
IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Appling Metaheuristic Algorithms on a Two Stage Hybrid Flowshop Scheduling
Problem with Serial Batching

E. Ghafari, R. Sahraeian*

Department of Industrial Engineering, College of Engineering, Shahed University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 30 April 2013
Received in revised form 15 September 2013
Accepted12 December 2013

Keywords:
Scheduling
Hybrid Flowshop
Serial Batching
Simulated Annealing
Genetic algorithm
Taguchi Method

A B S T R A C T

In this paper the problem of serial batch scheduling in a two-stage hybrid flow shop environment with
minimizing Makesapn is studied. In serial batching, it is assumed that jobs in a batch are processed
serially, and their completion time is defined to be equal to the finishing time of the last job in the batch.
The analysis and implementation of the prohibited transference of jobs among machines of stage one in
serial batch is the main contribution of this study. Machine set-up and ready time for all jobs are assumed
to be zero and no Preemption is allowed. Machines may not breakdown, but at times they may be idle. As
the problem is NP-hard, a simulated annealing and genetic algorithm are proposed to provide near-optimal
solutions. Since this problem has not been studied previously, therefore, a lower bound is developed for
evaluating the performance of the proposed SA and GA solutions. Many test problems have been solved
using SA and GA; results show both solving procedures provide near-optimum solutions regarding the
lower bound solution. In the case of large scale problems, solutions provided by GA overcome those from
SA algorithm.

doi: 10.5829/idosi.ije.2014.27.06c.08

1. INTRODUCTION1

As industries are facing increasingly competitive
situations, many classical manufacturing systems shift
to novel environments such as hybrid flow shop in
which a combination of flow shop and parallel machines
operates together. A hybrid flow shop environment is
similar to flow shop, but in at least one stage the number
of machines is more than one. There are two types of
batch productions, namely, serial batches and parallel
batches. In serial batches, jobs within the same batch are
processed sequentially, while in parallel batches a group
of jobs precede through a machine and are processed
simultaneously, Ribas et al. [1]. Implementations of
hybrid flow shop can be found in various industries
including automotive, chemical, and metallurgical
industries, and iron manufacturing. In this paper, hybrid
flow shop with serial batching has been considered. It is
assumed that jobs in a batch are processed serially, and
their completion time is defined to be equal to the
finishing time of the last job in the batch. The
processing time of a batch equals to the sum of the

1 * Corresponding Author Email: sahraeian@shahed.ac.ir (R.
Sahraeian)

processing time of all the jobs in the batch. The
literature on this subject consists of two sections; the
first section considers hybrid flow shop scheduling and
the second one considers batch scheduling. A survey of
scheduling literature in hybrid flow shop environment
has been conducted by Ribas et. al [1]. They considered
previous research works in three different points of
view, including processing complexity, scheduling
criteria and approaches to hybrid flow shop (HFS)
scheduling. Researches show that HFS problems in
processing complexity situations are usually grouped
into three categories: (1) two-stage HFS, (2) three-stage
HFS, and (3) k-stage HFS. Research in scheduling
criteria shows two types of categories: (1) based on flow
time and (2) based on due dates. Research in terms of
approaches to the hybrid flow shop scheduling is
grouped into three categories: (1) Exact algorithms, (2)
Heuristics and (3) Metaheuristics approaches. In the
recent decade, most of researches have been dedicated
to HFS; they impose various constraints on the problem
to get closer to the real world problems. Botta-Genoulaz
[2] has considered scheduling in hybrid flow shop
environment with precedence constraints and time lags
to minimize maximum lateness. He presented six
heuristics to solve this problem). Sawik [3] has used

RESEARCH
NOTE

mailto:sahraeian@shahed.ac.ir

E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910 900

mixed integer programming for scheduling flexible flow
lines with Limited intermediate buffers to minimize
Cmax. Riane et al. [4] have presented an integrated
production planning and scheduling system for hybrid
flowshop production lines. Gupta et al. [5] have
considered heuristics for hybrid flow shop scheduling
with controllable processing times and assignable due
dates. They proposed constructive algorithms using job
insertion techniques and iterative algorithms based on
local search. Oguz et al. [6] have proposed heuristic
algorithms for multiprocessor task scheduling in a two-
stage hybrid flowshop. Engin and Doyen [7] proposed
an artificial immune system approach, for solving the
hybrid flowshop scheduling problem with minimizing
maximum completion times. Oguz et al. [8] considered
hybrid flowshop scheduling problem with
multiprocessor task system and minimizing maximum
completion time. Problems with multi-processor task
systems relax the limitation of the classical parallel
model by permitting tasks that require more than one
processor simultaneously. Morita and Shio [9] have
used hybrid branch and bound method with genetic
algorithm for flexible flowshop scheduling problem.
 Tang et al. [10] have used heuristic combined
artificial neural networks to schedule hybrid flow shop
with sequence dependent setup times. Ruiz and Maroto
[11] applied a genetic algorithm on hybrid flowshops
with sequence dependent setup times and machine
eligibility (2006). Tang et al. [12] have considered a
new lagrangian relaxation algorithm for hybrid
flowshop scheduling to minimize total weighted
completion time. Zandieh et al. [13] have used an
immune algorithm approach to hybrid flow shops
scheduling with sequence dependent setup times. Voss
and Witt [14] studied hybrid flow shop scheduling as a
multi-mode multi-project scheduling problem with
batching requirements by minimizing the weighted
tardiness. Their mathematical model was based on the
well-known resource constrained project scheduling
problem. Chen and Chuen [15] considered Bottleneck-
based heuristics to minimize total tardiness for the
flexible flow line with unrelated parallel machines.
Figielska [16] has used a genetic and a simulated
annealing algorithm combined with column generation
technique for solving the problem of scheduling in the
hybrid flowshop with additional resources. Naderi et al.
[17] have considered an improved simulated annealing
for hybrid flowshops with sequence-dependent setup
and transportation times to minimize total completion
time and total tardiness. Jabbarizadeh et al. [18] studied
hybrid flexible flowshops with sequence-dependent
setup times and machine availability constraints. They
proposed 3 heuristics and 2 metaheuristics based on
genetic algorithm and simulated annealing. Behnamian
and Fatemi Ghomi [19] proposed hybrid flowshop
scheduling with machine and resource-dependent
processing times to minimize makespan and total

resource allocation costs.
 The solution methodology, which can be seen from
the literature, for the hybrid flow shop problems can be
classified in three groups; (1) the exact method such as
branch and bound technique and mathematical
programming, (2) the metaheuristic approach such as
tabu search, simulated annealing and genetic algorithm,
and (3) the heuristic algorithms. There are many
researches in the literature considering batch
scheduling. Sawik [20] proposed a mixed integer
programming formulation for serial batch scheduling in
flexible flow lines with limited intermediate buffers.
Yuan et al. [21] have studied the unbounded single
machine parallel batch scheduling problem with family
jobs and release dates to minimize Cmax. They
proposed a dynamic programming model to solve it. Li
and Yuan [22] have considered a dynamic programming
formulation in order to minimize the Cmax, machine
occupation time and stocking cost in the single machine
parallel batch scheduling problem. Ruiz and Maroto
[11] considered a genetic algorithm for hybrid
flowshops with sequence dependent setup times and
machine eligibility. Husseinzadeh Kashan et al. [23]
considered a hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job
sizes. They proposed a hybrid genetic heuristic (HGH)
to minimize makespan objective. Nong et al. [24] have
studied online scheduling in the single-machine
environment considering parallel-batching of jobs.
Bellanger and Oulamara [25] have considered
Scheduling hybrid flowshop term with parallel batching
machines and compatibilities, where two stages with the
second one containing batching machines is solved
using tailored heuristics.
 The remainder of the paper is organized as follows:
Section 2 describes the problem in detail and presents a
lower bound. Section 3 explains the proposed simulated
annealing. Calibration of the proposed algorithm is
presented in section 4. In section 5, experimental results
and comparison of the proposed algorithm with lower
bound is reported. Section 6 concludes the paper and
provides some directions for future studies.

2. PROBLEM STATEMENTS

2. 1. Problem Description In this paper, a hybrid
flowshop serial batch (HFSB) is put forth for study. It is
assumed that the completion time of all jobs in a batch
is defined as the finishing time of the last job in the
batch, i.e., the processing time of a batch equals to the
sum of the processing times of all jobs in the batch. It is
supposed that there are n jobs brought into the batches
which should be processed on k stages. In stage j we
have a number of machines; all the jobs in batches have
the same production route. Each job should undergo all
stages and be processed in each stage by only one

901 E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910

machine. Machine set-up and ready time for all jobs are
assumed to be zero and no preemption is allowed.
Machines may not breakdown, but at times they may be
idle. Furthermore, it is also assumed that machines in
each stage are identical and jobs arrive in batches with a
different batch size. To the best of our knowledge, no
general method has been proposed for the HFS with
serial batch. In this study, it is considered two stages in
HFSB environment which consists of m identical
parallel machines in each stage. The first aim is to
schedule the batches on the machines of stage one and
second one is to schedule jobs which released from
stage one to the machines of stage two such that the
makespan is minimized.
 Here, a two-stage HFSB system is considered which
encompasses restriction of jobs transportation among
machines in stage one, e.g. obstruction of jobs
transportation among machines in x-ray stage due to
thick insulation walls. Therefore, in stage one all jobs of
the selected batch should be performed on only one of
the machines. Consequently, in stage two jobs can be
done on each of machines. This problem has been
shown in Figure 1. The processing times and the batches
size are known and non-identical. Considering the well-
known three field notation α/β/γ for scheduling
problems and the extension for hybrid flow shops
proposed by Ribas et al. [1], the real production
problem considered here can be noted as

max
21 ||),(2 CbatchSPPHF mm − . The proposed notation

shows serial batch arrival in a hybrid flowshop
environment with two stages each with m identical
parallel machines. The aim of this paper is not to
propose a mathematical formulation; but, a novel
problem scheme is proposed and a SA is developed to
solve the proposed problem. The proposed algorithm is
intended to determine batches and job sequences in a
two stage hybrid flowshop. Evolutionary search
approaches have been successfully applied to a number
of combinatorial optimization problems [18, 23]. An
evolutionary search approach based on an SA can
generate a good solution to the model in a reasonable
computational time.

Figure 1. Problem Statement

2. 2. NP-hardness of the Problem Gupta [26],
and Hoogeveen et al. [27], proved that the two stage
hybrid flow shop scheduling problem is NP-hard when
the objective is to minimize the makespan even if there
is only one machine on the first stage and there are two
machines on the second stage. On the other hand, if
there is only one stage in which there are identical
parallel machines, the problem under study HFSB
reduces to P || Cmax, which itself is NP-hard (Garey and
Johnson [28]). Therefore, it can be concluded that the
problem is NP-hard.

2. 3. A Lower Bound on the Optimal Makespan
In this section a lower bound (LB) is proposed for the

max
21 ||),(2 CbatchSPPHF mm − problem based on lower

bounds of Pm||Cmax. The lower bound is utilized to
evaluate performance of results obtained from proposed
SA and GA algorithms. A general lower bound for
Pm||Cmax is presented by Haouari et al. [29] as follows:





= ∑

=

n

i
ip

m
LB

1

1 (1)

Here, pi shows the processing times of jobs. Based on
general LB in Equation (1), a lower bound for

max
21 ||),(2 CbatchSPPHF mm − can be derived by

Equation (2):

)min(1
2

1
i

n

i
i pp

m
LB +




= ∑
=

 (2)

where pi1 denotes processing time of job i on stage 1, pi2
processing time of job i on stage 2, m number of
machines on stage 1, and n number of all jobs.
Example 1.2 illustrates the LB considering a

max
2

3
1

3 ||),(2 CbatchSPPHF − problem with 5 batches, the
processing time of each batch in stages, and batch sizes
are given in Table 1 and LB computed as follows:

)min(
3
1

2

25

1
1 i

i
i ppLB +



= ∑

=

734)]53()107()84()96()75[(
3
1

=+



 ×+×+×+×+××

This lower bound is obtained from Equation (1) by
adding the minimum processing time of jobs in stage 2.

TABLE 1. Processing times of jobs for example 1.2
Batch number Batch size Job number(i) Pi1 Pi2

1 5 1-2-3-4-5 7 4

2 6 6-7-8-9-10-11 9 7

3 4 12-13-14-15 8 5

4 7 16-17-18-19-20-21 -22 10 6

5 3 23-24-25 5 8

E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910 902

3. SIMULATED ANNEALING

SA is a smart random-search technique exploiting an
analogy between the way in which a metal cools and
freezes into a minimum energy crystalline structure and
search for a minimum in a more general system [30].
SA is a probabilistic algorithmic search procedure
which has exhibited some promise when applied to
combinatorial NP-hard problems. SA enjoys explicit
mechanism, called acceptance criterion, which enables
it to partially avoid getting trapped in local optima. The
acceptance criterion decides probabilistically whether to
accept a new solution or to reject it. The algorithm
employs a random search which not only accepts
superior changes ameliorating current solution, but also
might accept inferior changes deteriorating the current
solution. The probability of inferior solution acceptance
depends on the parameter called temperature or T.
When T is high, there is more probability for inferior
solutions being accepted. SA starts from a high initial
temperature T0, and this temperature is gradually
decreased by means of a mechanism called cooling
system. One characteristic of this algorithm is that it
proceeds sequentially and slowly toward the area
around current search area by a certain probability
mechanism. As execution continues and T falls, fewer
inferior solutions are tolerated (or those that are
tolerated are of smaller magnitude). T decreases until a
freezing temperature is reached. Various parameters and
operators contribute to augment the final performance
of the SA such as: initial solution, encoding scheme,
number of temperatures between initial and final
temperatures, number of iteration of each neighborhood
search structure, initial temperature, types of cooling
schedule and neighborhood search structures. In the
following sections we describe all parameters and
operators used in the proposed SA.

3. 1. Solution Encoding and Initialization
Procedure Encoding schemes are used to make a
candidate solution recognizable for algorithms. A
proper encoding scheme plays a key role in maintaining
the search effectiveness of any algorithm. Two
commonly used approaches in the literature are job-
based [11] and random key [31] representations. In job-
based representation, the permutation of jobs is
determined, and then by a dispatching rule jobs are
assigned to machines. In HFS problems without
considering SDST, the first available machine results in
the earliest completion time, but while taking into
account SDST HFS, this approach is not effective [11].
If setup times are considered in HFS, the way in which
we assign jobs to machines is modified accordingly,
meaning that each job is assigned to the machine that
accomplishes the job at earliest time in a given stage.

2.65 1.32 2.18 1.57

Figure 2. Illustration of a candidate solution in random key
representation.

The second random key representation was proposed by
Norman and Bean [32]. They used the following
solution representation for an identical multiple machine
problem. Each batch is assigned a real number whose
integer part is the machine number to which the batch is
assigned, and its fractional part is used to sort the
batches assigned to each machine. This representation is
used for the batches in the first stage. The assignment of
jobs to machines in subsequent stages has to go through
the machines according to the foregoing procedure. For
example, consider a problem with four batches (b = 4),
two stages (s = 2), two machines at stage one (m (1) =
2). For this problem we must generate four random
numbers from uniform distribution (1, 1 + m (1)) in first
stage of process (Figure 2). As shown in Figure 2, each
of the blocks denotes a batch. In this example, batches 2
and 4 are assigned to machine 1; also batches 1 and 3
are assigned to machine 2. The order of batches to be
scheduled on machine 1 is batch 2 followed by batch 4,
and the order of batches to be scheduled on machine 2 is
batch 3 followed by batch 1. In this study we used
second mechanism means random key representation to
show algorithm solution. Many researchers have
emphasized on the influential initial solution on the
quality of final results of algorithms [11]. What has
been utilized so far by majority of authors to generate
initial solution for their algorithms has been random
generation of initial solution or making use of
underperforming heuristic methods which have led them
to poor quality solutions. Hence, meticulous
consideration should be given to intelligently select the
initialization procedure in order to acquire a satisfactory
level of solution quality in such an NP-hard problem. To
this end, we use NEH (first proposed by Nawaz et al.
[33]) for completion time objective.
 To explicitly clarify the initialization procedure, NEH
is explained. The idea behind the NEH algorithm is that
batches with high processing times on all machines
should be scheduled as early as possible. NEH
procedure consists of three steps:
(1) The total processing times for all the batches on the

m machines are calculated.
(2) The batches are sorted in descending order of pi.

Then, the first two batches (those two with higher
pi) are taken and the two possible schedules
containing them are evaluated.

(3) Take batch i, i = 1,...,b and find the best schedule by
placing it in all the possible i positions in the
sequence of batches that are already scheduled. For
example, if i = 5, the already built sequence would
contain the first four batches of the sorted list

903 E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910

calculated in step 2, then, the fifth batches could be
placed either in the first, in the second, in the third,
in the fourth or in the last position of the sequence.
The best sequence of the five would be selected for
the next iteration.

3. 2. Neighborhood Search Structure Neighborhood
search structure generates a new solution from current
candidate solution by making a slight change in it.
Many different NSSs have been applied to scheduling
problems. These NSSs must work in a way that they
avoid generating infeasible solutions. In this paper, four
different NSSs are considered. The first one is SWAP
operator in which the RKs of two randomly selected
operations are swapped. The second one is a SHIFT
operator in which the RK of one randomly picked
operation is randomly regenerated. The third one is an
INVERSION operator in which the RKs between two
randomly selected cut points are reversed. In fourth
NSS, we aim at working on the precise determination of
the neighborhood size which strongly influences the
success and failure of SAs. If the neighborhood size is
too small, then the resultant process will not be able to
move around the search space quickly enough to reach
the optimum within a reasonable amount of time. On the
other hand; if the neighborhood size is too large, then
the process essentially performs a random search with
the next possible state being chosen practically
uniformly over the search space. Intuitively, it turned
out that the neighborhood search structure that strikes a
compromise between these extremes seems appropriate.
According to the corresponding research findings, and
also in order to diversify the search space to avoid
getting trapped in local optima, we have been motivated
to propose a novel NSS to assure the effectiveness of
SA. Doing so, we have tested several combinations of
small and large neighbor sizes. Finally, it appears that
the following NSS provides the most convincing results:
In this NSS, for generating a new neighbor in each
temperature we make use of the SHIFT operator (i.e.
small neighbors). During each temperature i, if the best
ever visited makespan (x best) is not promoted, a
counter increases by one unit. This procedure is
repeated until the counter reaches the number 20. If
during temperature i, x best is improved and the counter
shows a number less than 20, the counter restarts from
zero. If the counter becomes greater than 20, it is
expected that the algorithm gets stuck in a local
optimum or a loop. On the other hand, after 20
temperatures, the algorithm has been given enough time
to extricate itself from this situation. Hence, we need a
specific type of operator that enables SA to separate
from current search space and move to a new relatively
good search space for maintaining the probability of
finding a better solution. We, therefore need to generate
farther neighbors than just changing the position of one
operation. This is done through a procedure, called the

Migration Mechanism (MM), as follows:
(1) 50 new farther neighbors are generated from current

solution by relocating two randomly selected
operations into two new randomly selected positions
(i.e. the RKs of two randomly selected operations
are randomly regenerated).

(2) The best generated neighbor is accepted to move
whether it has the better objective function than the
current solution or not.

The mechanism that we just defined can be considered
as a novel acceptance mechanism that complements the
classical acceptance mechanism of SA. SA commonly
used acceptance mechanism is applied while producing
small neighbors whereas our proposed mechanism is
utilized when producing larger neighbors through MM.
We expect the premature convergence of SA to a local
minimum to be postponed when adopting a combination
of both mechanisms.

3. 3. Local Search The proposed SA is synthesized
with a simple form of a local search. We can explain its
procedure as such: The first batch in the current solution
x is randomly relocated into a new position. This new
solution is called r. The sequence x is replaced by the
sequence r only if f(r) < f(x). If any improvement is
obtained, the procedure restarts. Otherwise, the
producer repeats at most for all the succeeding batches
in the x. If we did not observe any improvement, the
local search for current solution x ends. Figure 3 shows
the general pseudo code of the local search.

3. 4. Cooling Schedule The temperature and its
declining pattern are adjusted to take the control of the
SA behavior [34]. To avoid getting trapped in local
minimum, worse moves might be accepted depending
on the temperature which is gradually decreased under a
procedure called cooling schedule as the algorithm
proceeds. There exist three types of cooling schedules in
the literature (more details could be found in [35]):
(1) Linear cooling rate:

Nl
N

TT
lTT f ,...,2,1;0

01 =
−

−=

(2) Exponential cooling rate:

NlATB
N

NTT
AB

L
AT f ,...,2,1;;

)1)((
;

1 0
0

1 =−=
+−

=+
+

=

(3) Hyperbolic cooling rate:

NlT
N

ltghTTT ff ,...,2,1;))510(1)((
2
1

01 =+−−−=

where T0, Tf and Tl are initial temperature, stopping
temperature and temperature of iteration l, respectively.
N and tgh are desired number of temperature between
(T0, Tf) and tangent hyperbolic, respectively. Figure 4
shows how to decrease the temperature by each cooling
schedule.

E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910 904

Figure 3. The pseudo code of the local search

Figure 4(a). How to decrease the temperature by (a) linear,
(b) exponential, and (c) hyperbolic cooling schedule

Figure 4(b). Pseudo code of the GA

Despite the fact that the exponential cooling rate has
been recognized as an appropriate cooling schedule for
the SA [34], we again explore the optimal type of
cooling schedule in our parameter tuning subsection to
make sure we have selected all the influential factors on
the performance of the SA optimally. Initial experiment
demonstrates that the temperature over the range 10–20
is appropriate for our problem, and the stopping
temperature is fixed at 1.

4. THE GENETIC ALGORITHM

The genetic algorithm is an optimization and search
technique based on the principles of genetics and natural

selection. A genetic algorithm allows a population
composed of many individuals to evolve under specified
selection rules to a state that minimizes the cost
function. The basic elements of a genetic algorithm that
must be specified for any given implementation are
representation, selection, crossover and mutation [36].
Figures 4a and 4b show the procedure of genetic
algorithm, where POP is population size, itmax is number
of iterations or generation, pcros is crossover probability
and pmut is mutation probability. According to the
crossover probability, the crossover mechanism for two
selected parents is applied if a random value is smaller
than the crossover probability, otherwise the first parent
is chosen without any changes.

5. PARAMETER TUNING

In this section, we aim at analyzing the behavior of the
proposed SA and GA considering the above mentioned
operators and parameters. Doing so, there exist various
approaches to statistically design an experimental
investigation. Each of these approaches is effective
depending on the situation of experiment. Although the
most widely used approach is a full factorial design, this
approach is not always efficient because it becomes
increasingly difficult to perform investigation when the
number of factors is significantly high. To reduce the
number of required tests, fractional factorial experiment
(FFE) was developed [37]. FFE allow only a portion of
the total possible combinations to estimate the main
effect of factors and some of their interactions. Taguchi
[38] developed a family of FFE matrices which finally
reduce the number of experiments, but still provide
sufficient information. In Taguchi method, orthogonal
arrays are used to study a large number of decision
variables with a small number of experiments. Taguchi
separates the factors into two main groups: controllable
and noise factors. Noise factors are those over which we
have no direct control. Since elimination of the noise
factors is impossible, the Taguchi method look for
minimizing the effect of noise and to determine optimal
level of important controllable factors based on the
concept of robustness [39]. Besides determining the
optimal levels, Taguchi identifies the relative
significance of individual factors in terms of their main
effects on the objective function. Taguchi has created a
transformation of the repetition data to another value
which is the measure of variation. The transformation is
the signal-to-noise (S/N) ratio which explains why this
type of parameter design is called robust design [39,
40]. Here, the term ‘‘signal’’ denotes the admirable
value (mean response variable) and ‘‘noise’’ denotes the
undesirable value (standard deviation). So, the S/N ratio
indicates the amount of variation present in the response
variable. The aim is to maximize the signal-to-noise
ratio. Taguchi classifies objective functions into three

Set GA parameters (POP, itmax, pcros, pmux);
Generate POP random initial solutions;
Iter = 0;
REPEAT (Iter < itmax)

1. Calculate fitness of population;
2. Apply selection mechanism;
3. Apply crossover mechanism;
4. Apply mutation mechanism;
5. Iter = Iter + 1;

END REPEAT;
RETURN (Best Solution);

Procedure Local-search
 improvement = true
 while improvement = true do
 improvement = false
 for k = 1 to n do
 r = Test the job in position k in a new
random selected position
 if f (r) < f (x) then
 x = r
 improvement = true
 Update best solution
 break
 endif
 endfor
 endwhile

905 E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910

categories: the smaller-the-better type, the larger-the-
better type, and nominal-is-best type. Since almost all
objective functions in scheduling are classified in the
smaller the-better type, their corresponding S/N ratio
[39] is:

S/N ratio = -10log10 (objective function) 2

As explained earlier, in this study, the SA factors are:
(A) number of iteration between initial temperature and
stopping temperature, (B) number of neighborhood
searches in each temperature, (C) initial temperature and
(D) cooling schedule type. Different levels of above
mentioned factors are shown in Table 2. The GA factors
are: (A) number of iteration, (B) population, (C)
crossover probability and (D) mutation probability.
Different levels of the above mentioned factors are
shown in Table 3.

TABLE 2. Factors and their levels of the SA
Factor Symbol Level Type

Number of temperatures
between T0 and Tf A 3

A(1)-150
A(2)-200
A(3)-250

Number of
neighborhood search in
each temperature

B 3
B(1)-30
B(2)-60
B(3)-100

Initial temperature C 3
C(1)-10
C(2)-15
C(3)-20

Cooling schedule type D 3
D(1)-Linear

D(2)- Exponential
D(3)- Hyperbolic

TABLE 3. Factors and their levels of the GA
Factor Symbol Level Type

Number of iteration A 3
A(1)- 50
A(2)-100
A(3)-150

Number of population B 3
B(1)-10
B(2)-25
B(3)-40

Crossover probability C 3
C(2)-0.75
C(3)-0.90
C(3)-1.00

Mutation probability D 3
D(1)-0.20
D(2)- 0.50
D(3)- 0.80

From standard table of orthogonal arrays, the L9 is
selected as the fittest orthogonal array design which
carries out all our minimum requirements. Table 4
shows four parameters characterizing the test problems.
These parameters include the number of jobs n, the
number of machines on stages m, the processing times
pij and the batch size sj. To conduct the experiments, we
have 18 (3×1×3×2) combinations of these parameters.
Optimal levels of SA parameters for all of the 18
combinations are shown in Table 4, which we used 7
replications for each experiment. In Table 3, Column 1
represents the run code for the instances. For example,
J1m1s1p1 implies that the test instance belongs to 100
jobs with number of machines, batch sizes and
processing times generated at level 1. All the
experiments were coded in Matlab 7.1 and were run on
a computer with a 2.2 GHz Pentium(R) Dual-Core CPU
with 2.00GB of RAM.

TABLE 4. Different Parameters for test problems.
Parameters Levels

Number of jobs 100, 300, 500

Pij Uniform [1,15]

Batch size Uniform [2,10], Uniform [10,15] and
Uniform [15,30]

Number of machines Uniform [2, 5] and Uniform [5,10]

TABLE 5. Optimal (Tuned) level of SA parameters
D C B A Name

Linear 10 30 150 J1m1s1p1

Linear 10 30 150 J1m2s2p1

Exponential 15 60 150 J1m1s3p1

Linear 10 30 150 J1m2s1p1

Exponential 10 30 200 J1m1s2p1

Exponential 15 30 150 J1m2s3p1

Hyperbolic 15 60 250 J2m1s1p1

Exponential 10 60 200 J2m2s2p1

Exponential 20 100 200 J2m1s3p1

Linear 20 100 200 J2m2s1p1

Hyperbolic 15 60 200 J2m1s2p1

Exponential 20 100 150 J2m2s3p1

Hyperbolic 15 60 250 J3m1s1p1

Hyperbolic 10 60 250 J3m2s2p1

Exponential 20 100 200 J3m1s3p1

Hyperbolic 20 100 250 J3m2s1p1

Hyperbolic 20 100 250 J3m1s2p1

Hyperbolic 20 100 250 J3m2s3p1

E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910 906

TABLE 6. Optimal (Tuned) level of GA parameters
D C B A Name

0.50 0.90 10 50 J1m1s1p1

0.80 0.90 10 50 J1m2s2p1

0.50 1.00 25 50 J1m1s3p1

0.50 1.00 25 50 J1m2s1p1

0.50 0.90 25 100 J1m1s2p1

0.80 0.90 10 50 J1m2s3p1

0.50 0.90 10 50 J2m1s1p1

0.80 0.90 25 50 J2m2s2p1

0.50 1.00 25 100 J2m1s3p1

0.50 0.90 25 50 J2m2s1p1

0.80 1.00 40 100 J2m1s2p1

0.50 1.00 25 100 J2m2s3p1

0.50 1.00 25 100 J3m1s1p1

0.50 0.90 40 150 J3m2s2p1

0.50 0.90 40 100 J3m1s3p1

0.80 0.90 40 150 J3m2s1p1

0.80 1.00 40 150 J3m1s2p1

0.80 0.90 40 150 J3m2s3p1

6. COMPUTATIONAL EXPERIMENTS

In this section the performance of the proposed
algorithm would be evaluated and compared by
conducting some experiments. Several test problems
with considering some parameters were generated and
the results analyzed. The following subsections describe
the details of the experiments.

6. 1. Generating Data To evaluate the performance
of the algorithm in varied situations, four parameters
were characterized in generating the test problems;
these parameters are the same as what we explained in
Section 4 in Table 2. For example, for parameter job,
three levels of low, medium, and high, with 100, 300,
and 500 jobs were considered, respectively. Processing
times, sizes of the batches and number of machines in
two stages were generated from the discrete uniform
distribution. There are 18 types of problems
(3×3×2×1=18) generated when combining different
values given for these 4 parameters, and 40 data sets are
generated randomly for each type, creating 720
problems all together. Tables 5 and 6 present the results
obtained from the SA and the GA, respectively.
Columns 1 and 2 represent the run code for the
instances same as what we explained in section 4
respectively for the SA and the GA. Columns 3 and 4
report the a average of makespans and average of

relative deviation from lower bound (DEVLB),
respectively for the SA and the GA.

BoundLower

boundLower -algorithm proposed thefrommakespan Obtained

deviation Relative =

Tables 7, 8 and 9 present the results for the 100, 300 and
500 jobs instance, respectively.

TABLE 7. Results for 100 job instances

Run code
Average of Makespans Average of DEVLB

SA GA SA GA

(1) (2) (3) (4) (5)

J1m1s1p1 275 275 0.072 0.072

J1m1s2p1 169 169 0.053 0.053

J1m1s3p1 243 243 0.081 0.081

J1m2s1p1 141 141 0.026 0.026

J1m2s2p1 117 117 0.156 0.156

J1m2s3p1 148 148 0.058 0.058

TABLE 8. Results for 300 job instances

Run code
Average of Makespans Average of DEVLB

SA GA SA GA

(1) (2) (3) (4) (5)

J2m1s1p1 667 666.87 0.040 0.039

J2m2s2p1 804.27 804.02 0.020 0.020

J2m1s3p1 756.36 756.11 0.070 0.070

J2m2s1p1 578.43 578.61 0.110 0.109

J2m1s2p1 460.35 459.57 0.120 0.119

J2m2s3p1 458.14 457.68 0.100 0.098

TABLE 9. Results for 500 job instances

Run code
Average of Makespans Average of DEVLB

SA GA SA GA

(1) (2) (3) (4) (5)

J3m1s1p1 1414.21 1406.83 0.063 0.061

J3m2s2p1 1367.19 1362.41 0.013 0.011

J3m1s3p1 994.27 990.75 0.027 0.024

J3m2s1p1 994.54 988.94 0.096 0.093

J3m1s2p1 689.34 683.02 0.125 0.121

J3m2s3p1 513 511.66 0.085 0.084

907 E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910

TABLE 10. Best and Worst results of all instances

Run code
Best of Makespans Worst of Makespans

SA GA SA GA

J1m1s1p1 275 275 275 275

J1m1s2p1 169 169 169 169

J1m1s3p1 243 243 243 243

J1m2s1p1 141 141 141 141

J1m2s2p1 117 117 117 117

J1m2s3p1 148 148 148 148

J1m1s2p1 169 169 169 169

J2m1s1p1 659 659 671 671

J2m2s2p1 801 798 809 807

J2m1s3p1 752 746 761 759

J2m2s1p1 574 572 583 581

J2m1s2p1 455 452 467 467

J2m2s3p1 449 446 466 460

J3m1s1p1 1410 1410 1421 1418

J3m2s2p1 1345 1342 1387 1372

J3m1s3p1 991 988 1019 997

J3m2s1p1 987 987 1002 993

J3m1s2p1 685 681 698 693

J3m2s3p1 509 505 529 518

Table 10 represents the best and the worst
makespans of both algorithms for all instances. As a
performance criterion, it is desirable to take into
consideration the amount of variation between the worst
and the best performance of each algorithm.

6. 2. Results Analysis Computational analysis
shows that in all test problems, the GA performs better
than the SA. Especially, its superiority over SA has
been proved in large sized problems. This can be related
to the high rate of convergence in the GA because of its
effective components and the number of neighboring
generation at same time compared to the SA. For each
problem instance, the SA reports wide range of
variation (due to big difference between the worst and
the best cases) where the results for the GA show its
concentration on an exact value that indicates its good
quality of convergence.

7. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a serial batch scheduling problem in a
two-stage hybrid flow shop environment with the
objective function of minimizing makespan has been

proposed. No previous work in the literature of
scheduling has dealt with the serial batching problem of
this kind (to the best of our knowledge). Since it is a
generalized form of P||Cmax then the problem is NP-
hard. A lower bound for this problem has been proposed
based on other researches and our heuristic. The
simulated annealing and the genetic algorithm have
been used to solve the problem. In order to evaluate the
performance of the SA and the GA, a large number of
randomly problems generated and results compared
with lower bound. Results showed that SA and GA have
obtained a near optimal solution in reasonable time.
Based on the computational results, GA outperforms
SA, especially in the large-sized problems

In the future research, other scheduling objectives
such as minimizing the sum of earliness/tardiness and
maximum lateness can be tested. The restriction of
machine eligibility is quite common in practice. As a
consequence, the development of a heuristic for
problems with machine eligibility is a practical area of
research. Finally, the concept of batch arrivals can be
extended to batch delivery [41], which is also
encountered quite often in the real world.

8. REFERENCES

1. Ribas, I., Leisten, R. and Framiñan, J.M., "Review and

classification of hybrid flow shop scheduling problems from a
production system and a solutions procedure perspective",
Computers & Operations Research, Vol. 37, No. 8, (2010),
1439-1454.

2. Botta-Genoulaz, V., "Hybrid flow shop scheduling with
precedence constraints and time lags to minimize maximum
lateness", International Journal of Production Economics,
Vol. 64, No. 1, (2000), 101-111.

3. Sawik, T., "Mixed integer programming for scheduling flexible
flow lines with limited intermediate buffers", Mathematical and
Computer Modelling, Vol. 31, No. 13, (2000), 39-52.

4. Riane, F., Artiba, A. and Iassinovski, S., "An integrated
production planning and scheduling system for hybrid flowshop
organizations", International Journal of Production
Economics, Vol. 74, No. 1, (2001), 33-48.

5. Gupta, J.N., Krüger, K., Lauff, V., Werner, F. and Sotskov,
Y.N., "Heuristics for hybrid flow shops with controllable
processing times and assignable due dates", Computers &
Operations Research, Vol. 29, No. 10, (2002), 1417-1439.

6. Oğuz, C., Fikret Ercan, M., Edwin Cheng, T. and Fung, Y.-F.,
"Heuristic algorithms for multiprocessor task scheduling in a
two-stage hybrid flow-shop", European Journal of Operational
Research, Vol. 149, No. 2, (2003), 390-403.

7. Engin, O. and Döyen, A., "A new approach to solve hybrid flow
shop scheduling problems by artificial immune system", Future
Generation Computer Systems, Vol. 20, No. 6, (2004), 1083-
1095.

8. Oğuz, C., Zinder, Y., Ha Do, V., Janiak, A. and Lichtenstein,
M., "Hybrid flow-shop scheduling problems with multiprocessor
task systems", European Journal of Operational Research,
Vol. 152, No. 1, (2004), 115-131.

9. Morita, H. and Shio, N., "Hybrid branch and bound method with
genetic algorithm for flexible flowshop scheduling problem",

E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910 908

JSME International Journal Series C, Vol. 48, No., (2005),
46-52.

10. Tang, L. and Zhang, Y., Heuristic combined artificial neural
networks to schedule hybrid flow shop with sequence dependent
setup times, in Advances in neural networks–isnn, Springer
(2005), 788-793.

11. Ruiz, R. and Maroto, C., "A genetic algorithm for hybrid
flowshops with sequence dependent setup times and machine
eligibility", European Journal of Operational Research, Vol.
169, No. 3, (2006), 781-800.

12. Tang, L.-x. and Xuan, H., "Lagrangian relaxation algorithms for
real-time hybrid flowshop scheduling with finite intermediate
buffers", Journal of the Operational Research Society, Vol.
57, No. 3, (2006), 316-324.

13. Zandieh, M., Fatemi Ghomi, S. and Moattar Husseini, S., "An
immune algorithm approach to hybrid flow shops scheduling
with sequence-dependent setup times", Applied Mathematics
and Computation, Vol. 180, No. 1, (2006), 111-127.

14. Voss, S. and Witt, A., "Hybrid flow shop scheduling as a multi-
mode multi-project scheduling problem with batching
requirements: A real-world application", International Journal
of Production Economics, Vol. 105, No. 2, (2007), 445-458.

15. Chen, C.-L. and Chen, C.-L., "A bottleneck-based heuristic for
minimizing makespan in a flexible flow line with unrelated
parallel machines", Computers & Operations Research, Vol.
36, No. 11, (2009), 3073-3081.

16. Figielska, E., "A genetic algorithm and a simulated annealing
algorithm combined with column generation technique for
solving the problem of scheduling in the hybrid flowshop with
additional resources", Computers & Industrial Engineering,
Vol. 56, No. 1, (2009), 142-151.

17. Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A. and
Roshanaei, V., "An improved simulated annealing for hybrid
flowshops with sequence-dependent setup and transportation
times to minimize total completion time and total tardiness",
Expert Systems with Applications, Vol. 36, No. 6, (2009),
9625-9633.

18. Jabbarizadeh, F., Zandieh, M. and Talebi, D., "Hybrid flexible
flowshops with sequence-dependent setup times and machine
availability constraints", Computers & Industrial Engineering,
Vol. 57, No. 3, (2009), 949-957.

19. Behnamian, J. and Fatemi Ghomi, S., "Hybrid flowshop
scheduling with machine and resource-dependent processing
times", Applied Mathematical Modelling, Vol. 35, No. 3,
(2011), 1107-1123.

20. Sawik, T., "An exact approach for batch scheduling in flexible
flow lines with limited intermediate buffers", Mathematical and
Computer Modelling, Vol. 36, No. 4, (2002), 461-471.

21. Yuan, J., Liu, Z., Ng, C. and Cheng, T.E., "The unbounded
single machine parallel batch scheduling problem with family
jobs and release dates to minimize makespan", Theoretical
Computer Science, Vol. 320, No. 2, (2004), 199-212.

22. Li, W. and Yuan, J., "Single machine parallel batch scheduling
problem with release dates and three hierarchical criteria to
minimize makespan, machine occupation time and stocking
cost", International Journal of Production Economics, Vol.
102, No. 1, (2006), 143-148.

23. Kashan, A.H., Karimi, B. and Jenabi, M., "A hybrid genetic
heuristic for scheduling parallel batch processing machines with
arbitrary job sizes", Computers & Operations Research, Vol.
35, No. 4, (2008), 1084-1098.

24. Nong, Q., Yuan, J., Fu, R., Lin, L. and Tian, J., "The single-
machine parallel-batching on-line scheduling problem with
family jobs to minimize makespan", International Journal of
Production Economics, Vol. 111, No. 2, (2008), 435-440.

25. Bellanger, A. and Oulamara, A., "Scheduling hybrid flowshop
with parallel batching machines and compatibilities", Computers
& Operations Research, Vol. 36, No. 6, (2009), 1982-1992.

26. Gupta, J.N., "Two-stage, hybrid flowshop scheduling problem",
Journal of the Operational Research Society, Vol. 39, No. 4,
(1988), 359-364.

27. Hoogeveen, J., Lenstra, J. and Veltman, B., "Minimizing
makespan in a multiprocessor flowshop is strongly np-hard",
European Journal of Operational Research, Vol. 89, No. 1,
(1996), 172-175.

28. Garey, M.R. and Johnson, D.S., "``strong''np-completeness
results: Motivation, examples, and implications", Journal of the
ACM (JACM), Vol. 25, No. 3, (1978), 499-508.

29. Haouari, M., Gharbi, A. and Jemmali, M., "Tight bounds for the
identical parallel machine scheduling problem", International
Transactions in Operational Research, Vol. 13, No. 6, (2006),
529-548.

30. Kolonko, M., "Some new results on simulated annealing applied
to the job shop scheduling problem", European Journal of
Operational Research, Vol. 113, No. 1, (1999), 123-136.

31. Kurz, M.E. and Askin, R.G., "Scheduling flexible flow lines
with sequence-dependent setup times", European Journal of
Operational Research, Vol. 159, No. 1, (2004), 66-82.

32. Norman, B.A. and Bean, J.C., "A genetic algorithm
methodology for complex scheduling problems", Naval
Research Logistics, Vol. 46, No. 2, (1999), 199-211.

33. Nawaz, M., Enscore Jr, E.E. and Ham, I., "A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem",
Omega, Vol. 11, No. 1, (1983), 91-95.

34. Wang, L. and Zheng, D.-Z., "An effective hybrid optimization
strategy for job-shop scheduling problems", Computers &
Operations Research, Vol. 28, No. 6, (2001), 585-596.

35. Lundy, M. and Mees, A., "Convergence of an annealing
algorithm", Mathematical programming, Vol. 34, No. 1,
(1986), 111-124.

36. Haupt, R.L. and Haupt, S.E., "Practical genetic algorithms, John
Wiley & Sons, (2004).

37. Cochran, W.G. and Cox, G.M., "Experimental designs", (1957).
38. Bement, T.R., "Taguchi techniques for quality engineering",

Technometrics, Vol. 31, No. 2, (1989), 253-255.
39. Phadke, M.S., "Quality engineering using robust design, prentice

hall", Englewood Cliffs, NJ, (1989).
40. Al-Aomar, R., "Incorporating robustness into genetic algorithm

search of stochastic simulation outputs", Simulation Modelling
Practice and Theory, Vol. 14, No. 3, (2006), 201-223.

41. Wang, X. and Cheng, T., "Heuristics for parallel-machine
scheduling with job class setups and delivery to multiple
customers", International Journal of Production Economics,
Vol. 119, No. 1, (2009), 199-206.

909 E. Ghafari and R. Sahraeian / IJE TRANSACTIONS C: Aspects Vol. 27, No. 6, (June 2014) 899-910

Appling Metaheuristic Algorithms on a Two Stage Hybrid
Flowshop Scheduling Problem with Serial Batching

RESEARCH
NOTE

E. Ghafari, R. Sahraeian

Department of Industrial Engineering, College of Engineering, Shahed University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 30 April 2013
Received in revised form 15 September 2013
Accepted12 December 2013

Keywords:
Scheduling
Hybrid Flowshop
Serial Batching
Simulated Annealing
Genetic algorithm
Taguchi Method

 چکیده

 کل کردن زمان حداقل منظور به اي مرحله دو و ترکیبی کارگاهی محیط در سري اي دسته بندي زمان مسأله مقاله این در

 دسته آن زمان تکمیل و سري صورت به دسته یک در کارها پردازش که است این بر فرض. شود می بررسی کار، انجام
 کارهاي ممنوعیت جابجایی اجراي و تحلیل تحقیق، این اصلی نوآوري. است دسته آن در کار آخرین پایان زمان با برابر
 صفر بودن کارها، کار ي آماده زمان و ها ماشین سازي آماده زمان که شود می فرض. است اول يمرحله هاي ماشین میان
اوقات وجود برخی در بیکاري احتمال اما ،است حین کار صفر ها ماشین توقف احتمال. نیست مجاز نیز کار انقطاع و است
سازي تبرید شبیه الگوریتم از بهینه، به نزدیک جواب به رسیدن منظور ، به)NP-hard(بالاست مسأله پیچیدگی چون. دارد

)SA (و الگوریتم ژنتیک)GA (ارزیابی براي لذا است، نشده مطالعه قبلا مسأله این چون همچنین،. شود می استفاده
و الگوریتم تبرید سازي شبیه روش با نمونه مسأله چندین. شود می ارائه پایین کران یک ،SAو GAهاي الگوریتم عملکرد

به دست آمده از دو الگوریتم فراابتکاري با توجه به کران پایین به جواب شود که نتایج گردد و نشان داده می می ژنتیک حل
 .شود سازي تبرید بهتر می هاي الگوریتم ژنتیک نسبت به شبیه چه ابعاد مسأله بزرگتر شود، جوابهر . بهینه نزدیک است

doi: 10.5829/idosi.ije.2014.27.06c.08

