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A B S T R A C T  

   

In this paper, a size-dependent formulation for the Bernoulli-Euler beam is developed based on a new 
model of couple stress theory presented by Hadjesfandiari and Dargush. The constitutive equation 
obtained in this new model, consists of only one length scale parameter that is capable of capturing the 
micro-structural size effect in predicting the mechanical behavior of the structure. Having one length 
scale parameter is claimed to be an advantage of the model in comparison with the classical couple 
stress theory. The governing equations and boundary conditions of the Bernoulli-Euler beam are 
developed using the variational formulation and the Hamilton principle. The static bending and free 
vibration problems of a Bernoulli-Euler beam with various boundary conditions are solved. Numerical 
results demonstrate that the value of deflection predicted by the new model is lower than that of the 
classical theory. It is also found that natural frequencies obtained by the present couple stress model 
are higher than those predicted by the classical theory. The differences between results obtained by the 
present model and the classical theory become significant as the thickness of the beam gets close to the 
length scale parameter of the beam material 
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1. INTRODUCTION1 
 
The classical theory of elasticity is not capable of 
capturing the size effect of microstructure and is 
appropriate to study material behavior in macro-scale 
only. When the scale of the material under study 
decreases, the accuracy of the classical theory decreases 
and as a result its prediction of the material behavior in 
micro and nano-scale doesn’t agree with experimental 
results. The reason for such deviation is found to be the 
significant effect of microstructure [1-5]. Hence, the 
non-classical theories such as the strain gradient or 
couple stress theories are employed to study the 
behavior of materials in these scales. Non-classical 
theories contain length scale parameters which indicate 
the effect of microstructure in the behavior of the 
material. The couple stress theory is found to be the 
simplest kind of such theories. 

The classical couple stress theory was presented by 
Mindlin and Tiersten [6], Toupin [7], Koiter [8] and 
some other researchers. This theory considers the 
                                                        
*Corresponding Author Email: raalashti@nit.ac.ir (R. Akbari 
Alashti) 

gradient of rotation in addition to the gradient of 
displacement, but the rotation is assumed to be 
dependent to the displacement as seen in the classical 
theory. Constitutive equations developed for an 
isotropic material on the basis of the classical couple 
stress theory contain four elastic constants, i.e. two 
Lame’s constants and two length scale parameters. 
Anthoine [9] solved the pure bending problem of a 
circular cylinder employing the couple stress theory. 
Zhou and Li [10] analyzed the static bending and free 
vibration problems of a circular cylinder on the basis of 
the couple stress theory. Asghari, et al. [11] developed a 
size-dependent formulation for Timoshenko beam on 
the basis of couple stress theory. Yang, et al. [12] 
propounded a model of couple stress, i.e. the modified 
couple stress theory  that considers an additional 
equilibrium equation for the moment of couple, in 
addition to two equilibrium equations of the classical 
continuum. Application of this equilibrium equation, 
leads to a symmetric couple stress tensor and a 
constitutive relation that has only one length scale 
parameter. Park and Gao [13] studied the static bending 
problem of the Bernoulli-Euler beam. The governing 
equations and boundary conditions were developed 

  

 

mailto:raalashti@nit.ac.ir


R. Akbari Alashti and A. H. Abolghasemi / IJE TRANSACTIONS C: Aspects  Vol. 27, No. 6, (June 2014) 951-960                            952 
   

using variational method on the basis of the modified 
couple stress theory. Kong, et al. [14] solved the 
dynamic problem of Bernoulli-Euler beam and obtained 
the natural frequencies of the beam based on the 
modified couple stress theory. Asghari, et al. [15] 
carried out the static bending and free vibration analysis 
of a functionally graded Bernoulli-Euler micro beam 
based on the modified couple stress theory. 

The microstructure-dependent formulation for the 
Timoshenko beam, functionally graded Timoshenko 
beam and nonlinear Timoshenko beam were developed 
by Ma, et al. [16], Asghari, et al. [17, 18], respectively. 
Simsek, et al. [19] investigated the static bending of a 
functionally graded Timoshenko beam on the basis of 
the modified couple stress theory. Chen, et al. [20] 
presented a new model to study the behavior of a 
laminated anisotropic composite Reddy beam based on 
the modified couple stress theory.  

Ke, et al. [21] solved the nonlinear free vibration 
problem of a micro-beam made of functionally graded 
material according to the modified couple stress theory. 
Free vibration analysis of a three dimensional 
cylindrical micro-beam and nonlinear dynamic analysis 
of a micro-beam based on the modified couple stress 
theory were carried out by Wang, et al. [22] and 
Ghayesh, et al. [23], respectively. 

Hadjesfandiari and Dargush [24] presented a model 
of couple stress theory in which the couple stress tensor 
is found to be antisymmetric due to lack of the normal 
components of the couple stress tensor on the boundary 
of the element in a couple stress continuum. The 
constitutive equations developed by this model consist 
of only one length scale parameter. 

Althoght there are a number of papers dealing with 
micro-beams using non-classical theories but to the 
knowledge of the authors, the couple stress model 
developed by Hadjesfandiari and Dargush [24] has not 
been employed to study the behavior of micro-beams. 
The purpose of this paper is to study the behavior of a 
Bernoulli-Euler beam using the new model of couple 
stress developed by Hadjesfandiari and Dargush [24]. 
At first, kinematic variables in a couple stress 
continuum are defined. Then, the governing equations 
and boundary conditions are obtained using the 
variational formulation and Hamilton principle.  

The static bending and free vibration problems of a 
Bernoulli-Euler beam with different boundary 
conditions are solved analytically. It is found that the 
value of deflection of the beam obtained by the 
proposed model of couple stress is lower than that of the 
one obtained by the classical beam theory. On the other 
hand, values of natural frequencies of vibration of the 
beam becomes higher than those obtained by the 
classical theory. At the end, values of deflection and 
natural frequency  a micro-beam obtained by the present 
couple stress model are compared with those predicted 
by the modified couple stress theory. 

2. PRELIMINARIES 
 
According to the model of couple stress developed by 
Hadjesfandiari [24], the strain energy of an isotropic 
linear elastic material experiencing an infinitesimal 
displacement is defined as: 

( )1
2 i j i j j i ijU m d Vσ ε µ

Ω

= +∫
 

(1) 

where, ijσ ,
ijε , jim  and

 ijµ  are components of stress, 
strain, couple stress and antisymmetric curvature 
tensors, respectively. These tensors can be defined as 
[24]: 

( ) 2ij ij ij ijtrσ λ ε δ µε= +  (2) 

( ), ,
1
2ij i j j iu uε = +   (3) 

28ji jim lµ µ= −  (4) 

( ), ,
1
2ij i j j iµ ω ω= −  (5) 

where, 

( )( ) ( )
,

1 1 2 2 1
E Eυλ µ

υ υ υ
= =

+ − +
 (6) 

are Lame’s constants, E is the Young’s modulus, υ  is 
the Poisson’s ratio, l  is the length scale parameter; iu
and iω  are components of the displacement and the 
rotation vectors, respectively. Components of the 
rotation vector can be defined in terms of components 
of the displacement vector in the following form; 

,
1
2i i jk k je uω =  (7) 

where, ijke  is the permutation tensor.  
It can be easily concluded from Equations (2) and 

(4) that the stress tensor and the couple stress tensor are 
symmetric and antisymmetric, respectively. 

As shown in Figure 1, the Cartesian coordinate 
system is employed for the beam under study that 
consists of x, y and z-axis as centroidal, neutral and 
symmetry axis, respectively. According to the 
Bernoulli-Euler beam theory, the displacement field can 
be written as [13, 14]: 

( ) ( )1 2 3
,

, 0, ,
w x t

u z u u w x t
x

∂
= − = =

∂
 (8) 

where, 1u , 2u  and 3u  are components of the 
displacement vector of a point with coordinates ( ), ,x y z
on the cross-section of the beam in x, y and z direction, 
respectively. w is the component of the displacement 
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vector in the z-direction of the point on the centroidal 
axis with coordinates ( ),0,0x .  
Using Equations (3) and (8), components of the strain 
tensor can be expressed as: 

2

2 ,      0xx yy zz xy yz xz
wz
x

ε ε ε ε ε ε
∂

= − = = = = =
∂

 (9) 

And using Equations (7) and (8), the components of 
rotation vector can be obtained as: 

0y x z
w
x

ω ω ω
∂

= − = =
∂

 (10) 

From Equations (5) and (10), it follows that: 
2

2
1 ,     0
2xy yx xz zx yz zy

w
x

µ µ µ µ µ µ
∂

= − = = = = =
∂

  (11) 

Since, the beam is assumed to be slender with a large 
aspect ratio, the effect of Poisson’s ratio is very small 
and can be neglected. Inserting Equation (9) into 
Equation (2) yields: 

2

2 ,      0xx yy zz yz zx xy
wEz
x

σ σ σ σ σ σ
∂

= − = = = = =
∂

  (12) 

And substitution of Equation (11) into Equation (4), 
results: 

2
2

2

0

xy yx

xx yy zz yz zx

wm m l
x

m m m m m

µ
∂

= − = −
∂

= = = = =

  (13) 

Once, the kinematic parameters are defined, we can 
proceed further to obtain the governing equations. 
 
 
 
3. GOVERNING EQUATIONS 
 
In this section, the governing equations and boundary 
conditions are obtained using the variational 
formulation and the Hamilton principle. The first 
variation of the strain energy in the time interval [ ]0 ,T  
is obtained from Equation (1): 

0 0 0

T T T

ij ij ji ijUdt dV dt m dV dtδ σ δε δµ
Ω Ω

= +∫ ∫ ∫ ∫ ∫  (14) 

where, Ω  is the region occupied by the beam. 
Using Equations (9) and (11), the Equation (14) can be 
rewritten as: 

2 2

2 2
0 0

T T

xx xy
w wz dV dt m dVdt

x x
δ δ

σ
Ω Ω

   ∂ ∂
− + −   

∂ ∂   
∫ ∫ ∫ ∫  (15) 

The stress and couple stress resultants through the cross-
section of the beam are found to be: 

 
Figure 1. Configuration and coordinate system of the loaded 
beam 
 
 
 

/ 2 /2

0 / 2 0 /2

;     
b h b h

xx xx xy xy
h h

M zdzdy Y m dzdyσ
− −

= =∫ ∫ ∫ ∫  (16) 

where, h and b are the thickness and the width of the 
beam, respectively. Substituting Equation (16) into 
Equation (15) results in the following relation: 

2 2

2 2
0 0 0 0

T L T L

xx xy
w wM dxdt Y dxdt

x x
δ δ   ∂ ∂

− + −   
∂ ∂   

∫ ∫ ∫ ∫  (17) 

where, L is the length of the beam.  
Using the divergence theorem in above equation, the 
following relation is obtained: 

( )

22

2 2
0 0 0

0 0 00

T T L
xyxx

x L x LT T
xyxx

xx xy
xx

YM
Udt wdxdt

x x

YM ww dt M Y dt
x x x

δ δ

δ
δ

= =

==

 ∂∂
 = − +
 ∂ ∂ 

∂ ∂ ∂
+ + − + 

∂ ∂ ∂ 

∫ ∫ ∫

∫ ∫

 
(18) 

The variation of kinetic energy in the time interval [0, 
T] can be expressed as: 

2

2
0 0 0

T T L wKdt A wdxdt
t

δ ρ δ
 ∂

= −  
∂ 

∫ ∫ ∫  (19) 

where, ρ  is the mass density of the beam material that 
is assumed to be independent of the time,t and the 
position, x and A is the area of the cross-section of the 
beam that is defined as: 

A bh=   (20) 

The virtual work done by the external forces applied on 
the beam in the time interval [ ]0,T  can be expressed as 
[16]: 

0 0 0

0
0

{ }

{ }

T T L

z y y

T
x L

y y x

W dt f w c dxdt

V w s dt

δ δ δω

δ δω
=

=

= +

+ +

∫ ∫ ∫

∫

 
(21) 

In above equation, zf  and yc  are the body force and 
body couple per unit length of the beam, respectively; 
V  is the applied transverse force on the beam and ys  

L  z 

y 

z  

b 
h  

o 

zf  

x 
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is the applied couple stress about the y-axis. In the 
absence of the body couple and the surface force and 
surface couple, the virtual work becomes: 

0 0 0

T T L

zW dt f wdxdtδ δ=∫ ∫ ∫  (22) 

The Hamilton principle is defined in the following form 
[16]: 

( )
0

0
T

K U W dtδ  − −  = ∫  (23) 

By substituting Equations (18), (19) and (22) in 
Equation (23), the governing equation of the Bernoulli-
Euler beam can be obtained as: 

22

2 2 0xyxx
z

YM f
x x

∂∂
+ + =

∂ ∂
 (24) 

And the boundary equations are defined as follow: 

;        xyxx
xx xy

YM ww or or M Y
x x x

∂∂ ∂
+ +

∂ ∂ ∂
 (25) 

From Equations (12), (13) and (16), it follows that: 
2 2

2
2 2, 4xx xy

w wM EI Y Al
x x

µ
∂ ∂

= − = −
∂ ∂

 (26) 

Substituting Equation (26) into Equations (24) and (25) 
results in the governing equation and boundary 
conditions in terms of components of the displacement 
vector in the following form: 

( )
2 4

2
2 44 0z

w wA EI Al f
t x

ρ µ∂ ∂
+ + − =

∂ ∂
 (27) 

( )
3

2
34 ww or EI Al

x
µ

∂
− +

∂
 (28a) 

( )
2

2
24w wor EI Al

x x
µ

∂ ∂
− +

∂ ∂
 

(28b) 

It can be seen from Equation (27) that the governing 
equation of the Bernoulli-Euler beam is composed of 
two parts: one is related to Aρ and EI and the other to

24 Alµ . The first part is the same as the one in the 
classical theory and the second part is added due to the 
couple stress theory. The additional term increases the 
stiffness of the beam that in turn decreases the 
deflection of the beam and increases its natural 
frequencies. It is seen from Equation (27) that 
Hadjesfandiari’s couple stress model contains one 
length scale parameter beside two conventional classical 
constants. This length scale parameter enables the 
present couple stress model to describe the size effect. 
When the length scale of the material vanishes ( 0l = ), 
the governing equation and boundary conditions 

obtained in the present model reduces to the classical 
theory. 

By comparing the governing equation and boundary 
conditions of the Bernoulli-Euler beam of the present 
model with those of the modified couple stress theory in  
[13, 14], it is found that these equations differ by a 
scalar factor. This scalar factor comes into effect due to 
the difference of definitions of the length scale 
parameter in the present model and the modified couple 
stress theory. The length scale parameter in 
Hadjesfandiari’s couple stress model is found to be half 
of the length scale parameter of the modified couple 
stress theory. 

The present model of couple stress theory has two 
advantages in comparison with other non-classical 
theories. First is the existance of only one length scale 
parameter in the constutive relations, due to difficulties 
observed in determining the length scale parameter of a 
material [25]. The second one is the antisymmetry of the 
curvature tensor and the couple stress tensor. The strain 
energy in this theory includes only the antisymmetric 
part of the curvature and couple stress tensorsresulting 
in asimpler form of the strain energy in comparison with 
other non-classical theories. 
 
 
4. CASE STUDY 

 
In this section, the static bending and free vibration 
problems of the beam are solved employing the 
formulation derived in the previous section on the basis 
of Hadjesfandiari’s couple stress model. The problems 
are solved analytically for three boundary conditions 
and results are compared with those of the classical 
theory of elasticity. 
 
4. 1. Static Bending Problem      For the static 
bending problem, all derivatives with respect to time 
vanish and the governing equation is reduced to the 
following form 

( )
4

2
44 z

wE I A l f
x

µ
∂

+ =
∂

  (29) 

It is supposed that the beam is loaded under a constant 
distributed load, 0( )zf x q= . Assuming such conditions, 
analytical solution of Equation (29) can be obtained by 
successive integration as follow: 

( )
4 3 2

0
1 2 3 42 24 6 24

q x x xw C C C x C
EI Alµ

= + + + +
+

 
(30) 

where, 1C , 2C , 3C  and 4C are coefficients that can be 
determined from boundary conditions. 
 
4. 1. 1 Clamped (C-C) Beam      According to 
Equations (28a) and (28b), the boundary conditions of a 
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beam with clamped-clamped boundary conditions are 
expressed in the following form: 

0(0) ( ) 0,     0x x Lw w L dw dx dw dx
= =

= = = =  (31) 

By applying above boundary conditions to Equation 
(30), unknown coefficients are obtained and the 
deflection becomes: 

( ) ( )4 3 2 20
2

2
24 4

qw x Lx L x
EI Alµ

= − +
+

 
(32) 

By setting 0l = , the above equation reduces to the 
result of the classical couple stress theory 

( )4 3 2 20 2
24

qw x Lx L x
EI

= − +  (33) 

By neglecting the effect of the Poisson’s ratio, the 
normalized static deflection of the clamped micro-beam 
is introduced as follow: 

( ) ( )22

1
4 1 24 /

w EI
w EI Al l hµ

= =
+ +

 
(34) 

 
4. 1. 2. Simply Supported (S-S) Beam       The 
boundary condition of a simply supported beam are 
defined as: 

2 2 2 2
0

(0) ( ) 0,     0
x x L

w w L d w dx d w dx
= =

= = = =   (35) 

Using Equations (35) and (30), the unknown 
coefficients are determined and the transverse deflection 
is obtained as: 

( ) ( )4 3 30
2

2
24 4

qw x Lx L x
EI Alµ

= − +
+

 
 (36) 

When the length scale parameter tends to zero, 0l = , 
Equation (36) reduces to the value of deflection 
obtained by the classical theory. 

The normalized static deflection of the beam with 
simply supported ends can be presented as follow which 
is similar to the value corresponding to the clamped 
beam 

( ) ( )22

1
4 1 24 /

w EI
w EI Al l hµ

= =
+ +

 
(37) 

 
4. 1. 3. Cantilever (C-F) Beam      According to 
Equation (28a) and (28b), the boundary conditions of a 
cantilever beam can be expressed as: 

2 2 3 3
0(0) 0, 0,    0x x L x L

w dw dx d w dx d w dx
= = =

= = = =  (38) 

By applying the above boundary conditions, unknown 
coefficients of the Equation (30) are obtained and as a 
result, the transverse deflection of the beam is 
calculated as: 

( ) ( )4 3 2 20
2

4 6
24 4

qw x x L L x
EI Alµ

= − +
+

 
(39) 

The value of the deflection of the beam according to the 
classical theory can be obtained by letting the length 
scale parameter equal to zero, 0l = . The normalized 
static deflection of the  cantilever beam is introduced as 
follow which is similar to the values obtained for two 
other boundary conditions. 

( ) ( )22

1
4 1 24 /

w EI
w EI Al l hµ

= =
+ +

 
(40) 

 
4. 2. Free Vibration Problem      The size-dependent 
vibration analysis of the micro-beam is carried out in 
this section. For this purpose, three boundary conditions 
namely clamped (C-C), simply supported (S-S) and 
cantilever (C-F) beams are considered. The natural 
frequencies of the micro-beam is solved analytically 
using the governing equation and boundary conditions 
derived in the previous section. For free vibration 
problems, the applied force is assumed to be zero 
( 0)zf = . 
 
4. 2. 1. Clamped (C-C) Beam     The boundary 
conditions for clamped beam are: 

( ) ( )

0

0, , 0

( , ) ( , ) 0x x L

w t w L t
w x t x w x t x

= =

= =

∂ ∂ = ∂ ∂ =
 (41) 

Employing the method of separation of variables and 
substituting the Equation (41) into Equation (27) yields 
to [26]: 

( )cos( ) cosh 1L Lβ β =  (42) 

Solution of Equation (42) leads to the following results 
[26]: 

( ) 4.7300, 7.8532, 10.9956, 14.1372,...

1,2,3,4,...
nL

n
β =

=
 (43) 

where, the natural frequency can be expressed as follow 
[26]: 

( )22 2 2 4( 4 ) ( ) ( 4 ) ( )EI Al A L EI Al ALω β µ ρ β µ ρ= + = +  (44) 

By letting the length scale parameter equal to zero, 0l =
, the natural frequency of the beam according to the 
classical theory is obtained: 

( )2 4( )L EI ALω β ρ=  (45) 

The normalized natural frequency are determined as: 

( )221 (4 ) / 1 24 /Al EI l hω
µ

ω
= + = +  (46) 



R. Akbari Alashti and A. H. Abolghasemi / IJE TRANSACTIONS C: Aspects  Vol. 27, No. 6, (June 2014) 951-960                            956 
   

4. 2. 2. Simply Supported (S-S) Beam      The 
boundary conditions in simply supported beam can be 
expressed as: 

( ) ( )
2 2 2 2

0

0, , 0

( , ) ( , ) 0
x x L

w t w L t

w x t x w x t x
= =

= =

∂ ∂ = ∂ ∂ =
 (47) 

with the aid of the separation method of variables and 
by substituting Equation (47) into Equation (27), yields 
to the following relation [26]: 

( )sin 0Lβ =  (48) 

( )1,2,3,...L n nβ π= =  (49) 

where, the natural frequency of the beam according to 
the present couple stress theory can be expressed as 
[26]: 

( )2 2 4( 4 ) ( )n EI Al ALω π µ ρ= +  (50) 

As the length scale parameter of the beam approaches to 
zero, the Equation (50) reduces to natural frequency of 
vibration of the beam according to the classical theory. 
The normalized natural frequency of the beam is 
defined as follow which is similar to the value of the 
clamped beam. 

( )221 (4 ) ( ) 1 24 /Al EI l hω µ
ω

= + = +  (51) 

 
4. 2. 3. Cantilever (C-F) Beam    The boundary 
condition of a cantilever beam can be expressed as 
follow: 

( ) 0

2 2 3 3

0, ( , ) 0

( , ) ( , ) 0
x

x L x L

w t w x t x

w x t x w x t x
=

= =

= ∂ ∂ =

∂ ∂ = ∂ ∂ =
 (52) 

With the aid of separation method of variables and 
substituting Equation (52) into Equation (27), leads to 
the following relation [26]: 

( )cos( ) cosh 1L Lβ β = −  (53) 

where, [25] 

( ) 1.8751, 4.6941, 7.8547, 10.9956,...

1,2,3,4,...
nL
n

β =

=
 (54) 

The natural frequency of the cantilever beam according 
to the new couple stress theory can be obtained as [26]: 

( )

2 2

2 2 4

( 4 ) ( )

( 4 ) ( )

EI Al A

L EI Al AL

ω β µ ρ

β µ ρ

= +

= +

 (55) 

The natural frequency of the beam according to the 
classical theory are obtained by letting the length scale 
parameter equal to zero, 0l = . The normalized natural 

frequency of the beam can be expressed as follow that is 
similar to the values obtained for other two cases. 

( )221 (4 ) ( ) 1 24 /Al EI l hω µ
ω

= + = +  (56) 

 
 

5. RESULTS AND DISCUSSIONS 
 
5. 1. Verification      In order to verify the proposed 
model, results of the static bending and free vibration 
problems of a Bernoulli-Euler beam are compared with 
those presented in [13, 14], respectively. It is assumed 
that the beam is made of epoxy with the elastic 
modulus, Poisson’s ratio and the length scale parameter 
of 1.44E GPa= , 0.38υ =  and 17.6l mµ= , respectively 
[13]. For the static bending problem, a cantilever beam 
is considered with a transverse force applied at the free 
end as shown in Figure 2 [13]. According to this figure, 
the loading and the geometry of the beam are 

100P Nµ= , / 2b h =  and 20L h=  with 0zf =  , as in 
Equation 27. The deflection of the Bernouli-Euler 
cantilever beam under the transvere point load at the 
free end obtained by the present couple stress model, the 
modified couple stress theory (MCST) [13] and the 
classical theory are obtained and compared, as shown in 
Figure 3.  

It is observed that values of the deflection predicted 
by the present model are identical to those of the 
modified couple stress theory developed in [13] and are 
smaller than those of the classical theory. 
As mentioned earlier, the length scale parameter in the 
couple stress model developed by Hadjesfandiari is half 
of the length scale parameter in the modified couple 
stress theory. Hence, in order to obtain the numerical 
results in Figure 3, the length scale parameter in the 
modified couple stress theory is set equel to 17.6l mµ=  
and in the present model is 8.8l mµ= . 
For the free vibration problem, variation of the natural 
frequency of vibration versus the ratio of thickness to 
length scale parameter of the beam obtained by the 
present model and the modified couple stress theory 
[14] are shown in Figure 4. It is observed from Figure 4 
that results obtained by two methods are in excellent 
agreement. 
 
 

 
Figure 2. A cantilevere beam 
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Figure 3. Deflection of the cantilever beam 

 
 
 

 
Figure 4. Variation of the normalized natural frequency of the 
micro-beam 
 
 

 
Figure 5. Variation of deflection of the clamped beam 

 
Figure 6. Variation of deflection of the simply supported 
beam 
 
 
 
5. 2 Case Studies     In this part, values of deflection 
and natural frequency of the beam as derived in the 
previous sections are obtained. It is assumed that 
material properties and geometry of the beam are the 
same as those used in section 5.1. The beam is also 
assumed to be subjected to a constant lateral distributed 
load of intensity 10 /q N m=  and the mass density of 
the beam material is 

3 31.22 10 /kg mρ = × [16]. 
The ratio of the deflection to the thickness of the 

beam using the present couple stress model are obtained 
for three types of boundary conditions of clamped, 
simply supported and cantilever beams and shown in 
Figures 5, 6 and 7, respectively. It is found from these 
figures that the present couple stress model predicts 
lower values of deflection than the classical theory. It 
indicates that the stiffness of the beam predicted by the 
couple stress theory is higher in comparison with the 
classical theory. As the value of the beam thickness 
becomes closer to the length scale parameter, the 
difference between results of the present couple stress 
model and those of the classical theory increases. On the 
other hand, there is no significant difference between 
results obtained by two theories for higher values of the 
beam thickness. These results demonstrate that the 
micro-structural effect becomes important mainly when 
the characteristic size of the beam i.e. the value of 
thickness or the diameter of the cross-section 
approaches to the length scale parameter of the material 
of the beam. This is in agreement with experimental 
results as reported in the literature [1-5]. 

The ratio of the deflection predicted by the current 
model to those predicted by the classical theory is found 
to be similar for all three boundary conditions of the 
micro-beam as plotted in Figure 8. It is clear from the 
figure that at h l= , the normalized deflection has a 
small value. However, as the thickness of the beam 
increases, the normalized deflection tends to one. 
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Figure 7. Variation of deflection of the cantilever beam 

 
 

 
Figure 8.Variation of normalized deflection of the micro-
beam 
 

 
Figure 9. Variation of the first natural frequency of the 
clamped beam, present model versus classical theory 
 
 

 
Figure 10. Variation of the first natural frequency of the 
simply supported beam, present model versus classical theory 

 
Figure 11. Variation of the first natural frequency of the 
cantilever beam, present model versus classical theory 
 
 

 
Figure 12. Variation of the normalized natural frequency of 
the micro-beam 
 
 

The first natural frequency of the beam for three 
boundary conditions namely clamped, simply supported 
and cantilever beam are obtained using the present 
model and compared with results of the classical theory 
as shown in Figures 9, 10 and 11, respectively. It is 
observed in figures that the new couple stress model 
predicts higher values of natural frequency in 
comparison with the classical theory. It is also seen that 
the different between the results of the current model 
and those of the classical theory becomes significantly 
large when the value of beam thickness reaches the 
order of internal material length scale parameter. As the 
beam thickness increases, the difference between two 
theories is reduced.  

It is also observed that the ratios of natural 
frequency of the beam predicted by the couple stress 
theory to that of the classical theory are similar for all 
three boundary conditions. Variation of the ratio of the 
natural frequency of vibration predicted by the present 
model to the one predicted by the classical theory is 
plotted in Figure 12. It is clearly observed in the figure 
that when the beam thickness becomes equal to the 
length scale parameter, h l= the difference between 
results of the present model and those of the classical 
theory are significantly large and as the thickness of the 
beam increases, the difference between results 
diminishes. 
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TABLE 1. Deflection and frequency of vibration of the 
clamped-clamped beam 

 /h l  max /w h  ( )1 M Hzω  

present 2 0.0973 3.1732 
 4 0.0078 3.9645 
 6 0.0014 5.0131 
 8 0.0004 6.1896 

MCST 1 0.0973 3.1732 
 2 0.0078 3.9645 
 3 0.0014 5.0131 
 4 0.0004 6.1896 

 
 

TABLE 2. Deflection and frequency of vibration of the 
simply supported beam 
 /h l  max /w h  ( )1 M H zω  

present 2 0.4866 1.3998 
 4 0.0390 1.7489 
 6 0.0072 2.2115 
 8 0.0020 2.7305 

MCST 1 0.4866 1.3998 
 2 0.0390 1.7489 
 3 0.0072 2.2115 
 4 0.0020 2.7305 

 
 

TABLE 3. Deflection and frequency of vibration of the 
cantilever beam 

 /h l  max /w h  ( )1 MHzω  

present 2 4.6714 0.4987 
 4 0.3741 0.6230 
 6 0.0693 0.7878 
 8 0.0192 0.9727 

MCST 1 4.6714 0.4987 
 2 0.3741 0.6230 
 3 0.0693 0.7878 
 4 0.0192 0.9727 

 
 
Next, numerical results of the deflection and natural 

frequency of vibration obtained by the present model 
are compared with those predicted by the modified 
couple stress theory [13, 14]. Results obtained for three 
boundary conditions namely clamped-clamped, simply 
supported – simply supported and cantilever beam are 
shown in Tables 1, 2 and 3, respectively. In these tables, 
the length of the beam is assumed to be constant and 
equal to 6300 10−× m. It is observed in these tables that 
values of deflection and natural frequency predicted by 
two theories are identical. 

 
 

6. CONCLUSION 
 

In this paper, a size-dependent formulation for the 
Bernoulli-Euler beam is presented based on the new 
model of couple stress theory developed by 
Hadjesfandiari. The constitutive equations developed by 

this model consists of only one length scale parameter 
that is capable of describing the micro-structural effect 
in studying the mechanical behavior of structures. The 
governing equations and boundary conditions are 
obtained using the variational formulation and the 
Hamilton principle. The static bending and free 
vibration problems of the Bernoulli-Euler beam with 
three different boundary conditions are studied. 
Numerical results indicate that the present model 
predicts lower values of deflection of the beam and 
higher values of natural frequencies of vibration in 
comparison with the classical theory. It is also observed 
that as the thickness of the beam reduces and gets closer 
to the length scale parameter of the material, the 
difference between the present model and the classical 
theory increases. Furthermore, the difference between 
two theories reduces as the thickness of the beam 
increases. 
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  چکیده
  

 
، فرمول بندي وابسته Dargushو  Hadjesfandiariدر این مقاله، با استفاده از مدل جدید کوپل تنش ارائه شده توسط 

روابط ساختاري بدست آمده در این مدل . برنولی توسعه داده شده است -به  اثر اندازه ریزساختار ماده براي یک تیر اویلر
جدید، شامل یک پارامتر مقیاس طولی ماده است که این تئوري را قادر به پیش بینی رفتار مکانیکی مواد ناشی از تاثیر 

داشتن تنها یک پارامتر مقیاس طولی ماده یکی از مزیت هاي این مدل در مقایسه با تئوري . می سازداندازه ریزساختار 
برنولی با استفاده از روش وردشی و اصل  -معادلات حاکم و شرایط مرزي تیر اویلر. کلاسیک کوپل تنش عنوان شده است

. برنولی با شرایط مرزي مختلف حل شده اند -ویلرهمیلتون بدست آمده و مسائل خمش استاتیکی و ارتعاش آزاد یک تیر ا
نتایج عددي نشان می دهند که مقدار خیز پیش بینی شده در مدل جدید کمتر از مقدار پیش بینی شده در تئوري الاستیسیته 

. همچنین فرکانس هاي ارتعاش آزاد بدست آمده در این تئوري بالاتر از تئوري کلاسیک می باشد. کلاسیک می باشد
فاوت بین جوابهاي بدست آمده از تئوري کوپل تنش حاضر و تئوري کلاسیک با نزدیک شدن مقدار ضخامت تیر به ت

  . پارامتر مقیاس طولی ماده، زیاد می شود
 

doi: 10.5829/idosi.ije.2014.27.06c.14 
  

  


