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A B S T R A C T  

   

A new approach based on a Generalized Regression Neural Network (GRNN) has been proposed to 
predict the planform surface pressure field on a wing-tail combination in low subsonic flow. Extensive 
wind tunnel results were used for training the network and verification of the values predicted by this 
approach. GRNN has been trained by the aforementioned experimental data and subsequently was used as 
a prediction tool to determine the surface pressure. Most of the previous applications of the GRNN in 
prediction problems were restricted to single or limited outputs, while in the present method the entire 
planform surface pressure was predicted at once. This highly decreases the calculation time while 
preserving a remarkable degree of accuracy. The wind tunnel results verify the accuracy of the data 
offered by the GRNN, which indicates that the present prediction and optimization tool provides sufficient 
accuracy with modest amount of experimental data. 
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1. INTRODUCTION1 

 
Tight and lower program budgets as well as aggressive 
schedules today, no longer allow either an extensive 
wind tunnel test programs as was done in the past or a 
thorough numerical investigation to study and predict 
the aerodynamic behavior of flying vehicles. Thus, 
introduction of an alternative tool enabling to foresee 
the field aerodynamic properties is of great importance.  

Over the past decade, study and utilization of the 
Artificial Neural Networks (ANNs) has steadily been 
expanded. ANNs are relatively crude electronic models 
based on the neural structure of the brain. The brain 
basically learns from experience. It is natural that some 
problems beyond the scope of current computers are 
indeed solvable by small energy efficient packages, 
called brain modeling. This brain modeling promises a 
less technical way to develop machine solutions. 

The range of practical applications for these 
networks is indicated by the breadth of studies that have 
grown out of such diverse backgrounds as biology, 
computer science, psychology, statistics, etc. This 
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growth is especially evident in engineering community 
where a wide variety of applications is examined in 
almost every field of study from control [1], path 
finding and  pattern recognition [2] up to prediction, 
modeling and optimization problems [3, 4]. Recently, 
neural networks have been applied to a wide range of 
aerospace problems, e.g. aerodynamic performance 
optimization of rotor blade [5], prediction of measured 
data to enable identification of instrument system 
degradation [6]. 

The neural network in fluid mechanics is still a new 
concept. Little works have been done on this topic 
comparing other fields. Faller and Schreck [7] used 
neural networks to predict the real-time three-
dimensional unsteady separated flowfields and 
aerodynamic coefficients of a pitching wing. Lo and 
Zhao [8] combined the nonlinear neural network 
methods with conventional linear regression techniques 
in the wind tunnel force measurements. Berdahl [9] 
proposed a new application of the neural networks to 
observe the shock waves in a supersonic channel flow. 

Though valuable achievements have already been 
obtained applying the concept of neural networks in 
various aerospace deciplines such as high performance 
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aircraft autopilots, flight path simulations, aircraft 
control systems and component simulations, structural 
fault detectors, the problem of finding an alternative 
method for difficult, expensive and time consuming 
wind tunnel tests still persists and is a real need to 
predict the behavior of the present and future flying 
vehicles. Among many attempts to apply the neural 
network concept in aerospace problems, only in a few 
cases, the neural networks were used as a prediction tool 
to estimate the aerodynamic behavior. 

In this paper, the authors examined the general 
regression neural network as a prediction tool for wind 
tunnel test data. The approach is based on creating an 
experimental data bank. A neural network is trained by 
this experimental data. This trained netwrok in the next 
step is used to extract a reasonable trend from the data 
and to extend the results to any other cases out of this 
data bank. 

In the different aerodynamic prediction problems 
already solved by ANN, limited outputs were obtained. 
Two or three output variables were usually given by the 
ANN. This paper, addresses a novel approach to predict 
the surface pressure on a tail planform using the ANNs. 
The method is sufficiently fast, simple and accurate to 
predict the aerodynamic variables. Extensive wind 
tunnel tests have been conducted on a tail-body 
configuration at different tail deflection angles. Using 
this data bank, a computer code was developed based on 
GRNN algorithm to correlate this data base and predict 
the surface pressure field at any given deflection angle.  
The results, as will be seen, are in a good agreement 
with those determined by experiments. The most 
important advantage of this method is that the entire 
surface field on the planform can be quickly and 
accurately determined in each run and the user is just 
required to specify the deflection angle.  
 
 
2. MODELS AND EXPERIMENTAL APPARATUS 

 
The experiments were performed in a 80 by 80 cm 
subsonic wind tunnel at a constant velocity of 90 m/sec. 
The model was a semi body-tail configuration. 64 small 
pressure tabs were carefully drilled on both the upper 
and the lower surfaces of the tail. The tail sweep angle 
was about 20 degrees. The experiments consisted of 
measuring the tail surface pressure distribution using 
sensitive pressure transducers for several tail deflection 
angles. Figures 1 and 2 show the pressure tabs on the 
tail and the model installed inside the test section.  

All data were acquired by an AT-MIO-64E-3 data 
acquisition board capable of scanning 64 channels at a 
rate of 500 KHz. The data were then corrected for the 
wind tunnel sidewalls and the wake blockage effects.  
An analytical approach [10] was also used to estimate 
the errors involved in the pressure measurements. Both 

the single sample precision and the bias uncertainty in 
the pressure measurement were estimated. On this basis, 
the overall uncertainty for the presented data is less than 
±%3 [11]. Figure 3 shows the data uncertainties for a 
typical run. 

 
 

 
(a) Tail surface pressure tabs                                 

 

 
(b) The model installed in the test section 

 
Figure 1. Model of the half body-tail configuration 

 
 

 
Figure 2. Schematic of the pressure tabs position on the upper 
surface 
 
 

 
Figure 3. Typical measurement uncertainties on the tail upper 
surface 
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3. DESCRIPTION OF THE SUBSONIC FLOWFIELD 
ON THE BODY-TAIL CONFIGURATION 
 
In an aircraft or missile, the interference problem among 
the components is of great importance. For the tail-
control flying vehicles, the increasingly need towards 
flying at high angles of attack, without losing the 
vehicle controllability, requires employing more 
effective tails. For body-tail configurations, it is desired 
to obtain a certain amount of lift with an acceptable 
ratio of the tail deflection angle to the body angle of 
attack, δ/α. The development of the vortex-like flow on 
the tail as the tail deflection angle increases, while the 
body angle of attack is set constantly to zero, is shown 
in Figure 4. Note that the vortical flow pattern first is 
appeared near δ=5º, spreads over the surface towards 
the trailing edge and starts to burst at about δ=17º. At 
this deflection angle, the vortical flow has been 
destroyed at the tail outboard region, while the inboard 
region is still dominated by the vortex. From δ=17º to 
δ=30º the burst region gradually covers the entire tail 
surface [12].  

The chordwise  pressure distribution at two spanwise 
sections; y/b=0.3 and y/b=0.7 at zero angle of attack of 
body and for different tail deflection angles are shown 
in Figure 5. Both Figures 5(a) and 5(b) approve that the 
vortical flow is increased in strength and size up to 
about δ=15º beyond which, the breakdown process 
starts and the amount of suction on the upper surface 
decreases. The relatively flat region on the chordwise 
pressure distribution for δ>20º indicates that nearly 60% 
of the wing at a spanwise section, y/b=0.3, and about 
40% at y/b=0.7 is covered by the burst vortex. Note that 
the vortex at the outboard region, y/b=0.7, for δ=20º is 
completely burst while the inboard portion, y/b=0.3, is 
still dominated by this vortex.  

Many theoretical researches were performed to 
study the role of the lee side vortices on the 
aerodynamic behavior of the bodies of revolution in low 
speed subsonic flow at high angles of attack. It has been 
shown [12] that the lee side vortices on the body are 
strongly affected by both the wing downwash and the 
wing sweep angle. Impact of body on the tail flow 
pattern is depicted in Figure 6. There, the vortex 
development for zero tail deflection is shown as the 
body angle of attack increases. From Figure 6, it is 
evident that the pressure distribution over the tail varies 
only with angle of attack and is independent of the flow 
structure over the body for small to moderate body or 
tail angles up to about 10º. Within the small to moderate 
deflection angle range means that the surface pressure 
distribution over the tail remains unaffected, if either the 
body is set to  α ≤ 10º at zero tail deflection or the tail is 
deflected  up to 10º at zero body angle of attack. Thus, 
within small to moderate angle range, no significant 
viscous effect exists in flow behavior and the flowfiled 

over the body does not affect the  tail surface pressure 
distribution. In this situation, the body angle of attack at 
zero tail deflection and the tail deflection at zero body 
angle of attack, both have similar effect on the 
aerodynamic forces and moments developed on the tail. 
However, this is not true for high angles, even though 
the net tail angles referenced to the free stream are 
equal. This is clearly seen in Figure 7, where the 
pressure distribution at two spanwise sections y/b=0.3 
and 0.7 are shown. At low to moderate angles, both 
Figures 7(a) and 7(c) show that changing the body angle 
of attack is more efficient than changing the tail 
deflection in the sense that the suction peak is higher 
when the body angle of attack changes at zero tail 
deflection. At 15 degrees deflection angle, where the 
vortex starts to breakdown, this behavior is different. 
Near the leading edge, the suction peak associated with 
the tail deflection is higher due to the body angle of 
attack. For the rest of the section, the body angle of 
attack is again appeared to be more effective. For the 
high angle region of this figure, i.e., Figures 7(b) and 
7(d), as stated earlier, the effects of both the body and 
the tail deflection angles are shown to differ 
significantly. For 20 degrees angle, the inboard 
sectional pressure posses a lower suction peak for α=20° 
than δ=20°. Returning to Figures 4 and 6, for tail 
deflection case, a relatively strong vortex is still 
observed at the inboard section at δ=20º, while this 
region for the body angle of attack case, α=20°, shown 
in Figure 6, is nearly disappeared. This is due the nose 
and body vortices at high angles of attack, which are 
shed in to the downstream region affecting the tail flow 
filed. For high deflection angles, once the whole surface 
is dominated by the burst flow, the favorable effect of 
body angle of attack comparing to that of tail deflection, 
is observed again. It seems that the shed vortices from 
nose and body have a different effect on the tail 
flowfield at moderated angles where the tail vortex 
starts to burst and also at high angles where the burst 
flow covers the entire tail surface. Note from both 
Figures 7(b) and 7(d) at high angles that increasing the 
body angle of attack at zero tail incidence also decreases 
the adverse pressure gradient, inhibiting the flow 
separation induced by the vortex burst.   
 
 
4. THE GENERAL REGRESSION NEURAL 
NETWORK (GRNN) 

 
Artificial neural networks are a wide class of flexible 
nonlinear regression and discriminate models, data 
reduction models and nonlinear dynamic systems. The 
neural networks often consist of a large number of 
neurons, which are simply linear or nonlinear 
computing elements, interconnected in some complex 
ways and normally structured into layers. 
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(a) δ=0º 

 
(b) δ=5º 

 
(c) δ=10º 

 

   
(d) δ=12º 

 
(e) δ=15º 

 
(f) δ=17º 

 

   
(g) δ=20º 

 
(h) δ=25º 

 
(i) δ=30º 

 
Figure 4. Vortical flow developement on the model used in the present experiments [12] 

 
 

  
(a) y/b=0.3 

 
(b) y/b=0.7 

 
Figure 5. Effects of tail deflection on the spanwise pressure distribution, α=0 [12] 
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(a) α=5º 

 
(b) α =10º 

 
(c) α =15º 

 

   
(d) α =20º 

 
(e) α =25º 

 
(f) α =30º 

 
Figure 6. Tail pressure contours at various body angles of attack, δ=0 [12] 

  
 
 

  
(a) y/b=0.3, low to moderate angles 

 
(b) y/b=0.3, moderate to high angles 

 

  
(c) y/b=0.7, low to moderate angles 

 
(d) y/b=0.7, moderate to high angles 

 
Figure 7. Comparison of the body angle of attack and the tail deflection effects on the tail spanwise pressure distribution [12] 
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Figure 8. A GRNN block diagram [13] 

 
 

 
(a) Low to moderate incidences 

 

 
(b) Moderate to high incidences 

 
Figure 9. Variations of mean error with the smoothness 
parameter at different incidences 

 
 
 
The General Regression Neural Network (GRNN) 

was first introduced by Donald Specht in 1991 [13]. The 
GRNN architecture consists of an input layer followed 
by three computational layers: pattern, summation and 

output layers. When an input pattern is presented at the 
input layer, the pattern layer units compute the 
Euclidean distance between its weight vector and the 
input vector. This distance is then transformed by the 
unit’s activation function, which are exponential 
(Gaussian) functions [14].  

In a prediction problem such as aerodynamic 
modeling, the number of neurons in the input layer is 
equal to the number of input variables, and the number 
of neurons in the output layer is the same as the number 
of predicted variables [13]. The block diagram of a 
GRNN is for prediction problems is shown in Figure 8, 
where f(x,y) represents the known joint continuous 
probability density function of a vector random variable, 
x, and a scalar random variable, y and Ŷ is the predicted 
output for an input   . 

Selection of the rest of the architecture in the 
network in terms of the number of neurons in the hidden 
layer, the learning rate, etc., is not  pre-known. Thus, 
one has to resort to trial and error methods to find a 
suitable network structure for a given problem [15]. 

GRNN presents a nonlinear prediction method, 
which has several advantages to other usual prediction 
methods in mathematics. The conventional prediction 
methods usually use either of the following strategies; in 
the first method, a function of a specific form is chosen 
for a specific problem having several unknowns, which 
may be a polynomial, sinusoidal, Bessel, Fourier, etc. 
Using the observed outputs from this function and 
applying the statistical methods, the unknowns are 
determined and a model will be obtained for the 
problem under consideration. The main problem with 
this method is that it needs try and error. For an 
incorrect choice of the initial function, the prediction 
process will be very complicated.   

The second method is to use a general polynomial 
form for the function, i.e. for predicting the function 
under consideration, the order of the polynomial and the 
number of the independent variables are first specified. 
The unknown coefficients will then be determined using 
the observed outputs from the system. For the 
complicated problems with higher order polynomials 
and considerable number of the unknown coefficients, 
this method is usually inapplicable. 

Both methods may be known as parametric 
prediction schemes since the base of both is to predict 
some unknown parameters. However, as stated, GRNN 
uses non-parametric estimators and needs no predefined 
function. This network, directly applies the training 
inputs and outputs for prediction. With a proper choice 
of the smoothness parameter, σ, to be discussed in the 
next sention, GRNN can use the modest data to 
correlate the inputs and outputs. For this reason, GRNN 
needs only a few data to predict the simple functions 
such as sigmoid and with increasing the training data, it 
can predict every nonlinear, complicated and even 
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chaotic functions [15].  
The smoothness parameter controls the adaptation 

level of the network to the desired function. Large 
values of  σ, increases the averaging process in the 
network and is desirable for the functions with shallow 
oscillations. It also reduces the noises encountered in 
the prediction process, while small values for σ enable 
the network to simulate the complicated and oscillatory 
functions. Large amount of calculations to determine the 
estimated output is the only disadvantage of GRNN. 
However, the problem may be alleviated by proper 
clustering the input space for training data.   

In the present investigation, the surface pressure data 
on a tail planform measured in the wind tunnel were 
used to train a GRNN. The input to this network was the 
deflection angle and the position of the pressure tabs, 
while the output was the pressure distribution on the 
surface at the given incidence. The network, once being 
trained by the surface pressure field at different 
incidence angles, can predict the pressure distribution 
over the same planform at different angles of attack.  

Eventhough the experiments were conducted for 
both cases of different model angles of attack at zero tail 
incidence and different tail incidence angles at zero 
model angle of attack, only the data for various tail 
incience angles with zero model angle of attack was 
used to train the data. As shown earlier, these two cases 
are different especially at moderate to high angles where 
nose and forebody vortex shedding come into play. 

 
 
 

5. NETWORK TRAINING IN THE PRESENT 
INVESTIGATION USING THE EXPERIMENTAL 
DATA 
 
There are actually two usual methods to choose σ, 
which as stated before, plays a vital role in the 
prediction accuracy and the performance of a GRNN. 
Specht [13] suggests the holdout method to select the 
proper value of σ. In this method, one sample from the 
entire set is removed and for a fixed σ, GRNN is used 
again to predict this sample with the remainder set of 
training samples. The squared difference between the 
predicted value of the removed training sample and the 
training sample itself is then calculated and stored. If the 
removed sample is designated by (Xj, Yj), the network 
error in predicting Yj must be calculated. 

The process of removing samples and predicting 
them again for the selected value for σ is repeated for 
each sample. After this procedure, the mean of the 
squared differences is calculated for each run. The 
process is repeated for several values of σ. The σ for 
which, the sum of the mean squared difference is a 
minimum for all of the mean squared differences, is the 

proper choice and should be used for the predictions by 
this set of training samples.  

The holdout method works with very small values of 
the smoothness parameters [13]. Therefore, the 
evaluation of the exponential function causes numerical 
problems, even for a 64-bit data storage.  

The second usual method to determine the proper 
value for σ is known as the wiggle-method [16], which 
is purely empirical and works for any arbitrary 
dimensions. In this method, it is necessary to consider 
the proper number of additional inflections to account 
for unequally spaced data or measurement errors. For 
the wiggle method, GRNN predicts the curve over the 
entire range of the data. σ is originally chosen to be very 
small, too small to predict the curve without wiggles. 
The value of σ is then increased by a constant step until 
the number of inflection points is reached to its 
allowable limit.  

The smoothness parameter, σ, must be chosen in 
such a manner that the mean estimation error be a 
minimum. The wiggle method mentioned earlier to 
determine the smoothness parameter is not a good 
choice if the training data exhibit a nonlinear and 
complex behavior. This is really the case for the present 
data including vortex formation, growth and burst and 
its interactions with nose and fore body flowfield. For 
this reason, in the present work, the holdout method was 
employed to determine the smoothness parameter for 
the experimental data base developed by the authors.  

Figure 9 shows the variations of the mean estimation 
error with the smoothness parameter for various angles 
of incidence on the aforementioned model to find the 
most convenient value for the smoothness parameter.  

There is a distinct difference between the behavior at 
low and high angles, i.e. the trend for δ=5 through 12 
degrees is different from that of δ=15 degrees and 
higher. The vortex burst phenomenon at about δ=17 
degrees observed in Figure 4, may be a reason for this 
behavior.  

The mean error is overally higher at moderate to 
high incidences than that at low to moderate. 
Furthermore, for δ=15° (just prior to burst onset at 
δ=17°) the mean error is higher than δ=20° and 25° 
(after burst). In low incidence region as the tail 
incidence angle increases, the mean prediction error 
variations with the smoothness parameter decreases. 
However, for data correlation and regression in the next 
section, the smoothness parameter at each angle of 
incidence was chosen to be the one, which minimizes 
the mean estimation error. 
 
 
6. GRNN PREDICTED DATA 
 
Figure 10 shows the chordwise pressure distribution at 
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various spanwise locations for δ=10º, where the vortex-
like flow is still active and attached on the surface. The 
data predicted by the GRNN are compared with those 
measured in the wind tunnel. The vortex signature in 
this figure is the suction peak extending from near the 
leading edge at the root to near the trailing edge at the 
tip. Excellent agreement is observed between the 
predicted and the measured data for the points away 
from the vortex core. However, in the core region, 
where the suction suction peak lies, some discrepancies 
are observed, which decreases as moving towards the 
outboard sections. 

 
 

 
Figure 10. Chordwise pressure distribution comparison at 
δ=10º 
 

 
Figure 11. Chordwise pressure distribution comparison at 
δ=17º 
 

Figure 12. Chordwise pressure distribution comparison at 
δ=20º 

 
Figure 13. Chordwise pressure distribution comparison at 
δ=30º 

 
 
In Figure 11, the pressure distribution is presented 

for δ=17º, where according to Figure 4(f) vortex burst 
occurs and the burst flow covers more than half of the 
span of the planform. In this case, the suction peak has 
been disappeared and in the absence of this low prssure 
region, good accuracy can be observed in the predicted 
data. Even though the burst point has reached the half 
span section, the pressure distribution on both the 
inboard and the outboard sections of the planform has 
been successfully predicted by the GRNN. For higher 
incidences, i.e. δ=20º and δ=30º, where the separated 
flow dominates, Figures 12 and 13 show that the 
prediction accuracy is still remarkable. However, since 
most of the training data were in the attached flow 
region, in the range of δ less that 17 degrees, the 
pressure predicted by GRNN in the burst region, where 
δ>17, is a little different from those measured in the 
wind tunnel. Once the flow is burst, the suction peak 
either is disappeared or becomes weak. However, the 
GRNN cannot foresee and apply this change in the 
pressure distribution accurately. Instead, the network 
predicted a small suction for the cases where the bust 
flow is dominated. The error encountered by this weak 
prediction is not large and seems to be improved if more 
experimental data for high incidence cases are used to 
train the network. In Figure 14, the surface pressure 
contours have been compared for both the experimental 
and predicted data for various tail deflection angles. As 
observed earlier, the pressure contours predicted by the 
GRNN are very similar in shape to those obtained from 
the wind tunnel results. Even the burst phenomenon in 
Figure 14(b), which is usually difficult to predict by the 
classic analytical and numerical tools, has successfully 
been predicted by the GRNN. The separated flow at 
high angles of attack observed in Figure 14(c) is also 
predicted with a high accuracy by this method.  

This reveals the vital role of the smoothness 
parameter in this problem. The network could predict 
the data in high incidence region with the training data 
mostly were in low and moderate range.  
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Experiment Predicted by GRNN 

(a) δ=10º 
 

 
Experiment Predicted by GRNN 

(b) δ=17º 
 

 
Experiment Predicted by GRNN 

(c) δ=30º 
 

Figure 14. Comparison of experimental and GRNN predicted 
pressure contours 
 
 

As stated earlier, large values of  σ, increases the 
averaging process in the network and is desirable for the 
functions with shallow oscillations, while small values 
for σ enable the network to simulate the complicated 
and oscillatory functions. The problem of surface 
pressure pattern prediction on a swept planeform, 
encompasses both high and low gradient regions 
depending on the position under consideration on the 
planform and incidence angle. Thus, the smoothness 
parameter for each tail incidence angle should be chosen 
according to the flow characteristics and the level of 
pressure variations in that incidence angle.  
 
 
7. CONCLUSION 
 
A series of wind tunnel tests were performed on a tail-
body configuration in subsonic flow at different tail 
incidence angles to study the tail flow field in the 

presence of the body. The results were used to train a 
Generalized Regression Neural Network. This network, 
once being trained, can accurately predict the surface 
flow field on the tail at any given angles.  

The data predicted by GRNN in low to moderate tail 
incidence angles show an excellent accuracy comparing 
to the experimental results. This is beacause most of the 
training data were in this region where the flow is 
attached. However, in the regions on the wing where the 
vortex suction peak lies, some discrepancies were 
observed between the predicted and experimental 
values.  

At higher tail incidences, once the flow is burst, the 
trained GRNN could not accurately simulate the fast 
and sharp changes occurred in the flowfield. 
Consequently, small differences can be observed  
between the predicted flowfield and the experimental 
data at high incidence region. Though, the overal error 
encountered by predictions in high incidence angle 
region and those near the vortex core on the planform  
process were not remarkable to improve the accuracy in 
such conditions. Thus, more data in those region should 
be used to train the network. However, this algorithm 
has been shown to present a good accuracy with a 
minimum training data in this region. 
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  چکیده
  

 
پیشنهاد گردیده که برمبناي آن می توان توزیع فشار  GRNNمبناي شبکه عصبی مصنوعی  ربدر این مقاله یک روش جدید 

جهت آموزش شبکه و . روي سطح یک بالک کنترلی را روي کل سطح به طور همزمان در جریان زیرصوت پیش بینی نمود
بالک کنترلی انجام و یک - بررسی صحت نتایج پیش بینی شده، آزمایش هاي گسترده ایی در تونل باد روي یک ترکیب بدنه

، معمولا یک یا چند GRNNدر مسائل معمول تخمین با استفاده از شبکه . اطلاعاتی از نتایج آن تدوین گردید بانک
یکی از نقاط قوت الگوریتم استفاده شده در این مقاله تخمین میدان جریان . خروجی معدود از این شبکه استخراج می شود

خورداري از دقت مناسب، در کوتاه ترین زمان ممکن روي سطح بالک به طور کامل و همزمان است که در عین بر
و داد هاي تونل باد، دقت نتایج تخمین را تایید  GRNNمقایسه نتایج تخمین . محاسبات مربوطه را به انجام می رساند

 .نموده اند
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