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(MTS) method, approximate solution of the nonlinear equations of motion is obtained. It is concluded
that at primary resonance, a linear absorber can suppress the peak amplitude of the system better than a
non-linear one, but under super-harmonic resonance, effective reduction in the vibration amplitude can
be achieved using a nonlinear absorber.
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NOMENCLATURE
X Absolute displacement Greek Symbols
m Mass 0 The phase of the main system
k Linear stiffness Y The phase of the absorber
K Nonlinear stiffness Subscripts
C Linear damping constant 1 Main system
The domain of the main system 2 absorber
b The domain of the absorber

1. INTRODUCTION quadratic, cubic and quartic nonlinearities have been

investigated by Eissa and El-Bassiony [1]. They studied

Vibration amplitude in linear or nonlinear vibratory
systems can be under control using absorbers. They can
decrease the vibration amplitude of a system near its
resonance frequency. A 1-DOF nonlinear system can be
considered as a plausible model for investigation of
nonlinear phenomena in many mechanical systems.
However, application of a linear or nonlinear absorber
to the mentioned 1-DOF system leads to a 2-DOF
system. Harmonic resonances of a 1-DOF nonlinear
system under parametric and external excitations with
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effects of different parameters on the response and
stability of the system. Pai et al. [2] controlled steady
state vibrations of a cantilevered skew aluminum plate
using saturation phenomena for 1:2, 1:3 and 1:4 internal
resonant cases. A nonlinear parametric feedback control
has been used by Leung et al. [3] to eliminate instability
resonance responses in a forced 1-DOF nonlinear
system. It is shown that the proposed nonlinear
feedback is effective in the control of primary, super-
and sub-harmonic resonance responses. Chatterjee [4]
proposed a method to control linear resonant vibrations,
low-frequency non-resonant vibrations, and primary and
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1/3 sub-harmonic resonances of a forced oscillator.
Nahvi [5] investigated a 2-DOF quadratic nonlinear
self-excited system subjected to a parametric excitation.
The multiple time scales method was used to study 1:2
internal and parametric resonances of the system. Amer
and El-Sayed [6] studied stability of a 2-DOF system
under primary and super-harmonic resonances. The
system consists of the main system and an attached
absorber, both with quadratic and cubic nonlinear
springs. They obtained frequency-response equations of
the 2-DOF system and showed that by adding an
absorber, the peak amplitude of the main system is
reduced to 2.5% of its maximum value.

Dynamics of a 2-DOF nonlinear system was studied
by Zhu et al. [7]. They showed that by properly
selecting the stiffness and damping constants of the
spring and damper the vibration amplitude can be
reduced. Liu and Liu [8] studied dynamics of a 2-DOF
system consisting of a mass-spring system and a
dynamic vibration absorber. Using the Brock's
approach, the optimum parameters of the absorber
which is effective in a wide range of forcing amplitude
were obtained. Viguie and Kerschen [9] addressed the
problem of mitigating vibration of mechanical systems
using nonlinear dynamic absorbers.

Ji and Zhang [10] used a dynamic vibration absorber
to suppress the primary resonance vibration of a forced
nonlinear oscillator. To indicate the performance of
vibration absorber on reducing the response, attenuation
and desensitization ratios has been introduced. They
stated that an absorber with small attenuation ratio and
large desensitization ratio correspond to better
performance of the absorber. Using a linear absorber,
suppression of super-harmonic resonance response was
studied by Ji and Zhang [11]. Results show that for
fixed absorber parameters, better performance can be
achieved by using smaller absorber mass, larger spring
stiffness and larger damping of the absorber. Sayed and
Kamel [12] carried out a comprehensive investigation
for suppressing the vibration of the nonlinear plant
when subjected to external and parametric excitations.
They applied an active vibration absorber (by quadratic
and cubic order of control) in the presence of 1:2 and
1:3 internal resonances. Gahary and Ganaini [13]
studied vibration suppression of a beam under multi-
parametric excitation forces. A time delayed absorber
was applied to suppress chaotic vibrations and the
effects of different absorber parameters on the system
behavior were obtained numerically.

The performance of a new type of nonlinear
vibration absorber that is attached to a 1-DOF
linear\nonlinear oscillator, subjected to a periodic
external excitation has been studied by Febbo and
Machado [14].

Hsu et al. [15] presented an experimental and
analytical investigation of the physical behavior and
effectiveness of a nonlinear dynamic vibration absorber.

The absorber is attached by a nonlinear hardening
spring to a cantilever linear beam excited by a shaker.

In this paper, the effects of using a nonlinear
absorber on the amplitude of a nonlinear system are
investigated. The springs of the main system and the
absorber are considered to be cubically nonlinear,
whereas the behavior of the dampers is supposed to be
linear. Under the primary and super-harmonic
resonances, the peak amplitude of the system with a
nonlinear absorber is compared with the peak amplitude
of the system with a linear one. Finally, using the
attenuation and desensitization ratios, the best values of
the nonlinear absorber parameters are determined. As
far as we know, investigation on the primary and super-
harmonic resonances in a nonlinear system with
attached nonlinear absorber and comparison with the
behavior of a linear one has not yet been reported.

2. MATHEMATICAL MODEL

Consider a 1-DOF nonlinear system which is attached to
a nonlinear absorber (Figure 1). An external force
excites the main mass (m;). The nonlinear spring
stiffness of the main oscillatory system and the absorber
are i and k), respectively, which are assumed to be
weak enough.

The parameters of the absorber (m,, k,,k,c,) and the

main system (m,k,k',c,) are listed in Table 1. The

equations of motion for the 2-DOF nonlinear system,
shown in Figure 1, are [16]:
3

ml‘x‘1 + klxl + klxl Jrcli(1 - l<2(x2 - xl)
, 3 . . L (la)
7k2(x2 - Xl) Jrc2(x1 7x2): Jz_ll fjcos th
.. 3
m,X, + k,(x, — x,) +k',(x, - x,)
(1b)

+c,(x,—x)=0

The behavior of this system will be studied for primary
and super-harmonic resonant cases.

2. 1. Primary Resonance For the primary
resonance, it is assumed that O =, +¢0, Where Q is the
force frequency, ¢, the natural frequency of the main
system and o the detuning parameter. Equation (1) may
be written as:

X +olx +en x; + & X —ea,X,
—ga3(xz—xl)3+g§2(i{l—}kz) (2a)
= ¢fcos Qt

X, +a)22(x2 -x)+e&B (x, - X|)3
+& ,(x, - %)=0

(2b)
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Figure 1. 2-DOF nonlinear system with nonlinear absorber

TABLE 1. Parameter values of the 2-DOF system

Symbol Variable Value  Unit
m Mass of the nonlinear main system 10 kg
m, Absorber mass 0.8 kg
k Linear stiffness of the main system 44 %
Nonlinear stiffness of the main N
k" system 8 /"3
kz Linear absorber stiffness 2 %
| | v/
k Nonlinear absorber stiffness 0.5 m
Linear damping constant of the main Ns
G system 0.8 /"
c, Linear absorber damping constant 0.08 N%n
where
wlz k1+k2’ a)zz :ﬁ, a, = kl ,
ml 1112 Inl
k k; c
o, =2, @ =22, g =
m m, m,
. . y A3)
_Y
52 :_Z: éf&__a ﬁl__za
m m, m,
u f;
f, = £, f=—"L
1 m]

.

and ¢ is introduced to show weakness of a parameter.
Applying multiple time scale (MTS) method, a set of
four equations is obtained which can be used to
determine the amplitude and phase of the steady state
solutions. Considering two terms expansion of x, the
solution of Equation (2) can be expressed as [17]:

x(t:8) = x0(T, 1) + ex, (T, T) + O(e?) (42)

XQ(t;g):Xzo(’I:)a’I;)'*ng](’I:)a’I;)'Fo(gz) (4b)

The first and second derivatives of x with respect to
time are given by:

z—}:= D, + ¢D, (52)
d?*x )
7 = Di+2eD,D, (Sb)

and the time scales are

T, =t T =gt

Substituting the approximate solution (4) into Equation
(2) and equating the same coefficients of ¢° and ¢'to
zero, yields:

e’ (Dy+0)x, =0 (6a)
(D02 +a)22)X20 :a)zleo (6b)

&' (D} +w})x, = feos(QT,) —2D,D,x,,

3 3
=& D)X —a, X + 0y Xy + 05 (X — X) (60)
—&,Dy (X0 — X9)

(D; + ;) %, = 2D, Dy X + @, x;,
= B1(x = X0)" =& Dy (X5 = X0)

Eliminating the secular terms in the solution of Equation
(6), the following set of equations is obtained:

(6d)

an'=(g —-oc)a+g,a + gyab® —ecos(n)

a'=g,a—esin(n)
(M

by’ = n,b+ n,b> + n,a’b

b'=n,b

where n=0-0T,, and a and 9 are amplitude and
phase of the main system, respectively, and b and ¥
amplitude and phase of the absorber. Moreover,

f 1
e=——0o1, =——uo,l,,
20, 8 20, 2h

1
g2:3 (O{I—Ol3(r|—1)3),
8w,

1
83 = —34—063(F] -1,

1

1
g4 = ?(_51 + éz(rl_l))a
o] 1 ®
r=—2% r=—1 .
l wzz_wlz ? wlz_wzz
1 1 1
m==Za0h0, 0, =-3a, ga’zrz +3B, 8w,
2
1 2 1 2
ny = =3a; Z(rl -0, +35, 10 T -1

2

n, = %(éza)zzrz - ‘:z)
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2. 1. 1. Frequency-response Equation At the
fixed points of Equation (7) that lead to the steady state
solution of the main system, the phase and amplitude
are constant, therefore,

a'=b'=0, 1’['2}/':0 (9)
Then, from Equation (7) one can write:
b=nb=b=0 (10)

Among the three possible cases, 1)az0,b=0
if)a = 0,b # 0ideal case and jjf)a = 0, b= 0 real case, only

the first one can happen. Considering b=0, the
frequency-response equation can be expressed as:

(g, -0 +g,a’)a’+gla’=¢’ (11

2. 1. 2. Stability Analysis Knowing the
eigenvalues of the Jacobin matrix of Equation (7), here,
the stability of the system under resonances is studied
using the method of Andronov and Vitt [17]. Consider
the following relations:

a=a,+a,
n=n,+n (12)
b=b,+b

where a,,n,and b are steady state solutions of

Equation (7) and a,nand b small perturbations.

Substitution of Equation (12) into Equation (7) leads to
the following matrix equation:

a a,
r’]' =J n (13)
by b
where:
84 -(g _U)ao_gza?) 0
J= Q‘*?’gzao P2 0 (14)
0
0 0 n,

The eigenvalues of J are computed as:

A, =8 i\/_ (3g23§ +g-o)g-o+ gzag) (15)

Ay=n,

In the next section, the eigenvalues are evaluated by
specifying the force excitation values.

2. 1. 3. Saddle-node Bifurcation At the saddle-
nodes, the tangency of the frequency-response curve is
vertical; therefore, these points can be determined by
differentiating the frequency-response equation (11)

with respect to a> and considering do/da* =0. The

saddle-node points occur at points with the detuning
parameters:

o,=g+2g,a +.gla' - g (16)

2. 1. 4. Attenuation and Desensitization Ratios
To find the best values of the absorber parameters, two
ratios namely, attenuation and desensitization ratios are
introduced by [10, 11].

By definition, attenuation ratio is given by:

R=—+ (17)

where a, and ao, are the peak amplitudes of the main
system with and without the absorber, respectively. To
find the peak amplitude of the system without absorber,
we should obtain the frequency-response of the system
without absorber by eliminating parameters related to
the nonlinear terms of the absorber in Equation (11).
Desensitization ratio is expressed as:

E =i (18)
eOcrit
where eq; and ey are the critical excitation amplitudes
of the system for the occurrence of saddle-node
bifurcation with and without absorber, respectively, that
may be found from Equation (16). By eliminating the
nonlinear terms related to the absorber from Equation
(16), eperie Will be obtained. Noting these definitions, it is
clear that for an oscillatory system, an absorber with a
small R and a large E works better. The variations of R
and E with g/ are discussed in the next section and the

best values of k] are found.

2. 2. Super-harmonic Resonance  For the super-
harmonic resonance, i.e., 3QQ =, + 0 , a hard force
excitation is assumed. Using MTS method, eliminating
the secular terms and with some manipulations, one
obtains the frequency-response equation as:

ha®>+(h,—o +ha)a’ = q* (19)
where

F? f
qua(fal +a3(1"371)3) F :m

1 1
h :75; +§<§z(r| -1
3 1 3

h =—aF —oa,, ———a,F*(I[, - D*(T, -1
= e el = a1 (1) 20)
3
h3 :_(al _a3(rl _1)3)
8w,
> @2
T = z .= 3
"o - Pel-
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By applying the method of Andronov and Vitt, the
eigenvalues for the super-harmonic resonance can be
obtained as:

Ay, = h +y-(ha'+h-0)3ha’ +h —0)
1 1 Q1)
Ay =5w221"3§z _5§3

The saddle-node points occur at:

o, =h+2ha’ +[Ha' — 1’ (22)

3. NUMERICAL EXAMPLE

For the primary resonant case, in order to plot the
frequency-response curve, Equation (11) can be used to
obtain ¢ in terms of a as:
eZ

Gi:glﬁ—gzazi a_z_gf (23)

To achieve convergent responses, the suitable
amplitude of the force excitation should be determined
[1]. The detuning parameter related to the peak
amplitude, a,, can be obtained from Equation (23) as
c=g+ga. Knowing that jump phenomenon does not

occur at the detuning parameter related to this point
therefore, the detuning parameter should be equal to the
detuning parameter obtained from Equation (16), i.c.,
c=g +2g,a", toget the suitable force amplitude.

For this system with the nonlinear absorber under
the primary resonance, the applied forces for convergent
response is found to be f= 0.2106(N) and f,=0.0537
(N), respectively for with and without the absorber.

In Equation (16), if g2,* - g2 > 0, there is an interval
o_<o <o, that three responses exist for the amplitude of

the system. So, by assuming fi= 0.0537(N), if the
maximum amplitude is a>0.2497m, an interval exists for
three responses. When the system is with the absorber,
ama=0.0909m that occurs at ¢ =0.0574rad/s whereas,

without the absorber a,,,,=0.2560m which is larger than
0.2497m. Therefore, by applying £,=0.0537(N) without the
absorber, at the interval 0.00938<c <0.0108 the system
has two stable and one unstable responses but with the
absorber, the response of the system is stable.

The eigenvalues of the system without the absorber
under the force f;=0.0537(N) are listed in Table 2. It can
be seen that at a typical point with 5=0.0101rad/s

which is located in the wunstable region, three
eigenvalues exist; the first and the third one are related
to the stable response and the sign of the real part of the
second one which is unstable changes.

TABLE 2. Eigenvalues of the system under primary
resonance without the absorber

o(rad /s) A A,
0 -0.0050+ 0.0083i -0.0050- 0.0083i
0.005 -0.0050+ 0.0066i -0.0050+ 0.0066i
-0.0001 +10"" i -0.001 -10° i
0.0101 0.0001 -10™ i -0.0101+10™ i
0.0050-0.0014i -0.0050+0.0014i
0.02 -0.0050 - 0.0188i 0.0050 + 0.0188i

TABLE 3. Eigenvalues of the system under primary
resonance with the absorber

o(rad /s) 2'1 2 5 A,

0 -0.0137 +0.0557i -0.0137 - 0.0557i -0.0452
0.005 -0.0137 +0.0507i -0.0137 - 0.0507i -0.0452
0.01 -0.0137 +0.0458i -0.0137 - 0.0458i -0.0452
0.03 -0.0137 +0.0263i -0.0137 - 0.0263i -0.0452
0.05 -0.0137 +0.0084i -0.0137 - 0.0084i -0.0452
0.07 -0.0137+0.0125i -0.0137-0.0125i -0.0452
0.09 -0.0137-0.0339i -0.0137+0.0339i -0.0452
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Figure 3. Amplitude of the main system with the linear and
nonlinear absorbers in the primary resonant case, (a) with
different applied forces, (b) with the same force.
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For the same force and detuning parameter values, the
eigenvalues of the system with the absorber are shown
in Table 3. It can be seen that by adding the absorber, all
the eigenvalues of the system have negative real parts,
hence; they are related to the stable responses. For the
super-harmonic resonance, from Equation (19) one
obtains:

2
= h, + ha’ + Z—z—hf (24)

o +
The suitable force for this case is found as
f;=11.8596(N) without the absorber, and f,=19.3824(N)
when the absorber is attached to the system.

In Figure (2a, b), the frequency-response curve is
plotted using Equation (24) with f,=11.8596(N). In the
interval 0.0093 <o <0.0108, without the absorber, the
responses are unstable, whereas, with the absorber the
responses are stable. Figure (2a, b) shows the behavior
of the oscillatory system before and after adding the
nonlinear absorber for the primary and super-harmonic
resonances. The amplitudes of the applied force are
£,=0.0537 (N) and f;=11.8596(N) for the primary and
super-harmonic resonances, respectively.
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Figure 2. Amplitude of the oscillatory system with and
without the absorber, (a) primary resonance, (b) super-
harmonic resonance.

The thicker parts in the figure show the region with
three responses. As can be seen, by adding the absorber,
the peak amplitude of the oscillatory system reduces
significantly near the resonance and will shift to a larger
detuning parameter. For the primary resonance,
behavior of the system with the linear and nonlinear
absorbers is shown in Figure (3). It can be seen that by
eliminating the nonlinear term of the absorber, the
amplitude of the applied force can be larger, therefore,
the peak amplitude of the main system increases, as
well. In Figure (3a), the dotted line curve shows the
frequency-amplitude response of the system with the
linear absorber under f,=0.2699 (N) and the solid line
curve shows the response with the nonlinear absorber
under f,=0.2106 (N). For both linear and nonlinear
absorbers, the system has an area with unstable
response. The frequency-amplitude responses of the
system with the linear and nonlinear absorbers under the
same force f;=0.2106(N) are shown in Figure (3b). The
peak amplitudes are obtained as a,,,=0.3566 m where
with the linear absorber it occurs at ¢ = 0.0733 rad /s

and the response is stable in the interval of the detuning
parameter (0<o <0.1. However, with the nonlinear
absorber the response has an unstable region and the
peak amplitude occurs at=(0.0850 rad /s. Hence, it can

be concluded that a linear absorber works better for the
primary resonant case. Figure (4) shows the frequency-
amplitude response in the super-harmonic resonant case
with the linear and nonlinear absorbers. In Figure (4a),
the dotted and the solid line curves are plotted for
f0=16.1170 (N) and f0=19.3824 (N), for the linear and
nonlinear absorbers, respectively. By eliminating the
nonlinear term of the absorber, unlike the primary
resonance case, the force that produces the peak
amplitude decreases, and as a result, the peak amplitude
of the oscillatory system reduces. In Figure (4b), the
same force f0=16.1170 (N) is applied to the system with
both the linear and nonlinear absorbers. The peak
amplitude with the linear absorber is a;,,,=0.2075m,
which occurred at & = 0.1049 rad /s, and with the

nonlinear absorber, a,,=0.2073m at 6=0.1084rad/s

Moreover, with the linear absorber, the behavior of the
system is like a linear system. To find the best value of
the nonlinear parameter of the absorber, the attenuation
and desensitization ratios will be used. By computing
attenuation and desensitization ratios, it is found that for
both primary and super-harmonic resonances, the
attenuation ratio is independent of the nonlinear term of
the absorber (k;). With the nonlinear absorber, the

critical amplitude excitation is obtained from Equations
(22 and 16), respectively, as:

€,i (for super-harmonic resonance) = Qi = 2 n’ / h,

e, (for primary resonance) =¢_. = A2 gi / g

(25)
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By substituting the terms (h;, h;) and (g, &), it can be
find that

(_51 + éz(rl - 1))3
2o a0
8w,

erit = Corit =

(26)

According to Equation (26), the critical excitation
amplitude of the system and subsequently, the system
desensitization ratio can be affected by the nonlinear
parameters of the 2-DOF system, g/ and k/. Variations

of the desensitization ratio with the nonlinear stiffness of
the absorber for the primary and super-harmonic
resonances are shown in Figure (5). It can be seen that for
fixed damping constant and mass of the absorber,
increase in the value of absorber nonlinear stiffness k;
leads to a decrease in the desensitization ratio for both
primary and super-harmonic resonances. It should be
noted that to study the variations of R and E, the values of
my, mb, ki and k should be taken such that the internal

resonance may not occur; i.e. o % 30,22 o,
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Figure 4. Amplitude of the main system with the linear and
nonlinear absorbers in the super-harmonic resonant case: (a)
with different applied forces, and (b) with the same applied
force
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Figure 5. Variations of the desensitization ratio with the
nonlinear stiffness of the absorber for different absorber
masses, (a) primary resonance, (b) super-harmonic resonance

4. CONCLUSION

By adding a linear or nonlinear absorber to a 1-DOF By
adding a linear or nonlinear absorber to a 1-DOF
nonlinear oscillatory system, the resonance amplitudes
can be reduced. For a 2-DOF system consisting of the
main system and the absorber under primary and super-
harmonic resonances, the frequency-response equation
at steady state was obtained for a # 0,b= 0. The results

show that:

a) In comparison to the system without absorber,
adding the nonlinear absorber reduces the
amplitude of the system. Moreover, the peak
amplitude occurs at a larger detuning parameter and
the response of the system with the absorber is
stable. By setting the nonlinear term in Equations
(11, 19) to zero, the same results as in Refs. [10]
and [11] shall be reached.

b) In the primary resonant case, if the absorber is
nonlinear, the smaller applied force leads to the
system to have saddle-nodes at a smaller detuning
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parameter and the peak amplitude is smaller than
that with a linear absorber. It means that by using a
linear absorber we need a larger exciting force for
the system to reach the instability region where the
saddle- nodes occur.

Under the primary resonance, by applying the same
force, the system with the linear absorber has linear
behavior and the peak amplitude takes place in a
smaller detuning parameter compare with the case
with the nonlinear absorber. This is in good
agreement with Ref. [15] for a linear main system.
In the super-harmonic resonant case, the system
with a linear absorber should be excited by a
smaller force, so the peak amplitude is smaller.
However, in order to have saddle-nodes and the 3-
real solution area for the nonlinear absorber, the
system should be excited by a larger force.

Under the super-harmonic resonance, by applying
the same force, the peak amplitude of the
oscillatory system with nonlinear absorber is
slightly smaller than that with the linear absorber
and it takes place at a larger detuning parameter
which is in good agreement with the results of Ref.
[15] for a linear main system.

For both primary and super-harmonic resonances,
the attenuation ratio is independent of the nonlinear
term of the absorber, k.

The desensitization ratio is influenced by the
nonlinear term of the absorber, k]. By increasing
Kk, , the desensitization ratio reduces in both primary

and super-harmonic resonant cases.
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