by a third-order 
partial differential equation (DPL model) derived from a 
non-Fourier heat flux model which may account for 
thermal waves and/or microscopic effects. Zhang and 
Zhao [26] derived a two-dimensional governing 
microscale heat transport equation (DPL model) and 
proposed an unconditionally stable finite difference 
scheme to discretize the governing equation. They used 
a preconditioned conjugate gradient method to solve the 
resulting sparse linear systems. Han et al. [27] 
numerically analyzed a two-dimensional lagging 
thermal behavior under short-pulse-laser heating on 
surface in both rectangular coordinate and axially 
symmetric systems. Ghazanfarian and Shomali[28] 
investigated the numerical simulation of non-Fourier 
transient heat transfer in a two-dimensional sub-100 nm 
metal-oxide-semiconductor field-effect transistor 
(MOSFET). They introduced the dual-phase-lag (DPL) 
model with a specific normalization procedure for the 
modeling of nanoscale heat transport. They concluded 
that the combination of the DPL model with mixed-type 
temperature boundary condition is able to predict the 
heat flux and temperature distribution obtained from the 
Boltzmann transport equation (BTE) more accurate than 
the ballistic-diffusive equations (BDE). Lee et al. [29] 
applied the DPL heat transfer model and solved it using 
an efficient numerical scheme involving the hybrid 
application of the Laplace transform and control volume 
methods in conjunction with hyperbolic shape functions 
to investigate the transient heat transfer in a thin metal 
film exposed to short-pulse laser heating. They showed 
that the phase lag of the heat flux tends to induce 
thermal waves with sharp wave-fronts separating heated 
and unheated zones in the metal film, while the phase 
lag of the temperature gradient destroys the waveforms 
and increases the thermally disturbed zone.Hu and Chen 
[30] studied the transient temperature distribution in a 
cracked half-plane under temperature impact loading 
using the DPL heat conduction model. More recently, 
Lam [31] provided a unified solution of parabolic and 
hyperbolic heat conduction models in a one-dimensional 
thin film subjected to a time-varying and spatially-
decaying laser energy source incident on both surfaces.  

All previous works adopting the DPL model for a 
constant or pulse heat flux or a sudden temperature 
change on a slab. In addition, the heat transfer analysis 
with periodic heat flux on finite slab has only been 
studied by Fourier and hyperbolic thermal wave 
equations [1]. Due to the particular form of the 
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relationship between q and T in DPL model, the 
boundary condition in the case of time-dependent one is 
more complicated in comparison with the hyperbolic 
thermal wave model and it makes more difficult 
procedure to obtain analytical solution for DPL model.  

This paper considers transient heat conduction in a 
finite slab exposed to a periodic heat flux by applying 
the DPL heat conduction model.  For the first time, the 
analytical solution of the DPL heat conduction equation 
is derived using Laplace transform method and 
inversion theorem. Calculations are performed to 
exhibit the wavelike (hyperbolic) behavior by 
comparing it with the diffusive ones and the influence 
of temperature gradient relaxation time on the 
hyperbolic conduction characteristics is investigated 
that has not been yetreported. The temperature profiles 
at the front and rear surfaces are calculated for different 
values of τTω, which have been presented for different 
values of τqω previously [1]. The non-Fourier effects are 
discussed by comparing the phase and amplitude 
between the front and rear surfaces. 

 
 

2. ANALYSIS 
 
Consider a slab as a finite medium with the thickness of 
L and insulated boundaries where one-dimensional heat 
conduction and constant thermal properties prevail. The 
medium is initially in equilibrium at temperature T(x,0) 
= 0, from time t = 0 the external surface at x = 0 is 
exposed to a periodic heat flux with the amplitude q0 
and the frequency ω. In this situation, the general DPL 
heat conduction Equation (3), and the boundary and the 
initial conditions in the non-dimensional form are: 

д д V дV д V
Γ Λ
дFo дFoдX дFo

 + = + 
 

2 2
2 21  (4) 

( ) ( )

( ) ( )

дV Foд
Fo Γ Q Fo

дFo дX

дQ Fo Fo
       Λ    Q Fo

дFo Fo

 − + = 
 

 
+ =  

 

1

1

0,1 0,
0, , 0, cos

 
(5a) 

( )дV Fo

дX
=

1, 0  (5b) 

( ) ( ) ( )
дV X

V X Q X
дFo

= = =
,0,0 0,    0,    ,0 0  (6) 

The governing equations are converted into non-
dimensional equations using the following parameters: 

( ) ( ) ( ) ( )

q T

T x t q x t
V X F o    Q X F o ,

q ρ c ω L q

a x a t
               F o    X    F o

Lω L L
a τ a τ

               V e Λ    Γ
L L

= =

= = =

= = =

0 0

1 2 2

2
2 2

, ,, , ,

, , ,

,

 

(7) 

where ρ is the slab density, a is the slab thermal 
diffusivity, x and t are the coordinate and time variables, 

X is the dimensionless coordinate variable and V and 
Qare the dimensionless temperature distribution and 
heat flux density of the slab, respectively. Fo is the 
Fourier number (dimensionless time), Ve is the Vernotte 
number Fo1 is the dimensionless incident heat flux 
frequency and 1/Ve=L/√(a τq) denotes the 
dimensionless speed of propagation of temperature 
wave. Here, X is the dimensionless coordinate and Γ and 
Λ are the dimensionless temperature gradient and heat 
flux relaxation times, respectively. 

If the Laplace transformation is applied to Equation 
(4) and (5), by taking into account the initial conditions 
(6), the following subsidiary equation and the BCs are 
obtained as: 

d V s Λs
BV B

ΓsdX

+
− = =

+

2 2
2 0, 1    (8) 

( ) ( ) ( ) ( )

( )
( )

dV ; s
Fo Γs Λs Q ; s

dX
Fo s

          Q ; s
Fo s

− + = +

=
+

1

2
1

2
1

01 1 0 ,

0
1

 
(9a) 

( )dV ;s

dX
=

1 0  (9b) 

wheres is the Laplace domain variable and B is a simple 
fractional function in Laplace domain. Equation (8) is 
solved with respect to the conditions of Equation (9), 

( )
( )

( )B B XFo
V X; s

BFo s

 − =
+

1
2

1

cosh 1
sinh1

 (10) 

In Equation (10) ( )V X;s  is the slab temperature field in 
Laplace domain. A similar problem in a finite medium 
is studied by Tzou[32] but with dirichlet boundary 
condition. For evaluating the inverse Laplace transform 
of DPL model he pointed out that:"The branch points 
resulting from the mixed-derivative term in DPL 
governing equation (Equation (21) [32]) prevent me to 
obtaining an analytical inversion; therefore, I invoke 
the numerical algorithm developed previously [33] for 
the purpose of inversion". In this study a complete 
analytical inversion of Equation (10) is provided and 
checked by applying the procedure of inversion on the 
temperature field obtained by Tzou [32] in the Laplace 
domain. Equation (10) can be expressed as: 

( )
( )

( ) ( ) − −
 + + + ⋅⋅⋅ = × 

+  + + + ⋅⋅⋅
  

B X B X
Fo

V X; s
B BFo s

2 42

1
2 2

1

1 11 2! 4!
1 1 3! 5!

 
(11) 

According to the definition of the inverse Laplace 
transformation [34] and the residue theorem (Bromwich 
contour integration), the original function of ( )V X; s  can 
be expressed as: 
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( ) ( )

( )

γ i sFo

γ i

M
sFo

n
n

V X Fo e V X; s  ds

                residual e V X; s s

+ ∞

− ∞

=

=

 =  

∫

∑
1

,

,
 (12) 

where, s1,s2,…,sn are all poles of ( )V X; s  and γ is the 
Bromwich line which all the above poles are in the left 
side of it on the complex plain. Letting the denominator 
of ( )V X;s  be zero, all of the poles can be obtained as 
follows: 

( )Fo s s i Fo    s i Fo+ = ⇒ = = −
2

1 1 1 2 11 0 ,  (13a) 

( ) ( )n n n

n n

n

B

Γμ Γμ Λμ
   s s

Λ
n

   μ π    n

= ⇒

− + ± + −
=

−
= =

22 2 2

1 2

sin h 0
1 1 4

, 2
2 1 , 1 ,2,3, ...2

 
(13b) 

In Equation (13) i is the imaginary unit of complex plain 
and μ is the eigenvalues of problem. Since all poles are 
of the first order, the residues are [34]: 

( )
( )

    
 −   
       =    

  
   

Fo
i
FosFo

i i
Β Β X

Fo Fo
e V X; s s  e

i
i Β

Fo

1
1 1

1

1

cosh 1
Re ,

2 sinh

 
(14a) 

( )
( )

−

    − − −   
       =    − −  
   
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i

FosFo
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B B X
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e V X; s s e

i
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1
1 1

2

1

cosh 1
Re ,
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(14b) 

( )

( )
( ) ( )

( )

mns FosFo
mn

m n m n

n mn n

mn n nmn

e V X; s s e

μ Γs μ XFo
   

Λs Γμ μFo s

∞ ∞

= = = =

  = × 

 − + − 
+ ++

∑ ∑ ∑ ∑
2 2

1 1 1 1
2

1
2 2

1

R e ,

2 1 cos 1
2 1 cos1

 
(14c) 

where, 

( ) ( )
iFo Λ iFo Λi i

B  B
Fo Fo iΓ Fo Fo Fo iΓ Fo

   − +−
= =   + −   

1 1
1 1 1 1 1 1

,  (14d) 

In Equation (14) denotes the residue. From Equation 
(14), the inverse transformation of ( )V X;s  is obtained 
as follows: 

( ) ( ) ( )

( )
∞

= =

   = +   

 +  ∑ ∑

sFo sFo

sFo
mn

m n

V X Fo e V X; s s e V X; s s

   e V X; s s

1 2
2

1 1

, Re , Re ,

Re ,
 (14e) 

In other words, the dimensionless temperature response 
of the slab can be express as: 

( ) ( )
( ) ( )

( )

( )
( ) ( )

( )

( )

−

∞

= =
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,
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n mn n s Fo

mn n n

Γs μ X
e

Λs Γμ μ

2

2
1 cos 1
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(15) 

  
 

3. RESULTS AND DISCUSSION 
 

By applying Equation (15), the numerical computation 
is performed in order to display the temperature profile 
arising from a periodic surface heat source at x = 0 on a 
finite slab. The temperature response during an 
oscillatory surface thermal disturbance with the period 
Fo1 = 0.25 at the rear surface (X= 1) for Ve = 0.8 and 
different values for Γ is shownin Figure 1a.For checking 
the reasonability of the solution, we consider two limit 
situations of above solution according to the Lam’s [31] 
study. One is τT→ 0, i.e. the DPL solution should go 
back to the hyperbolic thermal wave solution and 
another limit situation of the above solution is τT→ τq, 
i.e. the DPL solution should go back to the parabolic 
Fourier solution [32]. As observers in this figure, when 
these limit situations are applied in the solution of DPL 
model, the solution coincides with the hyperbolic 
thermal wave and parabolic Fourier solutions. 
 
 
 

 
Figure 1a. Accuracy of the analytical procedure by applying 
suitable limit situations on the solution of the DPL based on 
the Lam [31] validation procedure. 
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Figure 1b. Comparison between the results of the analytical 
and numerical inversion procedures are used in this and 
Tzou’s [32] study, respectively when Fo = 0.05 and Λ = 0.05. 

 
 
 

As mentioned in Sec. 2, the accuracy of the 
analytical inversion procedure is also checked by 
comparing it with the numerical one which is used by 
Tzou [32]. This comparison is conducted when both 
analytical and numerical inversion procedures are 
applied on the transformed temperature field in the 
Tzou’s[32] study. The results of this process are shown 
in Figure 1b, where the consistency of them approved 
conducted analytical inversion once more. 

The temperature response at both surfaces are shown 
in Figures 2a and 2b, respectively for a periodic surface 
heat flux with the period Fo1= 0.25 and various values 
of Γ/Fo1 =τTω. A similar result with hyperbolic model 
for various values of Ve2/Fo1 = Λ/Fo1 =τqω is presented 
by Tang and Araki [1]. They concluded that, at both 
surfaces, when Ve≤ 0.07, the difference between the 
results from the hyperbolic and the parabolic equation is 
below 1%. In other words, the inequality Ve≤ 0.07 
represents the condition of the occurrence of difference 
in temperature response between the Fourier and the 
non-Fourier solution. In this study, by gradual increase 
of τTω in DPL model, between the range of parabolic 
and hyperbolic models (i.e. 0 ≤ τTω ≤ 2.56) when Ve= 
0.8, the ability of the DPL model in covering the 
situations between the parabolic and hyperbolic models 
is illustrated at both front and rear surfaces in Figures 2a 
and 2b, respectively. The condition τTω = 0, 0.004, 0.4, 
1.2 and 2.56 corresponds to Γ = 0, 0.001, 0.1, 0.3 and 
0.64. The values Γ = 0 and 0.64 are related to the 
hyperbolic and parabolic models, respectively. 

Tang and Araki [1] presented a discussion about the 
phase and amplitude difference between the front and 
rear surfaces of the periodic temperature response for 
the parabolic and hyperbolic models and concluded that 
this discussion is significant only for small values of 
Vernotte number, because increasing Vemakes the 
temperature response deviate from a normal periodic 
curve (see Figure 1 in [1]). According to the results of 

DPL model (like Figures 2a and 2b), it is not a 
comprehensive conclusion because when τT exists, the 
deviation from a normal periodic curve does not occur 
and a discussion about the phase and amplitude 
difference between the front and rear surfaces maybe 
important in high valuesof Vernotte number.  In this 
regard, the results for phase and amplitude difference 
between the front and the rear surface temperature 
responses vs. Γ1/2 number are presented in order to 
illustrate the effect of temperature gradient relaxation 
time on these parameters. The phase and amplitude 
difference between the front and the rear surface vs. Γ1/2 
number for a given period Fo1= 0.25 and Ve = 0.8 are 
shown in Figures 3a and 3b, respectively. The vertical 
coordinates of these figures respectively are Δφ= (φF-
φR)/2πFo1 and AF-AR. The phase difference φF-φR is 
determined by the time difference of the first minimum 
point in temperature response between the front and rear 
surfaces and AFand AR are the amplitude of the first 
minimum point of the front and rear surface, 
respectively [1]. The results indicate that the 
temperature gradient relaxation time has an important 
effect on the phase and amplitude difference between 
front and rear surfaces. As value of Γ1/2 is increased, the 
phase and amplitude difference of the surfaces decrease 
and increase, respectively. 

  
 
 

 
Figure 2a. Effect of τTω on the temperature response at the 
front surface (Fo1=0.25) 
 
 

 
Figure 2b. Effect of τTω on the temperature response at the 
rear surface (Fo1= 0.25) 
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Figure 3a. Phase difference between the front and the rear 
surface as a function of number Γ1/2 
 
 

 
Figure 3b. Amplitude difference between the front and the 
rear surface as a function of number Γ1/2 

 
 
 

5. CONCLUSION 
 
For the first time, the exact analytical solution of the 
dual-phase-lag (DPL) heat conduction equation under 
the condition of periodic thermal disturbance is derived. 
The existence of interpretations for the measurements 
with hyperbolic heat conduction equation in a finite slab 
subjected to a periodic thermal disturbance, suggests 
that additional study is needed to help clarify the nature 
of conduction using the dual-phase-lag (DPL) model in 
such slab. Corresponding to the actual situation that a 
finite rigid slab under periodic heating exists, various 
behaviors of heat conduction (the wavelike and 
diffusion), are obtained by adjusting the relaxation 
parameters in the DPL heat conduction equation. The 
temperature responses calculated here are compared 
with two previous related results in literature and the 
calculations show good agreement with them. For the 
first time, the effect of temperature gradient relaxation 
time on the phase and amplitude difference between the 
front and rear surfaces are computed and the results 
indicate that the phase and amplitude difference of the 
surfaces decrease and increase, respectively as the 
temperature gradient is increased. 
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  چکیده
 

در این مطالعه از مدل تأخیر فاز دوگانه معادله هدایت گرما براي تعیین اثر زمان آسایش حرارتی گرادیان دما روي نتایج 
هدایت گرماي غیر فوریه هذلولوي در یک ورق محدودي که در معرض اغتشاش گرمایی نوسانی قرار گرفته، استفاده شده 

کند که مدل هذلولوي اي هدایت گرما را ترکیب میاي و پخش گونههاي موج گونهدل تأخیر فاز دوگانه ویژگیم. است
براي اولین بار حل تحلیلی مدل تأخیر فاز دوگانه معادله هدایت گرما با استفاده از روش تبدیل . قادر به این کار نیست

هاي مختلف هاي توزیع دما در سطح و پشت ورق براي زمانیلپروف. لاپلاس و تئوري وارونه سازي به دست آمده است
هاي دمایی سطح و پشت به عنوان تابعی از اختلاف فاز و دامنه بین پاسخ. اندآسایش حرارتی گرادیان دما به دست آمده

اند، به صورت عددي زمان آسایش حرارتی گرادیان دما که قبلاً به عنوان تابعی از زمان آسایش حرارتی شار گرما ارائه شده
دهند که افزایش زمان آسایش حرارتی گرادیان دما باعث کاهش اختلاف فاز و افزایش نتایج نشان می. اندمحاسبه شده

  ..شودهاي دمایی سطح و پشت میاختلاف دامنه بین پاسخ
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