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In this paper, a size-dependent formulation for the Bernoulli-Euler beam is developed based on a new
model of couple stress theory presented by Hadjesfandiari and Dargush. The constitutive equation
obtained in this new model, consists of only one length scale parameter that is capable of capturing the
micro-structural size effect in predicting the mechanical behavior of the structure. Having one length
scale parameter is claimed to be an advantage of the model in comparison with the classical couple
stress theory. The governing equations and boundary conditions of the Bernoulli-Euler beam are
developed using the variational formulation and the Hamilton principle. The static bending and free
vibration problems of a Bernoulli-Euler beam with various boundary conditions are solved. Numerical
results demonstrate that the value of deflection predicted by the new model is lower than that of the
classical theory. It is also found that natural frequencies obtained by the present couple stress model
are higher than those predicted by the classical theory. The differences between results obtained by the
present model and the classical theory become significant as the thickness of the beam gets close to the
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1. INTRODUCTION

The classical theory of elasticity is not capable of
capturing the size effect of microstructure and is
appropriate to study material behavior in macro-scale
only. When the scale of the material under study
decreases, the accuracy of the classical theory decreases
and as a result its prediction of the material behavior in
micro and nano-scale doesn’t agree with experimental
results. The reason for such deviation is found to be the
significant effect of microstructure [1-5]. Hence, the
non-classical theories such as the strain gradient or
couple stress theories are employed to study the
behavior of materials in these scales. Non-classical
theories contain length scale parameters which indicate
the effect of microstructure in the behavior of the
material. The couple stress theory is found to be the
simplest kind of such theories.

The classical couple stress theory was presented by
Mindlin and Tiersten [6], Toupin [7], Koiter [8] and
some other researchers. This theory considers the
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gradient of rotation in addition to the gradient of
displacement, but the rotation is assumed to be
dependent to the displacement as seen in the classical
theory. Constitutive equations developed for an
isotropic material on the basis of the classical couple
stress theory contain four elastic constants, i.e. two
Lame’s constants and two length scale parameters.
Anthoine [9] solved the pure bending problem of a
circular cylinder employing the couple stress theory.
Zhou and Li [10] analyzed the static bending and free
vibration problems of a circular cylinder on the basis of
the couple stress theory. Asghari, et al. [11] developed a
size-dependent formulation for Timoshenko beam on
the basis of couple stress theory. Yang, et al. [12]
propounded a model of couple stress, i.e. the modified
couple stress theory that considers an additional
equilibrium equation for the moment of couple, in
addition to two equilibrium equations of the classical
continuum. Application of this equilibrium equation,
leads to a symmetric couple stress tensor and a
constitutive relation that has only one length scale
parameter. Park and Gao [13] studied the static bending
problem of the Bernoulli-Euler beam. The governing
equations and boundary conditions were developed
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using variational method on the basis of the modified
couple stress theory. Kong, et al. [14] solved the
dynamic problem of Bernoulli-Euler beam and obtained
the natural frequencies of the beam based on the
modified couple stress theory. Asghari, et al. [15]
carried out the static bending and free vibration analysis
of a functionally graded Bernoulli-Euler micro beam
based on the modified couple stress theory.

The microstructure-dependent formulation for the
Timoshenko beam, functionally graded Timoshenko
beam and nonlinear Timoshenko beam were developed
by Ma, et al. [16], Asghari, et al. [17, 18], respectively.
Simsek, et al. [19] investigated the static bending of a
functionally graded Timoshenko beam on the basis of
the modified couple stress theory. Chen, et al. [20]
presented a new model to study the behavior of a
laminated anisotropic composite Reddy beam based on
the modified couple stress theory.

Ke, et al. [21] solved the nonlinear free vibration
problem of a micro-beam made of functionally graded
material according to the modified couple stress theory.
Free vibration analysis of a three dimensional
cylindrical micro-beam and nonlinear dynamic analysis
of a micro-beam based on the modified couple stress
theory were carried out by Wang, et al. [22] and
Ghayesh, et al. [23], respectively.

Hadjesfandiari and Dargush [24] presented a model
of couple stress theory in which the couple stress tensor
is found to be antisymmetric due to lack of the normal
components of the couple stress tensor on the boundary
of the element in a couple stress continuum. The
constitutive equations developed by this model consist
of only one length scale parameter.

Althoght there are a number of papers dealing with
micro-beams using non-classical theories but to the
knowledge of the authors, the couple stress model
developed by Hadjesfandiari and Dargush [24] has not
been employed to study the behavior of micro-beams.
The purpose of this paper is to study the behavior of a
Bernoulli-Euler beam using the new model of couple
stress developed by Hadjesfandiari and Dargush [24].
At first, kinematic variables in a couple stress
continuum are defined. Then, the governing equations
and boundary conditions are obtained using the
variational formulation and Hamilton principle.

The static bending and free vibration problems of a
Bernoulli-Euler beam  with different boundary
conditions are solved analytically. It is found that the
value of deflection of the beam obtained by the
proposed model of couple stress is lower than that of the
one obtained by the classical beam theory. On the other
hand, values of natural frequencies of vibration of the
beam becomes higher than those obtained by the
classical theory. At the end, values of deflection and
natural frequency a micro-beam obtained by the present
couple stress model are compared with those predicted
by the modified couple stress theory.

2. PRELIMINARIES

According to the model of couple stress developed by
Hadjesfandiari [24], the strain energy of an isotropic
linear elastic material experiencing an infinitesimal
displacement is defined as:

U l?i(ouau+mﬁ,uu)dv (1)

where, Gy M, and p; are components of stress,

strain, couple stress and antisymmetric curvature
tensors, respectively. These tensors can be defined as
[24]:

o, = Atr(e;)8; +2ue; )
1
& :E(Ui,j +”j,i) (3)
m, =—8ulzuﬂ 4
1
Hi; =5(wi,j _wj,i) @)
where,
A= Ev _ E
(I+v)(1—20) ~ "7 2(1%v) ©)

are Lame’s constants, E is the Young’s modulus, v is
the Poisson’s ratio, I is the length scale parameter; u,

and @ are components of the displacement and the

rotation vectors, respectively. Components of the
rotation vector can be defined in terms of components
of the displacement vector in the following form;

1
OF :?eijkuk,j @)

where, €, is the permutation tensor.

It can be easily concluded from Equations (2) and
(4) that the stress tensor and the couple stress tensor are
symmetric and antisymmetric, respectively.

As shown in Figure 1, the Cartesian coordinate
system is employed for the beam under study that
consists of x, y and zaxis as centroidal, neutral and
symmetry axis, respectively. According to the
Bernoulli-Euler beam theory, the displacement field can
be written as [13, 14]:
ulz—zw, u, =0, U3=W(X,t) ()

0x

where, u;, u, and u, are components of the
displacement vector of a point with coordinates (x,y,z)

on the cross-section of the beam in x, y and z direction,
respectively. W is the component of the displacement
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vector in the zdirection of the point on the centroidal
axis with coordinates (x,0,0).

Using Equations (3) and (8), components of the strain
tensor can be expressed as:

o'w
& ="2—5, &, =¢,=¢, =€, =¢£,=0 Q)]
And using Equations (7) and (8), the components of
rotation vector can be obtained as:

From Equations (5) and (10), it follows that:

1 &*w
My =—Hy =

Sl M THa Ty S Hy =0 1mn

Since, the beam is assumed to be slender with a large
aspect ratio, the effect of Poisson’s ratio is very small
and can be neglected. Inserting Equation (9) into
Equation (2) yields:
62

:—EZ?, 6, =0, =0,=0, =0, =0 (12)
And substitution of Equation (11) into Equation (4),
results:

pe
m,, =-m, =—pl’

e - ox? (13)
m, =m, =m m,, =m, =0

Once, the kinematic parameters are defined, we can
proceed further to obtain the governing equations.

3. GOVERNING EQUATIONS

In this section, the governing equations and boundary
conditions are obtained wusing the variational
formulation and the Hamilton principle. The first
variation of the strain energy in the time interval [0, ]

is obtained from Equation (1):

5_[Udt ”o St dth+IImj,5uUdth (14)

0 0Q

where, Q is the region occupied by the beam.
Using Equations (9) and (11), the Equation (14) can be
rewritten as:

T 2 T
! j[o “ou Jdth ‘] j[m

The stress and couple stress resultants through the cross-
section of the beam are found to be:

o%6w
——— | dVdt
ox 2 J (15)
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Figure 1. Configuration and coordinate system of the loaded
beam
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where, h and b are the thickness and the width of the
beam, respectively. Substituting Equation (16) into
Equation (15) results in the following relation:

”[ 0 5W]dxdt+_”[ 6afw]dxdt (17

where, L is the length of the beam.
Using the divergence theorem in above equation, the
following relation is obtained:

5j Udt =— j j[ jéwdxdt
vy [ ey
w
+£[—8X - Jaw y dtfj‘(MXX 1Y, )a—xxzodt

The variation of kinetic energy in the time interval [0,
T] can be expressed as:

el

where, p is the mass density of the beam material that

S —y
Cn

]éwdxdt (19)

is assumed to be independent of the time,fand the
position, X and A is the area of the cross-section of the
beam that is defined as:

A =bh (20)

The virtual work done by the external forces applied on
the beam in the time interval [0, T] can be expressed as

[16]:

T T L
§[wdt = [ [if,6w +c, b0, }dxdt

0 00
T . (21)
[V ow +5,80,3[ _ dt
In above equation, , and ¢, are the body force and

body couple per unit length of the beam, respectively;
V' is the applied transverse force on the beam and s_y
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is the applied couple stress about the y-axis. In the
absence of the body couple and the surface force and
surface couple, the virtual work becomes:

T T L
stdt = jjfZSdedt (22)
0 00

The Hamilton principle is defined in the following form
[16]:

5}[K ~(U-W)]dt=0 (23)

By substituting Equations (18), (19) and (22) in
Equation (23), the governing equation of the Bernoulli-
Euler beam can be obtained as:

M, 0,
P + 8X2y +f,=0 2%

And the boundary equations are defined as follow:

oY
W—XXJ,__X'V; 8_W or MXX +YX (25)
ox 0x ox 7

From Equations (12), (13) and (16), it follows that:

or

2 2
M. =kl - 0 -
ox p'e
Substituting Equation (26) into Equations (24) and (25)
results in the governing equation and boundary
conditions in terms of components of the displacement

vector in the following form:

., Y, =—4uAl’

(26)

0w o\ 0w
pA—S +(EI+4pAl )ax4 —f, =0 (27)
3
w  or —(EI+4;1A12)ZX—“; (28a)
ow o*w
oo ~(EI +4uA12)aX2 (28b)

It can be seen from Equation (27) that the governing
equation of the Bernoulli-Euler beam is composed of
two parts: one is related to pAand EI and the other to

4uAl®. The first part is the same as the one in the

classical theory and the second part is added due to the
couple stress theory. The additional term increases the
stiffness of the beam that in turn decreases the
deflection of the beam and increases its natural
frequencies. It is seen from Equation (27) that
Hadjesfandiari’s couple stress model contains one
length scale parameter beside two conventional classical
constants. This length scale parameter enables the
present couple stress model to describe the size effect.
When the length scale of the material vanishes (1 =0),
the governing equation and boundary conditions

obtained in the present model reduces to the classical
theory.

By comparing the governing equation and boundary
conditions of the Bernoulli-Euler beam of the present
model with those of the modified couple stress theory in
[13, 14], it is found that these equations differ by a
scalar factor. This scalar factor comes into effect due to
the difference of definitions of the length scale
parameter in the present model and the modified couple
stress theory. The length scale parameter in
Hadjesfandiari’s couple stress model is found to be half
of the length scale parameter of the modified couple
stress theory.

The present model of couple stress theory has two
advantages in comparison with other non-classical
theories. First is the existance of only one length scale
parameter in the constutive relations, due to difficulties
observed in determining the length scale parameter of a
material [25]. The second one is the antisymmetry of the
curvature tensor and the couple stress tensor. The strain
energy in this theory includes only the antisymmetric
part of the curvature and couple stress tensorsresulting
in asimpler form of the strain energy in comparison with
other non-classical theories.

4. CASE STUDY

In this section, the static bending and free vibration
problems of the beam are solved employing the
formulation derived in the previous section on the basis
of Hadjesfandiari’s couple stress model. The problems
are solved analytically for three boundary conditions
and results are compared with those of the classical
theory of elasticity.

4. 1. Static Bending Problem For the static
bending problem, all derivatives with respect to time
vanish and the governing equation is reduced to the
following form

4
oW _¢ (29)

4 z
X

(EI+4pAl®)

It is supposed that the beam is loaded under a constant
distributed load, f, (x) = q, . Assuming such conditions,

analytical solution of Equation (29) can be obtained by
successive integration as follow:
4 3 2
q, X X X
= +4+C,—+C,—+C C
Y B vaparyaa e T TN (30)
where, C,, C,, C, and C, are coefficients that can be
determined from boundary conditions.

4. 1. 1 Clamped (C-C) Beam According to
Equations (28a) and (28b), the boundary conditions of a
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beam with clamped-clamped boundary conditions are
expressed in the following form:

w(0)=w(L)=0, dw/dx|  =dw/dx| , =0 (31

By applying above boundary conditions to Equation
(30), unknown coefficients are obtained and the
deflection becomes:

W:24(EI zZuA12)(X4_2LX3+L2X2) (32)

By setting I =0, the above equation reduces to the

result of the classical couple stress theory

W:L(x“—zLquzxz) (33)
24EI

By neglecting the effect of the Poisson’s ratio, the

normalized static deflection of the clamped micro-beam

is introduced as follow:

wo_ EI _ 1
W (EI+4pAl”) 1+24(1/h)’ 34
4. 1. 2. Simply Supported (S-S) Beam The

boundary condition of a simply supported beam are
defined as:

w(0)=w(L)=0, dzw/dx2| :0=dzw/dx2| =0 (35)

Using Equations (35) and (30), the unknown
coefficients are determined and the transverse deflection
is obtained as:

W:W(x4—2LXS+L3X) (36)

When the length scale parameter tends to zero, =0,
Equation (36) reduces to the value of deflection
obtained by the classical theory.

The normalized static deflection of the beam with
simply supported ends can be presented as follow which
is similar to the value corresponding to the clamped
beam

Bl 1
(EI+4uAl*) 1424(1/h)’

w
w

(37

4. 1. 3. Cantilever (C-F) Beam According to
Equation (28a) and (28b), the boundary conditions of a
cantilever beam can be expressed as:

w(0)=0, dw/dx

=0 dwldd|  =dwla’| =0 (33
By applying the above boundary conditions, unknown
coefficients of the Equation (30) are obtained and as a
result, the transverse deflection of the beam is
calculated as:

9o 4 3 2.2

" 24(EI+4uA12)(X wLseLx’) (39)
The value of the deflection of the beam according to the
classical theory can be obtained by letting the length
scale parameter equal to zero, | =0. The normalized
static deflection of the cantilever beam is introduced as
follow which is similar to the values obtained for two
other boundary conditions.

B
(EI+4uAl®) 1+24(1/h)

v
= (40)

4. 2. Free Vibration Problem  The size-dependent
vibration analysis of the micro-beam is carried out in
this section. For this purpose, three boundary conditions
namely clamped (C-C), simply supported (S-S) and
cantilever (C-F) beams are considered. The natural
frequencies of the micro-beam is solved analytically
using the governing equation and boundary conditions
derived in the previous section. For free vibration
problems, the applied force is assumed to be zero
(f, =0).

4. 2. 1. Clamped (C-C) Beam
conditions for clamped beam are:
w(0,t)=w(L,t)=0

aW(X,t)/aX|x:0 =6W(x,t)/ax|x:L =0

The boundary

(41)

Employing the method of separation of variables and
substituting the Equation (41) into Equation (27) yields
to [26]:

cos(BL)cosh(BL)=1 (42)
Solution of Equation (42) leads to the following results
[26]:

(BL), =4.7300, 7.8532,10.9956, 14.1372,...

43
n=1,23,4,.. @

where, the natural frequency can be expressed as follow
[26]:

o= B>(EL +4uAI)[(pA) =(BL)’ (EI +4uAl*)/(pALY) (44)

By letting the length scale parameter equal to zero, | =0
, the natural frequency of the beam according to the
classical theory is obtained:

@=(BL) JEI/(pAL") (45)

The normalized natural frequency are determined as:

o _ 2 | :
= 1+(4uAI*)/ EI =\1+24(1/ h) (46)
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4. 2. 2. Simply Supported (S-S) Beam The
boundary conditions in simply supported beam can be

expressed as:

w (0,t)=w(L,t)=0

2 2 2 2 (47)
GW(X,t)/GX | 0=6 W(X,t)/@x | =0

with the aid of the separation method of variables and
by substituting Equation (47) into Equation (27), yields
to the following relation [26]:

sin(ﬁL)=0 (48)

BL=nn n:(1,2,3,...) (49)

where, the natural frequency of the beam according to
the present couple stress theory can be expressed as
[26]:

o =(nr)’ J(ET +4uAI”)/(pAL") (50)

As the length scale parameter of the beam approaches to
zero, the Equation (50) reduces to natural frequency of
vibration of the beam according to the classical theory.
The normalized natural frequency of the beam is
defined as follow which is similar to the value of the
clamped beam.

© _ i+ @uAIJ(ED) = ’
2=+ (@pal )/(EI) W (51

4. 2. 3. Cantilever (C-F) Beam The boundary
condition of a cantilever beam can be expressed as

follow:
w(0,t)= 6w(x,t)/6x|xz0 =0

62w(x,t)/6x2| L:a3w(x,t)/ax3| =0

(52)

With the aid of separation method of variables and
substituting Equation (52) into Equation (27), leads to
the following relation [26]:

cos(BL)cosh(BL)=-1 (53)
where, [25]

(ﬁL)” =1.8751, 4.6941, 7.8547,10.9956,...

54
n=1,23,4,.. (54

The natural frequency of the cantilever beam according
to the new couple stress theory can be obtained as [26]:

© = B>\J(EI +4uAl*)[(pA)
—(BL) J(EI +4uAI*)/(pAL")

(55)

The natural frequency of the beam according to the
classical theory are obtained by letting the length scale
parameter equal to zero, / =0. The normalized natural

frequency of the beam can be expressed as follow that is
similar to the values obtained for other two cases.

o _ 2 ! 2
- 1+ (4puAI*)[(ET) =1 +24(1/ h) (56)

5. RESULTS AND DISCUSSIONS

5. 1. Verification In order to verify the proposed
model, results of the static bending and free vibration
problems of a Bernoulli-Euler beam are compared with
those presented in [13, 14], respectively. It is assumed
that the beam is made of epoxy with the elastic
modulus, Poisson’s ratio and the length scale parameter
of E=144GPa, v=038 and [ =17.6 um, respectively

[13]. For the static bending problem, a cantilever beam
is considered with a transverse force applied at the free
end as shown in Figure 2 [13]. According to this figure,
the loading and the geometry of the beam are
P=100uN, b/h=2 and L =20h with £, =0 , asin
Equation 27. The deflection of the Bernouli-Euler
cantilever beam under the transvere point load at the
free end obtained by the present couple stress model, the
modified couple stress theory (MCST) [13] and the
classical theory are obtained and compared, as shown in
Figure 3.

It is observed that values of the deflection predicted
by the present model are identical to those of the
modified couple stress theory developed in [13] and are
smaller than those of the classical theory.

As mentioned earlier, the length scale parameter in the
couple stress model developed by Hadjesfandiari is half
of the length scale parameter in the modified couple
stress theory. Hence, in order to obtain the numerical
results in Figure 3, the length scale parameter in the
modified couple stress theory is set equel to [=17.6um

and in the present model is [ =8.8 um .

For the free vibration problem, variation of the natural
frequency of vibration versus the ratio of thickness to
length scale parameter of the beam obtained by the
present model and the modified couple stress theory
[14] are shown in Figure 4. It is observed from Figure 4
that results obtained by two methods are in excellent
agreement.

P
b
A B R
9 —_— LI rprrr gl 7
1« > | l 4
P 4 L Z

Figure 2. A cantilevere beam
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e o0+

Deflection / thickness , w/h
x

Length / thickness , x/h
Figure 3. Deflection of the cantilever beam
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Figure 4. Variation of the normalized natural frequency of the
micro-beam
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= V71 T
Soa 4 AN
‘o /
2 / N
o= 031 / \\
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0.1
0 e . .
0 b 10 15 20

Length / thickness , x/h
Figure 5. Variation of deflection of the clamped beam

o h=ll (preseat) o770 7. e h=21 (classical)
0 h=dl (presemt) - . ——h=4 (classical)
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3
£ —_—TT
- -~ "=
g 4] - ~
3’ 7 N
4 / \
a5 AN
17 Tua s E s 4T A
s TN N
i N
0 ; . : v
0 5 10 15 20

Length / thickness , x'h
Figure 6. Variation of deflection of the simply supported
beam

5. 2 Case Studies In this part, values of deflection
and natural frequency of the beam as derived in the
previous sections are obtained. It is assumed that
material properties and geometry of the beam are the
same as those used in section 5.1. The beam is also
assumed to be subjected to a constant lateral distributed
load of intensity ¢ =10 N /m and the mass density of

the beam material is p=1.22x10* kg / m’[16].

The ratio of the deflection to the thickness of the
beam using the present couple stress model are obtained
for three types of boundary conditions of clamped,
simply supported and cantilever beams and shown in
Figures 5, 6 and 7, respectively. It is found from these
figures that the present couple stress model predicts
lower values of deflection than the classical theory. It
indicates that the stiffness of the beam predicted by the
couple stress theory is higher in comparison with the
classical theory. As the value of the beam thickness
becomes closer to the length scale parameter, the
difference between results of the present couple stress
model and those of the classical theory increases. On the
other hand, there is no significant difference between
results obtained by two theories for higher values of the
beam thickness. These results demonstrate that the
micro-structural effect becomes important mainly when
the characteristic size of the beam i.e. the value of
thickness or the diameter of the cross-section
approaches to the length scale parameter of the material
of the beam. This is in agreement with experimental
results as reported in the literature [1-5].

The ratio of the deflection predicted by the current
model to those predicted by the classical theory is found
to be similar for all three boundary conditions of the
micro-beam as plotted in Figure 8. It is clear from the
figure that at h=I, the normalized deflection has a
small value. However, as the thickness of the beam
increases, the normalized deflection tends to one.
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Deflection / thickness , w/h
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Length / thickness _ x'h
Figure 7. Variation of deflection of the cantilever beam
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Figure 8.Variation of normalized deflection of the micro-
beam
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Figure 9. Variation of the first natural frequency of the
clamped beam, present model versus classical theory
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Figure 11. Variation of the first natural frequency of the
cantilever beam, present model versus classical theory
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Figure 12. Variation of the normalized natural frequency of
the micro-beam

The first natural frequency of the beam for three
boundary conditions namely clamped, simply supported
and cantilever beam are obtained using the present
model and compared with results of the classical theory
as shown in Figures 9, 10 and 11, respectively. It is
observed in figures that the new couple stress model
predicts higher values of natural frequency in
comparison with the classical theory. It is also seen that
the different between the results of the current model
and those of the classical theory becomes significantly
large when the value of beam thickness reaches the
order of internal material length scale parameter. As the
beam thickness increases, the difference between two
theories is reduced.

It is also observed that the ratios of natural
frequency of the beam predicted by the couple stress
theory to that of the classical theory are similar for all
three boundary conditions. Variation of the ratio of the
natural frequency of vibration predicted by the present
model to the one predicted by the classical theory is
plotted in Figure 12. It is clearly observed in the figure
that when the beam thickness becomes equal to the
length scale parameter, h=Ithe difference between
results of the present model and those of the classical
theory are significantly large and as the thickness of the
beam increases, the difference between results
diminishes.
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TABLE 1. Deflection and frequency of vibration of the
clamped-clamped beam

h/l Wmax/h a)l(MHZ)
present 2 0.0973 3.1732
4 0.0078 3.9645
6 0.0014 5.0131
8 0.0004 6.1896
MCST 1 0.0973 3.1732
2 0.0078 3.9645
3 0.0014 5.0131
4 0.0004 6.1896

TABLE 2. Deflection and frequency of vibration of the
simply supported beam

h/l W /B o, (MHz)
present 2 0.4866 1.3998
4 0.0390 1.7489
6 0.0072 22115
8 0.0020 2.7305
MCST 1 0.4866 1.3998
2 0.0390 1.7489
3 0.0072 22115
4 0.0020 2.7305

TABLE 3. Deflection and frequency of vibration of the
cantilever beam

hi/l W o /B o, (MHz)
present 2 4.6714 0.4987
4 0.3741 0.6230
6 0.0693 0.7878
8 0.0192 0.9727
MCST 1 4.6714 0.4987
2 0.3741 0.6230
3 0.0693 0.7878
4 0.0192 0.9727

Next, numerical results of the deflection and natural
frequency of vibration obtained by the present model
are compared with those predicted by the modified
couple stress theory [13, 14]. Results obtained for three
boundary conditions namely clamped-clamped, simply
supported — simply supported and cantilever beam are
shown in Tables 1, 2 and 3, respectively. In these tables,
the length of the beam is assumed to be constant and
equal to 300x107° m. It is observed in these tables that
values of deflection and natural frequency predicted by
two theories are identical.

6. CONCLUSION

In this paper, a size-dependent formulation for the
Bernoulli-Euler beam is presented based on the new
model of couple stress theory developed by
Hadjesfandiari. The constitutive equations developed by

this model consists of only one length scale parameter
that is capable of describing the micro-structural effect
in studying the mechanical behavior of structures. The
governing equations and boundary conditions are
obtained using the variational formulation and the
Hamilton principle. The static bending and free
vibration problems of the Bernoulli-Euler beam with
three different boundary conditions are studied.
Numerical results indicate that the present model
predicts lower values of deflection of the beam and
higher values of natural frequencies of vibration in
comparison with the classical theory. It is also observed
that as the thickness of the beam reduces and gets closer
to the length scale parameter of the material, the
difference between the present model and the classical
theory increases. Furthermore, the difference between
two theories reduces as the thickness of the beam
increases.
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