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A B S T R A C T  

   

In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress primary and 
super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear 
absorber, under the primary and super-harmonic resonances is investigated. Comparison of the effects 
of attached nonlinear absorber on a nonlinear system with that of a linear one, under the resonance 
cases is performed. The stiffness of the main system and the absorber are considered to be cubically 
nonlinear, whereas the behavior of the dampers is supposed to be linear. Using multiple time scales 
(MTS) method, approximate solution of the nonlinear equations of motion is obtained. It is concluded 
that at primary resonance, a linear absorber can suppress the peak amplitude of the system better than a 
non-linear one, but under super-harmonic resonance, effective reduction in the vibration amplitude can 
be achieved using a nonlinear absorber. 
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NOMENCLATURE   
x  Absolute displacement  Greek Symbols 
m  Mass θ  The phase of the main system 

k  Linear stiffness γ  The phase of the absorber 

k′  Nonlinear stiffness Subscripts 

c  Linear damping constant 1 Main system 

a  The domain of the main system 2 absorber 

b  The domain of the absorber   

 
1. INTRODUCTION1 
 
Vibration amplitude in linear or nonlinear vibratory 
systems can be under control using absorbers. They can 
decrease the vibration amplitude of a system near its 
resonance frequency. A 1-DOF nonlinear system can be 
considered as a plausible model for investigation of 
nonlinear phenomena in many mechanical systems. 
However, application of a linear or nonlinear absorber 
to the mentioned 1-DOF system leads to a 2-DOF 
system. Harmonic resonances of a 1-DOF nonlinear 
system under parametric and external excitations with 
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quadratic, cubic and quartic nonlinearities have been 
investigated by Eissa and El-Bassiony [1]. They studied 
effects of different parameters on the response and 
stability of the system. Pai et al. [2] controlled steady 
state vibrations of a cantilevered skew aluminum plate 
using saturation phenomena for 1:2, 1:3 and 1:4 internal 
resonant cases. A nonlinear parametric feedback control 
has been used by Leung et al. [3] to eliminate instability 
resonance responses in a forced 1-DOF nonlinear 
system. It is shown that the proposed nonlinear 
feedback is effective in the control of primary, super- 
and sub-harmonic resonance responses. Chatterjee [4] 
proposed a method to control linear resonant vibrations, 
low-frequency non-resonant vibrations, and primary and 
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1/3 sub-harmonic resonances of a forced oscillator. 
Nahvi [5] investigated a 2-DOF quadratic nonlinear 
self-excited system subjected to a parametric excitation. 
The multiple time scales method was used to study 1:2 
internal and parametric resonances of the system.  Amer 
and El-Sayed [6] studied stability of a 2-DOF system 
under primary and super-harmonic resonances. The 
system consists of the main system and an attached 
absorber, both with quadratic and cubic nonlinear 
springs. They obtained frequency-response equations of 
the 2-DOF system and showed that by adding an 
absorber, the peak amplitude of the main system is 
reduced to 2.5% of its maximum value. 

Dynamics of a 2-DOF nonlinear system was studied 
by Zhu et al. [7]. They showed that by properly 
selecting the stiffness and damping constants of the 
spring and damper the vibration amplitude can be 
reduced. Liu and Liu [8] studied dynamics of a 2-DOF 
system consisting of a mass-spring system and a 
dynamic vibration absorber. Using the Brock's 
approach, the optimum parameters of the absorber 
which is effective in a wide range of forcing amplitude 
were obtained. Viguie and Kerschen [9] addressed the 
problem of mitigating vibration of mechanical systems 
using nonlinear dynamic absorbers. 

Ji and Zhang [10] used a dynamic vibration absorber 
to suppress the primary resonance vibration of a forced 
nonlinear oscillator. To indicate the performance of 
vibration absorber on reducing the response, attenuation 
and desensitization ratios has been introduced. They 
stated that an absorber with small attenuation ratio and 
large desensitization ratio correspond to better 
performance of the absorber. Using a linear absorber, 
suppression of super-harmonic resonance response was 
studied by Ji and Zhang [11]. Results show that for 
fixed absorber parameters, better performance can be 
achieved by using smaller absorber mass, larger spring 
stiffness and larger damping of the absorber. Sayed and 
Kamel [12] carried out a comprehensive investigation 
for suppressing the vibration of the nonlinear plant 
when subjected to external and parametric excitations. 
They applied an active vibration absorber (by quadratic 
and cubic order of control) in the presence of 1:2 and 
1:3 internal resonances. Gahary and Ganaini [13] 
studied vibration suppression of a beam under multi-
parametric excitation forces. A time delayed absorber 
was applied to suppress chaotic vibrations and the 
effects of different absorber parameters on the system 
behavior were obtained numerically.  

The performance of a new type of nonlinear 
vibration absorber that is attached to a 1-DOF 
linear\nonlinear oscillator, subjected to a periodic 
external excitation has been studied by Febbo and 
Machado [14].  

Hsu et al. [15] presented an experimental and 
analytical investigation of the physical behavior and 
effectiveness of a nonlinear dynamic vibration absorber. 

The absorber is attached by a nonlinear hardening 
spring to a cantilever linear beam excited by a shaker. 

In this paper, the effects of using a nonlinear 
absorber on the amplitude of a nonlinear system are 
investigated. The springs of the main system and the 
absorber are considered to be cubically nonlinear, 
whereas the behavior of the dampers is supposed to be 
linear. Under the primary and super-harmonic 
resonances, the peak amplitude of the system with a 
nonlinear absorber is compared with the peak amplitude 
of the system with a linear one. Finally, using the 
attenuation and desensitization ratios, the best values of 
the nonlinear absorber parameters are determined. As 
far as we know, investigation on the primary and super-
harmonic resonances in a nonlinear system with 
attached nonlinear absorber and comparison with the 
behavior of a linear one has not yet been reported. 

 
 

2. MATHEMATICAL MODEL 
 
Consider a 1-DOF nonlinear system which is attached to 
a nonlinear absorber (Figure 1). An external force 
excites the main mass (m1). The nonlinear spring 
stiffness of the main oscillatory system and the absorber 
are 

1k′  and 2k′ , respectively, which are assumed to be 
weak enough. 
The parameters of the absorber ),,,( 2222 ckkm ′  and the 
main system ),,,( 1111 ckkm ′  are listed in Table 1. The 
equations of motion for the 2-DOF nonlinear system, 
shown in Figure 1, are [16]: 
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The behavior of this system will be studied for primary 
and super-harmonic resonant cases. 
 
 
2. 1. Primary Resonance       For the primary 
resonance, it is assumed that εσω +≅Ω 1

, where Ω  is the 
force frequency, 1ω  the natural frequency of the main 
system and σ  the detuning parameter. Equation (1) may 
be written as: 
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Figure 1. 2-DOF nonlinear system with nonlinear absorber 

  
 

TABLE 1. Parameter values of the 2-DOF system 
Unit Value Variable Symbol 

kg 10 Mass of the nonlinear main system 1m  

kg 0.8 Absorber mass 2m  

m
N  44 Linear stiffness of the main system 1k  

3m
N  

8 Nonlinear stiffness of the main 
system 1k′  

m
N  2 Linear absorber stiffness 2k  

3m
N

 
0.5 Nonlinear absorber stiffness 2k′  

m
Ns  

0.8 Linear damping constant of the main 
system 1c  

m
Ns  0.08 Linear absorber damping constant 2c  
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and ε  is introduced to show weakness of a parameter.  
Applying multiple time scale (MTS) method, a set of 
four equations is obtained which can be used to 
determine the amplitude and phase of the steady state 
solutions. Considering two terms expansion of x, the 
solution of Equation (2) can be expressed as [17]: 

)(),(),();( 2
101110101 εεε OTTxTTxtx ++=  (4a) 

)(),(),();( 2
102110202 εεε OTTxTTxtx ++=  (4b) 

The first and second derivatives of x with respect to 
time are given by: 

10 DD
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and the time scales are: 
,0 tT =  tT ε=1 . 

Substituting the approximate solution (4) into Equation 
(2) and equating the same coefficients of 0ε  and 1ε to 
zero, yields: 
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Eliminating the secular terms in the solution of Equation 
(6), the following set of equations is obtained: 
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where 1Tσθη −= , and a and θ  are amplitude and 
phase of the main system, respectively, and b and γ  
amplitude and phase of the absorber. Moreover, 
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2. 1. 1. Frequency-response Equation      At the 
fixed points of Equation (7) that lead to the steady state 
solution of the main system, the phase and amplitude 
are constant, therefore, 

,0=′=′ ba     0=′=′ γη    (9) 

Then, from Equation (7) one can write: 

04 =⇒=′ bbnb  (10) 

Among the three possible cases, 0,0) =≠ bai  
0,0) ≠= baii ideal case and ) 0, 0iii a b≠ ≠ real case, only 

the first one can happen. Considering b=0, the 
frequency-response equation can be expressed as: 

222
4

222
21 )( eagaagg =++− σ  (11) 

 
2. 1. 2. Stability Analysis      Knowing the 
eigenvalues of the Jacobin matrix of Equation (7), here, 
the stability of the system under resonances is studied 
using the method of Andronov and Vitt [17]. Consider 
the following relations: 
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where 00 ,ηa and 0b are steady state solutions of 

Equation (7) and 11,ηa and 1b  small perturbations. 
Substitution of Equation (12) into Equation (7) leads to 
the following matrix equation: 
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The eigenvalues of J are computed as: 

42.1 g=λ ))(3( 2
0211

2
02 agggag +−−+−± σσ  

43 n=λ  
(15) 

In the next section, the eigenvalues are evaluated by 
specifying the force excitation values. 
 
2. 1. 3. Saddle-node Bifurcation      At the saddle-
nodes, the tangency of the frequency-response curve is 
vertical; therefore, these points can be determined by 
differentiating the frequency-response equation (11) 

with respect to a2 and considering 02 =σ dad . The 
saddle-node points occur at points with the detuning 
parameters: 

2
4

42
2

2
21 2 gagagg −±+=±σ  (16) 

 
2. 1. 4. Attenuation and Desensitization Ratios    
To find the best values of the absorber parameters, two 
ratios namely, attenuation and desensitization ratios are 
introduced by [10, 11]. 
By definition, attenuation ratio is given by: 

p

p

a
a

R
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where ap and a0p are the peak amplitudes of the main 
system with and without the absorber, respectively. To 
find the peak amplitude of the system without absorber, 
we should obtain the frequency-response of the system 
without absorber by eliminating parameters related to 
the nonlinear terms of the absorber in Equation (11). 
Desensitization ratio is expressed as: 

crit
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e
eE
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=  (18) 

where ecrit and e0crit are the critical excitation amplitudes 
of the system for the occurrence of saddle-node 
bifurcation with and without absorber, respectively, that 
may be found from Equation (16). By eliminating the 
nonlinear terms related to the absorber from Equation 
(16), e0crit will be obtained. Noting these definitions, it is 
clear that for an oscillatory system, an absorber with a 
small R and a large E works better. The variations of R 
and E with 2k′  are discussed in the next section and the 
best values of 2k′  are found.  
 
2. 2. Super-harmonic Resonance     For the super-
harmonic resonance, i.e., εσω +≅Ω 13 , a hard force 
excitation is assumed. Using MTS method, eliminating 
the secular terms and with some manipulations, one 
obtains the frequency-response equation as: 
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By applying the method of Andronov and Vitt, the 
eigenvalues for the super-harmonic resonance can be 
obtained as: 

12,1 h=λ )3)(( 2
2

32
2

3 σσ −+−+−± hahhah  

323
2
23 2

1
2
1

ξξωλ −Γ=                                                    
(21) 

The saddle-node points occur at: 
2
1

42
3

2
32 2 hahahh −±+=±σ  (22) 

                                      
  
 

3. NUMERICAL EXAMPLE 
 
For the primary resonant case, in order to plot the 
frequency-response curve, Equation (11) can be used to 
obtain σ in terms of a as: 

2
42

2
2

21 g
a
eagg −±+=±σ  (23) 

To achieve convergent responses, the suitable 
amplitude of the force excitation should be determined 
[1]. The detuning parameter related to the peak 
amplitude, ap, can be obtained from Equation (23) as 

.2
21 pagg +=σ  Knowing that jump phenomenon does not 

occur at the detuning parameter related to this point 
therefore, the detuning parameter should be equal to the 
detuning parameter obtained from Equation (16),

 
i.e.,

,2 2
21 agg +=σ  to get the suitable force amplitude. 

For this system with the nonlinear absorber under 
the primary resonance, the applied forces for convergent 
response is found to be f0= 0.2106(N) and f0=0.0537 
(N), respectively for with and without the absorber. 

In Equation (16), if 02
4

42
2 >− gag , there is an interval 

+− << σσσ that three responses exist for the amplitude of 
the system. So, by assuming f0= 0.0537(N), if the 
maximum amplitude is amax>0.2497m, an interval exists for 
three responses. When the system is with the absorber, 
amax=0.0909m that occurs at srad.05740=σ  whereas, 
without the absorber amax=0.2560m which is larger than 
0.2497m. Therefore, by applying f0=0.0537(N) without the 
absorber, at the interval 0108.000938.0 << σ  the system 
has two stable and one unstable responses but with the 
absorber, the response of the system is stable. 

The eigenvalues of the system without the absorber 
under the force f0=0.0537(N) are listed in Table 2. It can 
be seen that at a typical point with srad.01010=σ  
which is located in the unstable region, three 
eigenvalues exist; the first and the third one are related 
to the stable response and the sign of the real part of the 
second one which is unstable changes. 

TABLE 2. Eigenvalues of the system under primary 
resonance without the absorber 

2λ  1λ  )srad(σ  

-0.0050- 0.0083i -0.0050+ 0.0083i 0 

-0.0050+ 0.0066i -0.0050+ 0.0066i 0.005 

-0.001 -10-10  i -0.0001 +10-10 i 

0.0101 -0.0101+10-10  i 0.0001 -10-10  i 

-0.0050+0.0014i -0.0050-0.0014i 

-0.0050 + 0.0188i -0.0050 - 0.0188i 0.02 

 
 
TABLE 3. Eigenvalues of the system under primary 
resonance with the absorber 

3λ  
2λ  1λ  )srad(σ  

-0.0452 -0.0137 - 0.0557i -0.0137 + 0.0557i 0 

-0.0452 -0.0137 - 0.0507i -0.0137 + 0.0507i 0.005 

-0.0452 -0.0137 - 0.0458i -0.0137 + 0.0458i 0.01 

-0.0452 -0.0137 - 0.0263i -0.0137 + 0.0263i 0.03 

-0.0452 -0.0137 - 0.0084i -0.0137 + 0.0084i 0.05 

-0.0452 -0.0137- 0.0125i -0.0137+ 0.0125i 0.07 

-0.0452 -0.0137+0.0339i -0.0137-0.0339i 0.09 

 
 
 

 
(a) 

 
(b) 

Figure 3. Amplitude of the main system with the linear and 
nonlinear absorbers in the primary resonant case, (a) with 
different applied forces, (b) with the same force. 
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For the same force and detuning parameter values, the 
eigenvalues of the system with the absorber are shown 
in Table 3. It can be seen that by adding the absorber, all 
the eigenvalues of the system have negative real parts, 
hence; they are related to the stable responses. For the 
super-harmonic resonance, from Equation (19) one 
obtains: 

2
12

2
2

32 h
a
qahh −±+=±σ  (24) 

The suitable force for this case is found as 
f0=11.8596(N) without the absorber, and f0=19.3824(N) 
when the absorber is attached to the system. 

In Figure (2a, b), the frequency-response curve is 
plotted using Equation (24) with f0=11.8596(N). In the 
interval 0108.00093.0 << σ , without the absorber, the 
responses  are  unstable,  whereas, with the absorber  the 
responses are stable. Figure (2a, b) shows the behavior 
of the oscillatory system before and after adding the 
nonlinear absorber for the primary and super-harmonic 
resonances. The amplitudes of the applied force are 
f0=0.0537 (N) and f0=11.8596(N) for the primary and 
super-harmonic resonances, respectively. 
 
 

 
(a) 

 

 
(b) 

Figure 2. Amplitude of the oscillatory system with and 
without the absorber, (a) primary resonance, (b) super-
harmonic resonance. 

The thicker parts in the figure show the region with 
three responses. As can be seen, by adding the absorber, 
the peak amplitude of the oscillatory system reduces 
significantly near the resonance and will shift to a larger 
detuning parameter. For the primary resonance, 
behavior of the system with the linear and nonlinear 
absorbers is shown in Figure (3). It can be seen that by 
eliminating the nonlinear term of the absorber, the 
amplitude of the applied force can be larger, therefore, 
the peak amplitude of the main system increases, as 
well. In Figure (3a), the dotted line curve shows the 
frequency-amplitude response of the system with the 
linear absorber under f0=0.2699 (N) and the solid line 
curve shows the response with the nonlinear absorber 
under f0=0.2106 (N). For both linear and nonlinear 
absorbers, the system has an area with unstable 
response. The frequency-amplitude responses of the 
system with the linear and nonlinear absorbers under the 
same force f0=0.2106(N) are shown in Figure (3b). The 
peak amplitudes are obtained as amax=0.3566 m where 
with the linear absorber it occurs at srad.07330=σ  
and the response is stable in the interval of the detuning 
parameter 1.00 << σ . However, with the nonlinear 
absorber the response has an unstable region and the 
peak amplitude occurs at .srad.08500=  Hence, it can 
be concluded that a linear absorber works better for the 
primary resonant case. Figure (4) shows the frequency-
amplitude response in the super-harmonic resonant case 
with the linear and nonlinear absorbers. In Figure (4a), 
the dotted and the solid line curves are plotted for 
f0=16.1170 (N) and f0=19.3824 (N), for the linear and 
nonlinear absorbers, respectively. By eliminating the 
nonlinear term of the absorber, unlike the primary 
resonance case, the force that produces the peak 
amplitude decreases, and as a result, the peak amplitude 
of the oscillatory system reduces. In Figure (4b), the 
same force f0=16.1170 (N) is applied to the system with 
both the linear and nonlinear absorbers. The peak 
amplitude with the linear absorber is amax=0.2075m, 
which occurred at srad.10490=σ , and with the 
nonlinear absorber, amax=0.2073m at srad.10840=σ  
Moreover, with the linear absorber, the behavior of the 
system is like a linear system. To find the best value of 
the nonlinear parameter of the absorber, the attenuation 
and desensitization ratios will be used. By computing 
attenuation and desensitization ratios, it is found that for 
both primary and super-harmonic resonances, the 
attenuation ratio is independent of the nonlinear term of 
the absorber (

2k′ ). With the nonlinear absorber, the 
critical amplitude excitation is obtained from Equations 
(22 and 16), respectively, as: 

crite (for super-harmonic resonance) = 
3

3
12 hhqcrit =  

crite (for primary resonance) = 2
3
42 ggecr it =                                                         

(25) 
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By substituting the terms (h1, h3) and (g4, g2), it can be 
find that 

))1((
8

3
))1((

3
131

1

3
121

−Γ−

−Γ+−
==

αα
ω

ξξ
critcrit eq

 
(26) 

According to Equation (26), the critical excitation 
amplitude of the system and subsequently, the system 
desensitization ratio can be affected by the nonlinear 
parameters of the 2-DOF system, 1k′  and 2k′ . Variations 
of the desensitization ratio with the nonlinear stiffness of 
the absorber for the primary and super-harmonic 
resonances are shown in Figure (5). It can be seen that for 
fixed damping constant and mass of the absorber, 
increase in the value of absorber nonlinear stiffness 2k′  
leads to a decrease in the desensitization ratio for both 
primary and super-harmonic resonances. It should be 
noted that to study the variations of R and E, the values of 
m1, m2, k1 and k2 should be taken such that the internal 
resonance may not occur; i.e., .,

3
,3 2

2
21 ω

ω
ωω ≠  

 
 

 
(a) 

 
(b) 

Figure 4. Amplitude of the main system with the linear and 
nonlinear absorbers in the super-harmonic resonant case:  (a) 
with different applied forces, and (b) with the same applied 
force 
 

 
(a) 

 
(b) 

Figure 5. Variations of the desensitization ratio with the 
nonlinear stiffness of the absorber for different absorber 
masses, (a) primary resonance, (b) super-harmonic resonance 
 
 
 
4. CONCLUSION 
 
By adding a linear or nonlinear absorber to a 1-DOF By 
adding a linear or nonlinear absorber to a 1-DOF 
nonlinear oscillatory system, the resonance amplitudes 
can be reduced. For a 2-DOF system consisting of the 
main system and the absorber under primary and super-
harmonic resonances, the frequency-response equation 
at steady state was obtained for 0,0 =≠ ba . The results 
show that: 
a) In comparison to the system without absorber, 

adding the nonlinear absorber reduces the 
amplitude of the system. Moreover, the peak 
amplitude occurs at a larger detuning parameter and 
the response of the system with the absorber is 
stable. By setting the nonlinear term in Equations 
(11, 19) to zero, the same results as in Refs. [10] 
and [11] shall be reached. 

b) In the primary resonant case, if the absorber is 
nonlinear, the smaller applied force leads to the 
system to have saddle-nodes at a smaller detuning 
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parameter and the peak amplitude is smaller than 
that with a linear absorber. It means that by using a 
linear absorber we need a larger exciting force for 
the system to reach the instability region where the 
saddle- nodes occur. 

c) Under the primary resonance, by applying the same 
force, the system with the linear absorber has linear 
behavior and the peak amplitude takes place in a 
smaller detuning parameter compare with the case 
with the nonlinear absorber.  This is in good 
agreement with Ref. [15] for a linear main system. 

d) In the super-harmonic resonant case, the system 
with a linear absorber should be excited by a 
smaller force, so the peak amplitude is smaller. 
However, in order to have saddle-nodes and the 3-
real solution area for the nonlinear absorber, the 
system should be excited by a larger force. 

e) Under the super-harmonic resonance, by applying 
the same force, the peak amplitude of the 
oscillatory system with nonlinear absorber is 
slightly smaller than that with the linear absorber 
and it takes place at a larger detuning parameter 
which is in good agreement with the results of Ref. 
[15] for a linear main system. 

f) For both primary and super-harmonic resonances, 
the attenuation ratio is independent of the nonlinear 
term of the absorber, 2k′ .  

g) The desensitization ratio is influenced by the 
nonlinear term of the absorber, 2k′ . By increasing  

2k′ , the desensitization ratio reduces in both primary 
and super-harmonic resonant cases. 
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  چکیده

  
 

هاي دینامیکی خطی یا توان ازجاذبهاي ارتعاشی، به منظور جلوگیري از تشدیدهاي اولیه و سوپرهارمونیک، میدر سیستم
در این مقاله، رفتار یک سیستم غیرخطی به همراه یک جاذب غیرخطی، تحت تشدیدهاي اولیه و . غیرخطی استفاده کرد

ي بین اثرات یک جاذب خطی و یک جاذب غیرخطی بر روي رفتار یک مقایسه. شده استیک، بررسی سوپرهارمون
 استي سه سختی سیستم اصلی و جاذب غیرخطی از نوع درجه. سیستم غیرخطی تحت تشدیدهاي فوق انجام گرفته است

- دست آوردن حل تقریبی معالات غیرخطی حرکت، از روش مقیاس زمانی متعدد  براي به. ها خطی هستندو میراکننده

ي سیستم، یک جاذب خطی دهند که در حالت تشدید اولیه، در کاهش ماکزیمم دامنهنتایج نشان می. استفاده شده است
ب غیرخطی به اما تحت تشدید سوپرهارمونیک، با اضافه کردن یک جاذ. عملکرد بهتري نسبت به جاذب غیرخطی دارد

  .ي ارتعاش نسبت به حالتی که جاذب خطی است، کاهش بیشتري خواهد داشتسیستم ارتعاشی، دامنه
  

doi: 10.5829/idosi.ije.2014.27.03c.18

  

 
 



 

 


