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A B S T R A C T  

   

In this paper the problem of serial batch scheduling in a two-stage hybrid flow shop environment with 
minimizing Makesapn is studied. In serial batching, it is assumed that jobs in a batch are processed 
serially, and their completion time is defined to be equal to the finishing time of the last job in the batch. 
The analysis and implementation of the prohibited transference of jobs among machines of stage one in 
serial batch is the main contribution of this study. Machine set-up and ready time for all jobs are assumed 
to be zero and no Preemption is allowed. Machines may not breakdown, but at times they may be idle. As 
the problem is NP-hard, a simulated annealing and genetic algorithm are proposed to provide near-optimal 
solutions. Since this problem has not been studied previously, therefore, a lower bound is developed for 
evaluating the performance of the proposed SA and GA solutions. Many test problems have been solved 
using SA and GA; results show both solving procedures provide near-optimum solutions regarding the 
lower bound solution. In the case of large scale problems, solutions provided by GA overcome those from 
SA algorithm. 
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1. INTRODUCTION1 
 
As industries are facing increasingly competitive 
situations, many classical manufacturing systems shift 
to novel environments such as hybrid flow shop in 
which a combination of flow shop and parallel machines 
operates together. A hybrid flow shop environment is 
similar to flow shop, but in at least one stage the number 
of machines is more than one. There are two types of 
batch productions, namely, serial batches and parallel 
batches. In serial batches, jobs within the same batch are 
processed sequentially, while in parallel batches a group 
of jobs precede through a machine and are processed 
simultaneously, Ribas et al. [1]. Implementations of 
hybrid flow shop can be found in various industries 
including automotive, chemical, and metallurgical 
industries, and iron manufacturing. In this paper, hybrid 
flow shop with serial batching has been considered. It is 
assumed that jobs in a batch are processed serially, and 
their completion time is defined to be equal to the 
finishing time of the last job in the batch. The 
processing time of a batch equals to the sum of the 
                                                        
1  * Corresponding Author Email: sahraeian@shahed.ac.ir (R. 
Sahraeian) 

processing time of all the jobs in the batch. The 
literature on this subject consists of two sections; the 
first section considers hybrid flow shop scheduling and 
the second one considers batch scheduling. A survey of 
scheduling literature in hybrid flow shop environment 
has been conducted by Ribas et. al [1]. They considered 
previous research works in three different points of 
view, including processing complexity, scheduling 
criteria and approaches to hybrid flow shop (HFS) 
scheduling. Researches show that HFS problems in 
processing complexity situations are usually grouped 
into three categories: (1) two-stage HFS, (2) three-stage 
HFS, and (3) k-stage HFS. Research in scheduling 
criteria shows two types of categories: (1) based on flow 
time and (2) based on due dates. Research in terms of 
approaches to the hybrid flow shop scheduling is 
grouped into three categories: (1) Exact algorithms, (2) 
Heuristics and (3) Metaheuristics approaches. In the 
recent decade, most of researches have been dedicated 
to HFS; they impose various constraints on the problem 
to get closer to the real world problems. Botta-Genoulaz 
[2] has considered scheduling in hybrid flow shop 
environment with precedence constraints and time lags 
to minimize maximum lateness. He presented six 
heuristics to solve this problem). Sawik [3] has used 
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mixed integer programming for scheduling flexible flow 
lines with Limited intermediate buffers to minimize 
Cmax. Riane et al. [4] have presented an integrated 
production planning and scheduling system for hybrid 
flowshop production lines. Gupta et al. [5] have 
considered heuristics for hybrid flow shop scheduling 
with controllable processing times and assignable due 
dates. They proposed constructive algorithms using job 
insertion techniques and iterative algorithms based on 
local search. Oguz et al. [6] have proposed heuristic 
algorithms for multiprocessor task scheduling in a two-
stage hybrid flowshop. Engin and Doyen [7] proposed 
an artificial immune system approach, for solving the 
hybrid flowshop scheduling problem with minimizing 
maximum completion times. Oguz et al. [8] considered 
hybrid flowshop scheduling problem with 
multiprocessor task system and minimizing maximum 
completion time. Problems with multi-processor task 
systems relax the limitation of the classical parallel 
model by permitting tasks that require more than one 
processor simultaneously. Morita and Shio [9] have 
used hybrid branch and bound method with genetic 
algorithm for flexible flowshop scheduling problem. 
     Tang et al. [10] have used heuristic combined 
artificial neural networks to schedule hybrid flow shop 
with sequence dependent setup times. Ruiz and Maroto 
[11] applied a genetic algorithm on hybrid flowshops 
with sequence dependent setup times and machine 
eligibility (2006). Tang et al. [12] have considered a 
new lagrangian relaxation algorithm for hybrid 
flowshop scheduling to minimize total weighted 
completion time. Zandieh et al. [13] have used an 
immune algorithm approach to hybrid flow shops 
scheduling with sequence dependent setup times. Voss 
and Witt [14] studied hybrid flow shop scheduling as a 
multi-mode multi-project scheduling problem with 
batching requirements by minimizing the weighted 
tardiness. Their mathematical model was based on the 
well-known resource constrained project scheduling 
problem. Chen and Chuen [15] considered Bottleneck-
based heuristics to minimize total tardiness for the 
flexible flow line with unrelated parallel machines. 
Figielska [16] has used a genetic and a simulated 
annealing algorithm combined with column generation 
technique for solving the problem of scheduling in the 
hybrid flowshop with additional resources. Naderi et al. 
[17] have considered an improved simulated annealing 
for hybrid flowshops with sequence-dependent setup 
and transportation times to minimize total completion 
time and total tardiness. Jabbarizadeh et al. [18] studied 
hybrid flexible flowshops with sequence-dependent 
setup times and machine availability constraints. They 
proposed 3 heuristics and 2 metaheuristics based on 
genetic algorithm and simulated annealing.  Behnamian 
and Fatemi Ghomi [19] proposed hybrid flowshop 
scheduling with machine and resource-dependent 
processing times to minimize makespan and total 

resource allocation costs. 
     The solution methodology, which can be seen from 
the literature, for the hybrid flow shop problems can be 
classified in three groups; (1) the exact method such as 
branch and bound technique and mathematical 
programming, (2) the metaheuristic approach such as 
tabu search, simulated annealing and genetic algorithm, 
and (3) the heuristic algorithms. There are many 
researches in the literature considering batch 
scheduling. Sawik [20] proposed a mixed integer 
programming formulation for serial batch scheduling in 
flexible flow lines with limited intermediate buffers. 
Yuan et al. [21] have studied the unbounded single 
machine parallel batch scheduling problem with family 
jobs and release dates to minimize Cmax. They 
proposed a dynamic programming model to solve it. Li 
and Yuan [22] have considered a dynamic programming 
formulation in order to minimize the Cmax, machine 
occupation time and stocking cost in the single machine 
parallel batch scheduling problem. Ruiz and Maroto 
[11] considered a genetic algorithm for hybrid 
flowshops with sequence dependent setup times and 
machine eligibility. Husseinzadeh Kashan et al. [23] 
considered a hybrid genetic heuristic for scheduling 
parallel batch processing machines with arbitrary job 
sizes. They proposed a hybrid genetic heuristic (HGH) 
to minimize makespan objective. Nong et al. [24] have 
studied online scheduling in the single-machine 
environment considering parallel-batching of jobs. 
Bellanger and Oulamara [25] have considered 
Scheduling hybrid flowshop term with parallel batching 
machines and compatibilities, where two stages with the 
second one containing batching machines is solved 
using tailored heuristics.  
     The remainder of the paper is organized as follows: 
Section 2 describes the problem in detail and presents a 
lower bound. Section 3 explains the proposed simulated 
annealing. Calibration of the proposed algorithm is 
presented in section 4. In section 5, experimental results 
and comparison of the proposed algorithm with lower 
bound is reported. Section 6 concludes the paper and 
provides some directions for future studies. 

 
 

2. PROBLEM STATEMENTS 
 

2. 1. Problem Description        In this paper, a hybrid 
flowshop serial batch (HFSB) is put forth for study. It is 
assumed that the completion time of all jobs in a batch 
is defined as the finishing time of the last job in the 
batch, i.e., the processing time of a batch equals to the 
sum of the processing times of all jobs in the batch. It is 
supposed that there are n jobs brought into the batches 
which should be processed on k stages. In stage j we 
have a number of machines; all the jobs in batches have 
the same production route. Each job should undergo all 
stages and be processed in each stage by only one 
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machine. Machine set-up and ready time for all jobs are 
assumed to be zero and no preemption is allowed. 
Machines may not breakdown, but at times they may be 
idle.  Furthermore, it is also assumed that machines in 
each stage are identical and jobs arrive in batches with a 
different batch size. To the best of our knowledge, no 
general method has been proposed for the HFS with 
serial batch. In this study, it is considered two stages in 
HFSB environment which consists of m identical 
parallel machines in each stage. The first aim is to 
schedule the batches on the machines of stage one and 
second one is to schedule jobs which released from 
stage one to the machines of stage two such that the 
makespan is minimized. 
     Here, a two-stage HFSB system is considered which 
encompasses restriction of jobs transportation among 
machines in stage one, e.g. obstruction of jobs 
transportation among machines in x-ray stage due to 
thick insulation walls. Therefore, in stage one all jobs of 
the selected batch should be performed on only one of 
the machines. Consequently, in stage two jobs can be 
done on each of machines. This problem has been 
shown in Figure 1. The processing times and the batches 
size are known and non-identical. Considering the well-
known three field notation α/β/γ for scheduling 
problems and the extension for hybrid flow shops 
proposed by Ribas et al. [1], the real production 
problem considered here can be noted as

max
21 ||),(2 CbatchSPPHF mm − . The proposed notation 

shows serial batch arrival in a hybrid flowshop 
environment with two stages each with m identical 
parallel machines. The aim of this paper is not to 
propose a mathematical formulation; but, a novel 
problem scheme is proposed and a SA is developed to 
solve the proposed problem. The proposed algorithm is 
intended to determine batches and job sequences in a 
two stage hybrid flowshop. Evolutionary search 
approaches have been successfully applied to a number 
of combinatorial optimization problems [18, 23]. An 
evolutionary search approach based on an SA can 
generate a good solution to the model in a reasonable 
computational time. 
 
 
 

 
Figure 1. Problem Statement 

2. 2. NP-hardness of the Problem         Gupta [26], 
and Hoogeveen et al. [27], proved that the two stage 
hybrid flow shop scheduling problem is NP-hard when 
the objective is to minimize the makespan even if there 
is only one machine on the first stage and there are two 
machines on the second stage. On the other hand, if 
there is only one stage in which there are identical 
parallel machines, the problem under study HFSB 
reduces to P || Cmax, which itself is NP-hard (Garey and 
Johnson [28]). Therefore, it can be concluded that the 
problem is NP-hard. 
 
2. 3. A Lower Bound on the Optimal Makespan        
In this section a lower bound (LB) is proposed for the 

max
21 ||),(2 CbatchSPPHF mm −  problem based on lower 

bounds of Pm||Cmax. The lower bound is utilized to 
evaluate performance of results obtained from proposed 
SA and GA algorithms. A general lower bound for 
Pm||Cmax is presented by Haouari et al. [29] as follows:  





= ∑

=

n

i
ip

m
LB

1

1  (1) 

Here, pi shows the processing times of jobs. Based on 
general LB in Equation (1), a lower bound for 

max
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Equation (2): 
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where pi1 denotes processing time of job i on stage 1, pi2 
processing time of job i on stage 2, m number of 
machines on stage 1, and n number of all jobs. 
Example 1.2 illustrates the LB considering a 
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3 ||),(2 CbatchSPPHF −  problem with 5 batches, the 
processing time of each batch in stages, and batch sizes 
are given in Table 1 and LB computed as follows:  
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This lower bound is obtained from Equation (1) by 
adding the minimum processing time of jobs in stage 2. 
 
 

TABLE 1. Processing times of jobs for example 1.2 
Batch number Batch size Job number(i) Pi1 Pi2 

1 5 1-2-3-4-5 7 4 

2 6 6-7-8-9-10-11 9 7 

3 4 12-13-14-15 8 5 

4 7 16-17-18-19-20-21 -22 10 6 

5 3 23-24-25 5 8 
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3. SIMULATED ANNEALING 
 

SA is a smart random-search technique exploiting an 
analogy between the way in which a metal cools and 
freezes into a minimum energy crystalline structure and 
search for a minimum in a more general system [30]. 
SA is a probabilistic algorithmic search procedure 
which has exhibited some promise when applied to 
combinatorial NP-hard problems. SA enjoys explicit 
mechanism, called acceptance criterion, which enables 
it to partially avoid getting trapped in local optima. The 
acceptance criterion decides probabilistically whether to 
accept a new solution or to reject it. The algorithm 
employs a random search which not only accepts 
superior changes ameliorating current solution, but also 
might accept inferior changes deteriorating the current 
solution. The probability of inferior solution acceptance 
depends on the parameter called temperature or T. 
When T is high, there is more probability for inferior 
solutions being accepted. SA starts from a high initial 
temperature T0, and this temperature is gradually 
decreased by means of a mechanism called cooling 
system. One characteristic of this algorithm is that it 
proceeds sequentially and slowly toward the area 
around current search area by a certain probability 
mechanism. As execution continues and T falls, fewer 
inferior solutions are tolerated (or those that are 
tolerated are of smaller magnitude). T decreases until a 
freezing temperature is reached. Various parameters and 
operators contribute to augment the final performance 
of the SA such as: initial solution, encoding scheme, 
number of temperatures between initial and final 
temperatures, number of iteration of each neighborhood 
search structure, initial temperature, types of cooling 
schedule and neighborhood search structures. In the 
following sections we describe all parameters and 
operators used in the proposed SA. 

  
 

3. 1. Solution Encoding and Initialization 
Procedure      Encoding schemes are used to make a 
candidate solution recognizable for algorithms. A 
proper encoding scheme plays a key role in maintaining 
the search effectiveness of any algorithm. Two 
commonly used approaches in the literature are job-
based [11] and random key [31] representations. In job-
based representation, the permutation of jobs is 
determined, and then by a dispatching rule jobs are 
assigned to machines. In HFS problems without 
considering SDST, the first available machine results in 
the earliest completion time, but while taking into 
account SDST HFS, this approach is not effective [11]. 
If setup times are considered in HFS, the way in which 
we assign jobs to machines is modified accordingly, 
meaning that each job is assigned to the machine that 
accomplishes the job at earliest time in a given stage.  

2.65 1.32 2.18 1.57 

Figure 2. Illustration of a candidate solution in random key 
representation. 
 
The second random key representation was proposed by 
Norman and Bean [32]. They used the following 
solution representation for an identical multiple machine 
problem. Each batch is assigned a real number whose 
integer part is the machine number to which the batch is 
assigned, and its fractional part is used to sort the 
batches assigned to each machine. This representation is 
used for the batches in the first stage. The assignment of 
jobs to machines in subsequent stages has to go through 
the machines according to the foregoing procedure. For 
example, consider a problem with four batches (b = 4), 
two stages (s = 2), two machines at stage one (m (1) = 
2). For this problem we must generate four random 
numbers from uniform distribution (1, 1 + m (1)) in first 
stage of process (Figure 2). As shown in Figure 2, each 
of the blocks denotes a batch. In this example, batches 2 
and 4 are assigned to machine 1; also batches 1 and 3 
are assigned to machine 2. The order of batches to be 
scheduled on machine 1 is batch 2 followed by batch 4, 
and the order of batches to be scheduled on machine 2 is 
batch 3 followed by batch 1. In this study we used 
second mechanism means random key representation to 
show algorithm solution. Many researchers have 
emphasized on the influential initial solution on the 
quality of final results of algorithms [11]. What has 
been utilized so far by majority of authors to generate 
initial solution for their algorithms has been random 
generation of initial solution or making use of 
underperforming heuristic methods which have led them 
to poor quality solutions. Hence, meticulous 
consideration should be given to intelligently select the 
initialization procedure in order to acquire a satisfactory 
level of solution quality in such an NP-hard problem. To 
this end, we use NEH (first proposed by Nawaz et al. 
[33]) for completion time objective.  
    To explicitly clarify the initialization procedure, NEH 
is explained. The idea behind the NEH algorithm is that 
batches with high processing times on all machines 
should be scheduled as early as possible. NEH 
procedure consists of three steps: 
(1) The total processing times for all the batches on the 

m machines are calculated. 
(2) The batches are sorted in descending order of pi. 

Then, the first two batches (those two with higher 
pi) are taken and the two possible schedules 
containing them are evaluated. 

(3) Take batch i, i = 1,...,b and find the best schedule by 
placing it in all the possible i positions in the 
sequence of batches that are already scheduled. For 
example, if i = 5, the already built sequence would 
contain the first four batches of the sorted list 
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calculated in step 2, then, the fifth batches could be 
placed either in the first, in the second, in the third, 
in the fourth or in the last position of the sequence. 
The best sequence of the five would be selected for 
the next iteration. 

 
3. 2. Neighborhood Search Structure    Neighborhood 
search structure generates a new solution from current 
candidate solution by making a slight change in it. 
Many different NSSs have been applied to scheduling 
problems. These NSSs must work in a way that they 
avoid generating infeasible solutions. In this paper, four 
different NSSs are considered. The first one is SWAP 
operator in which the RKs of two randomly selected 
operations are swapped. The second one is a SHIFT 
operator in which the RK of one randomly picked 
operation is randomly regenerated. The third one is an 
INVERSION operator in which the RKs between two 
randomly selected cut points are reversed. In fourth 
NSS, we aim at working on the precise determination of 
the neighborhood size which strongly influences the 
success and failure of SAs. If the neighborhood size is 
too small, then the resultant process will not be able to 
move around the search space quickly enough to reach 
the optimum within a reasonable amount of time. On the 
other hand; if the neighborhood size is too large, then 
the process essentially performs a random search with 
the next possible state being chosen practically 
uniformly over the search space. Intuitively, it turned 
out that the neighborhood search structure that strikes a 
compromise between these extremes seems appropriate. 
According to the corresponding research findings, and 
also in order to diversify the search space to avoid 
getting trapped in local optima, we have been motivated 
to propose a novel NSS to assure the effectiveness of 
SA. Doing so, we have tested several combinations of 
small and large neighbor sizes. Finally, it appears that 
the following NSS provides the most convincing results: 
In this NSS, for generating a new neighbor in each 
temperature we make use of the SHIFT operator (i.e. 
small neighbors). During each temperature i, if the best 
ever visited makespan (x best) is not promoted, a 
counter increases by one unit. This procedure is 
repeated until the counter reaches the number 20. If 
during temperature i, x best is improved and the counter 
shows a number less than 20, the counter restarts from 
zero. If the counter becomes greater than 20, it is 
expected that the algorithm gets stuck in a local 
optimum or a loop. On the other hand, after 20 
temperatures, the algorithm has been given enough time 
to extricate itself from this situation. Hence, we need a 
specific type of operator that enables SA to separate 
from current search space and move to a new relatively 
good search space for maintaining the probability of 
finding a better solution. We, therefore need to generate 
farther neighbors than just changing the position of one 
operation. This is done through a procedure, called the 

Migration Mechanism (MM), as follows: 
(1) 50 new farther neighbors are generated from current 

solution by relocating two randomly selected 
operations into two new randomly selected positions 
(i.e. the RKs of two randomly selected operations 
are randomly regenerated). 

(2) The best generated neighbor is accepted to move 
whether it has the better objective function than the 
current solution or not. 

The mechanism that we just defined can be considered 
as a novel acceptance mechanism that complements the 
classical acceptance mechanism of SA. SA commonly 
used acceptance mechanism is applied while producing 
small neighbors whereas our proposed mechanism is 
utilized when producing larger neighbors through MM. 
We expect the premature convergence of SA to a local 
minimum to be postponed when adopting a combination 
of both mechanisms. 
 
3. 3. Local Search      The proposed SA is synthesized 
with a simple form of a local search. We can explain its 
procedure as such: The first batch in the current solution 
x is randomly relocated into a new position. This new 
solution is called r. The sequence x is replaced by the 
sequence r only if f(r) < f(x). If any improvement is 
obtained, the procedure restarts. Otherwise, the 
producer repeats at most for all the succeeding batches 
in the x. If we did not observe any improvement, the 
local search for current solution x ends. Figure 3 shows 
the general pseudo code of the local search. 
 
3. 4. Cooling Schedule      The temperature and its 
declining pattern are adjusted to take the control of the 
SA behavior [34]. To avoid getting trapped in local 
minimum, worse moves might be accepted depending 
on the temperature which is gradually decreased under a 
procedure called cooling schedule as the algorithm 
proceeds. There exist three types of cooling schedules in 
the literature (more details could be found in [35]): 
(1) Linear cooling rate:  

Nl
N

TT
lTT f ,...,2,1;0

01 =
−

−=
 

(2) Exponential cooling rate:  

NlATB
N

NTT
AB

L
AT f ,...,2,1;;

)1)((
;

1 0
0

1 =−=
+−

=+
+

=
 

(3) Hyperbolic cooling rate:  

NlT
N

ltghTTT ff ,...,2,1;))510(1)((
2
1

01 =+−−−=
 

where T0, Tf and Tl are initial temperature, stopping 
temperature and temperature of iteration l, respectively. 
N and tgh are desired number of temperature between 
(T0, Tf) and tangent hyperbolic, respectively. Figure 4 
shows how to decrease the temperature by each cooling 
schedule.  
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Figure 3. The pseudo code of the local search 

 
 

 
Figure 4(a). How to decrease the temperature by (a) linear, 
(b) exponential, and (c) hyperbolic cooling schedule 
 
 

 
Figure 4(b). Pseudo code of the GA 

 
 

Despite the fact that the exponential cooling rate has 
been recognized as an appropriate cooling schedule for 
the SA [34], we again explore the optimal type of 
cooling schedule in our parameter tuning subsection to 
make sure we have selected all the influential factors on 
the performance of the SA optimally. Initial experiment 
demonstrates that the temperature over the range 10–20 
is appropriate for our problem, and the stopping 
temperature is fixed at 1. 
 
 
4. THE GENETIC ALGORITHM 
 
The genetic algorithm is an optimization and search 
technique based on the principles of genetics and natural 

selection. A genetic algorithm allows a population 
composed of many individuals to evolve under specified 
selection rules to a state that minimizes the cost 
function. The basic elements of a genetic algorithm that 
must be specified for any given implementation are 
representation, selection, crossover and mutation [36]. 
Figures 4a and 4b show the procedure of genetic 
algorithm, where POP is population size, itmax is number 
of iterations or generation, pcros is crossover probability 
and pmut is mutation probability. According to the 
crossover probability, the crossover mechanism for two 
selected parents is applied if a random value is smaller 
than the crossover probability, otherwise the first parent 
is chosen without any changes.  

 
 
5. PARAMETER TUNING 
 
In this section, we aim at analyzing the behavior of the 
proposed SA and GA considering the above mentioned 
operators and parameters. Doing so, there exist various 
approaches to statistically design an experimental 
investigation. Each of these approaches is effective 
depending on the situation of experiment. Although the 
most widely used approach is a full factorial design, this 
approach is not always efficient because it becomes 
increasingly difficult to perform investigation when the 
number of factors is significantly high. To reduce the 
number of required tests, fractional factorial experiment 
(FFE) was developed [37]. FFE allow only a portion of 
the total possible combinations to estimate the main 
effect of factors and some of their interactions. Taguchi 
[38] developed a family of FFE matrices which finally 
reduce the number of experiments, but still provide 
sufficient information. In Taguchi method, orthogonal 
arrays are used to study a large number of decision 
variables with a small number of experiments. Taguchi 
separates the factors into two main groups: controllable 
and noise factors. Noise factors are those over which we 
have no direct control. Since elimination of the noise 
factors is impossible, the Taguchi method look for 
minimizing the effect of noise and to determine optimal 
level of important controllable factors based on the 
concept of robustness [39]. Besides determining the 
optimal levels, Taguchi identifies the relative 
significance of individual factors in terms of their main 
effects on the objective function. Taguchi has created a 
transformation of the repetition data to another value 
which is the measure of variation. The transformation is 
the signal-to-noise (S/N) ratio which explains why this 
type of parameter design is called robust design [39, 
40]. Here, the term ‘‘signal’’ denotes the admirable 
value (mean response variable) and ‘‘noise’’ denotes the 
undesirable value (standard deviation). So, the S/N ratio 
indicates the amount of variation present in the response 
variable. The aim is to maximize the signal-to-noise 
ratio. Taguchi classifies objective functions into three 

Set GA parameters (POP, itmax, pcros, pmux); 
Generate POP random initial solutions; 
Iter = 0; 
REPEAT (Iter < itmax) 

1. Calculate fitness of population; 
2. Apply selection mechanism; 
3. Apply crossover mechanism; 
4. Apply mutation mechanism; 
5. Iter = Iter + 1; 

END REPEAT; 
RETURN (Best Solution); 

Procedure Local-search 
   improvement = true 
   while improvement =  true do 
             improvement =  false 
            for k = 1 to n do 
                  r =  Test the job in position k in a new 
random selected position 
                 if f (r) < f (x) then 
                          x = r 
                         improvement = true 
                        Update best solution 
                        break 
                 endif 
           endfor 
   endwhile 
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categories: the smaller-the-better type, the larger-the-
better type, and nominal-is-best type. Since almost all 
objective functions in scheduling are classified in the 
smaller the-better type, their corresponding S/N ratio 
[39] is: 

S/N ratio = -10log10 (objective function) 2 

As explained earlier, in this study, the SA factors are: 
(A) number of iteration between initial temperature and 
stopping temperature, (B) number of neighborhood 
searches in each temperature, (C) initial temperature and 
(D) cooling schedule type. Different levels of above 
mentioned factors are shown in Table 2. The GA factors 
are: (A) number of iteration, (B) population, (C) 
crossover probability and (D) mutation probability. 
Different levels of the above mentioned factors are 
shown in Table 3. 

  
 
 

TABLE 2. Factors and their levels of the SA 
Factor Symbol Level Type 

Number of temperatures 
between T0 and Tf A 3 

A(1)-150 
A(2)-200 
A(3)-250 

Number of 
neighborhood search in 
each temperature 

B 3 
B(1)-30 
B(2)-60 
B(3)-100 

Initial temperature C 3 
C(1)-10 
C(2)-15 
C(3)-20 

Cooling schedule type D 3 
D(1)-Linear 

D(2)- Exponential 
D(3)- Hyperbolic 

 
 
 
 

TABLE 3. Factors and their levels of the GA 
Factor Symbol Level Type 

Number of iteration A 3 
A(1)- 50 
A(2)-100 
A(3)-150 

Number of population B 3 
B(1)-10 
B(2)-25 
B(3)-40 

Crossover probability C 3 
C(2)-0.75 
C(3)-0.90 
C(3)-1.00 

Mutation probability D 3 
D(1)-0.20 
D(2)- 0.50 
D(3)- 0.80 

From standard table of orthogonal arrays, the L9 is 
selected as the fittest orthogonal array design which 
carries out all our minimum requirements. Table 4 
shows four parameters characterizing the test problems. 
These parameters include the number of jobs n, the 
number of machines on stages m, the processing times 
pij and the batch size sj. To conduct the experiments, we 
have 18 (3×1×3×2) combinations of these parameters. 
Optimal levels of SA parameters for all of the 18 
combinations are shown in Table 4, which we used 7 
replications for each experiment. In Table 3, Column 1 
represents the run code for the instances. For example, 
J1m1s1p1 implies that the test instance belongs to 100 
jobs with number of machines, batch sizes and 
processing times generated at level 1. All the 
experiments were coded in Matlab 7.1 and were run on 
a computer with a 2.2 GHz Pentium(R) Dual-Core CPU 
with 2.00GB of RAM. 
 
 
 

TABLE 4. Different Parameters for test problems. 
Parameters Levels 

Number of jobs 100, 300, 500 

Pij Uniform [1,15] 

Batch size Uniform [2,10], Uniform [10,15] and 
Uniform [15,30] 

Number of machines Uniform [2, 5] and Uniform [5,10] 
 
 

TABLE 5. Optimal (Tuned) level of SA parameters 
D C B A Name 

Linear 10 30 150 J1m1s1p1 

Linear 10 30 150 J1m2s2p1 

Exponential 15 60 150 J1m1s3p1 

Linear 10 30 150 J1m2s1p1 

Exponential 10 30 200 J1m1s2p1 

Exponential 15 30 150 J1m2s3p1 

Hyperbolic 15 60 250 J2m1s1p1 

Exponential 10 60 200 J2m2s2p1 

Exponential 20 100 200 J2m1s3p1 

Linear 20 100 200 J2m2s1p1 

Hyperbolic 15 60 200 J2m1s2p1 

Exponential 20 100 150 J2m2s3p1 

Hyperbolic 15 60 250 J3m1s1p1 

Hyperbolic 10 60 250 J3m2s2p1 

Exponential 20 100 200 J3m1s3p1 

Hyperbolic 20 100 250 J3m2s1p1 

Hyperbolic 20 100 250 J3m1s2p1 

Hyperbolic 20 100 250 J3m2s3p1 
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TABLE 6. Optimal (Tuned) level of GA parameters 
D C B A Name 

0.50 0.90 10 50 J1m1s1p1 

0.80 0.90 10 50 J1m2s2p1 

0.50 1.00 25 50 J1m1s3p1 

0.50 1.00 25 50 J1m2s1p1 

0.50 0.90 25 100 J1m1s2p1 

0.80 0.90 10 50 J1m2s3p1 

0.50 0.90 10 50 J2m1s1p1 

0.80 0.90 25 50 J2m2s2p1 

0.50 1.00 25 100 J2m1s3p1 

0.50 0.90 25 50 J2m2s1p1 

0.80 1.00 40 100 J2m1s2p1 

0.50 1.00 25 100 J2m2s3p1 

0.50 1.00 25 100 J3m1s1p1 

0.50 0.90 40 150 J3m2s2p1 

0.50 0.90 40 100 J3m1s3p1 

0.80 0.90 40 150 J3m2s1p1 

0.80 1.00 40 150 J3m1s2p1 

0.80 0.90 40 150 J3m2s3p1 

 
 

6. COMPUTATIONAL EXPERIMENTS 
 
In this section the performance of the proposed 
algorithm would be evaluated and compared by 
conducting some experiments. Several test problems 
with considering some parameters were generated and 
the results analyzed. The following subsections describe 
the details of the experiments. 

 
6. 1. Generating Data       To evaluate the performance 
of the algorithm in varied situations, four parameters 
were characterized in generating the test problems; 
these parameters are the same as what we explained in 
Section 4 in Table 2. For example, for parameter job, 
three levels of low, medium, and high, with 100, 300, 
and 500 jobs were considered, respectively. Processing 
times, sizes of the batches and number of machines in 
two stages were generated from the discrete uniform 
distribution. There are 18 types of problems 
(3×3×2×1=18) generated when combining different 
values given for these 4 parameters, and 40 data sets are 
generated randomly for each type, creating 720 
problems all together. Tables 5 and 6 present the results 
obtained from the SA and the GA, respectively. 
Columns 1 and 2 represent the run code for the 
instances same as what we explained in section 4 
respectively for the SA and the GA. Columns 3 and 4 
report the a average of makespans and average of 

relative deviation from lower bound (DEVLB), 
respectively for the SA and the GA. 

BoundLower 

boundLower -algorithm proposed  thefrommakespan  Obtained

deviation Relative =

 

Tables 7, 8 and 9 present the results for the 100, 300 and 
500 jobs instance, respectively. 
 
 
 

TABLE 7. Results for 100 job instances 

Run code 
Average of Makespans Average of DEVLB 

SA GA SA GA 

(1) (2) (3) (4) (5) 

J1m1s1p1 275 275 0.072 0.072 

J1m1s2p1 169 169 0.053 0.053 

J1m1s3p1 243 243 0.081 0.081 

J1m2s1p1 141 141 0.026 0.026 

J1m2s2p1 117 117 0.156 0.156 

J1m2s3p1 148 148 0.058 0.058 

 
 
 

TABLE 8. Results for 300 job instances 

Run code 
Average of Makespans Average of DEVLB 

SA GA SA GA 

(1) (2) (3) (4) (5) 

J2m1s1p1 667 666.87 0.040 0.039 

J2m2s2p1 804.27 804.02 0.020 0.020 

J2m1s3p1 756.36 756.11 0.070 0.070 

J2m2s1p1 578.43 578.61 0.110 0.109 

J2m1s2p1 460.35 459.57 0.120 0.119 

J2m2s3p1 458.14 457.68 0.100 0.098 

 
 
 

TABLE 9. Results for 500 job instances 

Run code 
Average of Makespans Average of DEVLB 

SA GA SA GA 

(1) (2) (3) (4) (5) 

J3m1s1p1 1414.21 1406.83 0.063 0.061 

J3m2s2p1 1367.19 1362.41 0.013 0.011 

J3m1s3p1 994.27 990.75 0.027 0.024 

J3m2s1p1 994.54 988.94 0.096 0.093 

J3m1s2p1 689.34 683.02 0.125 0.121 

J3m2s3p1 513 511.66 0.085 0.084 
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TABLE 10. Best and Worst results of all instances 

Run code 
Best of Makespans Worst of Makespans 

SA GA SA GA 

J1m1s1p1 275 275 275 275 

J1m1s2p1 169 169 169 169 

J1m1s3p1 243 243 243 243 

J1m2s1p1 141 141 141 141 

J1m2s2p1 117 117 117 117 

J1m2s3p1 148 148 148 148 

J1m1s2p1 169 169 169 169 

J2m1s1p1 659 659 671 671 

J2m2s2p1 801 798 809 807 

J2m1s3p1 752 746 761 759 

J2m2s1p1 574 572 583 581 

J2m1s2p1 455 452 467 467 

J2m2s3p1 449 446 466 460 

J3m1s1p1 1410 1410 1421 1418 

J3m2s2p1 1345 1342 1387 1372 

J3m1s3p1 991 988 1019 997 

J3m2s1p1 987 987 1002 993 

J3m1s2p1 685 681 698 693 

J3m2s3p1 509 505 529 518 

 
 
 

Table 10 represents the best and the worst 
makespans of both algorithms for all instances. As a 
performance criterion, it is desirable to take into 
consideration the amount of variation between the worst 
and the best performance of each algorithm. 
 
6. 2. Results Analysis      Computational analysis 
shows that in all test problems, the GA performs better 
than the SA. Especially, its superiority over SA has 
been proved in large sized problems. This can be related 
to the high rate of convergence in the GA because of its 
effective components and the number of neighboring 
generation at same time compared to the SA. For each 
problem instance, the SA reports wide range of 
variation (due to big difference between the worst and 
the best cases) where the results for the GA show its 
concentration on an exact value that indicates its good 
quality of convergence. 

 
 

7. CONCLUSIONS AND FUTURE RESEARCH 
 
In this paper, a serial batch scheduling problem in a 
two-stage hybrid flow shop environment with the 
objective function of minimizing makespan has been 

proposed. No previous work in the literature of 
scheduling has dealt with the serial batching problem of 
this kind (to the best of our knowledge). Since it is a 
generalized form of P||Cmax then the problem is NP-
hard. A lower bound for this problem has been proposed 
based on other researches and our heuristic. The 
simulated annealing and the genetic algorithm have 
been used to solve the problem. In order to evaluate the 
performance of the SA and the GA, a large number of 
randomly problems generated and results compared 
with lower bound. Results showed that SA and GA have 
obtained a near optimal solution in reasonable time. 
Based on the computational results, GA outperforms 
SA, especially in the large-sized problems 

In the future research, other scheduling objectives 
such as minimizing the sum of earliness/tardiness and 
maximum lateness can be tested. The restriction of 
machine eligibility is quite common in practice. As a 
consequence, the development of a heuristic for 
problems with machine eligibility is a practical area of 
research. Finally, the concept of batch arrivals can be 
extended to batch delivery [41], which is also 
encountered quite often in the real world. 
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  چکیده
  

 
 کل کردن زمان حداقل منظور به اي مرحله دو و ترکیبی کارگاهی محیط در سري اي دسته بندي زمان مسأله مقاله این در

 دسته آن زمان تکمیل و سري صورت به دسته یک در کارها پردازش که است این بر فرض. شود می بررسی کار، انجام
 کارهاي ممنوعیت جابجایی اجراي و تحلیل تحقیق، این اصلی نوآوري. است دسته آن در کار آخرین پایان زمان با برابر
 صفر بودن کارها، کار ي آماده زمان و ها ماشین سازي آماده زمان که شود می فرض. است اول يمرحله هاي ماشین میان
اوقات وجود  برخی در بیکاري احتمال اما ،است حین کار صفر ها ماشین توقف احتمال. نیست مجاز نیز کار انقطاع و است
سازي تبرید  شبیه الگوریتم از بهینه، به نزدیک جواب به رسیدن منظور ، به)NP-hard(بالاست  مسأله پیچیدگی چون. دارد

)SA ( و الگوریتم ژنتیک)GA (ارزیابی براي لذا است، نشده مطالعه قبلا مسأله این چون همچنین،. شود می استفاده 
و الگوریتم  تبرید سازي شبیه روش با نمونه مسأله چندین. شود می ارائه پایین کران یک ،SAو  GAهاي  الگوریتم عملکرد

به دست آمده از دو الگوریتم فراابتکاري با توجه به کران پایین به جواب  شود که نتایج گردد و نشان داده می می ژنتیک حل
  .شود سازي تبرید بهتر می هاي الگوریتم ژنتیک نسبت به شبیه چه ابعاد مسأله بزرگتر شود، جوابهر . بهینه نزدیک است
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