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A B S T R A C T  

   

This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-
actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two 
electrodes and acted upon by a steady (dc) while simultaneously superimposed to an (ac) voltage. First, 
the stability of the system subjected to a quasi-statically applied (dc) voltage is investigated, where the 
pull-in instability, equilibrium positions, and bifurcation points of the system are determined. Then by 
superimposing an (ac) voltage and extracting a Mathieu type governing equation the effects of (ac) 
component on the stability of the system is investigated. By varying excitation parameters (steady (dc) 
voltage and time-dependent amplitude of (ac) excitation), transition curves and the stability margins of 
the micro-mirror are demonstrated. Theoretically obtained margins are checked by means of numerical 
simulations. The results show that superimposing the harmonic (ac) component could have a 
stabilizing effect and allow an increase of the steady (dc) component beyond the pull-in value. These 
results could be used in design of micro-actuators. 
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1. INTRODUCTION1 
 
Recently there has been a growing interest in the 
development of micro-electro-mechanical systems 
'MEMS' in particular micro-opto-electro-mechanical 
systems 'MOEMS'. Electrostatic torsional micro-mirrors 
have been widely used as an important type of actuators 
in MOEMS. They can be classified in four groups based 
on their motion: deformable micro-mirrors [1], movable 
micro-mirrors [2], piston type [3], and torsional micro-
mirrors [4]. Torsional micro-mirrors are used for 
reflecting light beams to a desired direction in many 
engineering devices such as projection display systems 
[5], optical scanners [6], and confocal microscopes [7]. 
They are also utilized in telecommunication field as 
optical switches and optical cross-connects [8]. In 
addition, they have been used as virtual masks (for 
DNA patterning) [9, 10], micro lenses, micro gratings, 
and optical waveguides in MOEMS [11].  

In the aforementioned applications, besides its 
flatness and reflectivity, performance of the micro-
mirror depends on the mirror size, natural frequency, 
                                                        
1*Corresponding Author Email: r .shabani@urmia.ac.ir (R. Shabani) 

operating voltage, and rotation angle. Consequently, 
many researchers devoted their time to investigating the 
dynamic response and instability of these systems, 
where the pull-in is the most important type of 
instability that occur in electrostatically actuated micro-
mirrors. Fischer et al. investigated the static and 
dynamic behavior of micro-mirrors using finite element 
analysis and clarified the dependency of natural 
frequency on the squeeze film conditions [12]. Taking 
into account the finite tilting angle and using general 
Reynolds equation, Bao et al. [13] proposed an 
analytical model to calculate the squeeze-film effects.  
Effects of intermolecular Van der Waals and Casimir 
forces on the static and dynamic responses of torsional 
actuators have been also investigated by some 
researchers. Influence of damping effects were studied 
by Lin and Zhao [14], where the intermolecular forces 
effects were considered.  Gusso et al. studied the effects 
of Casmir force on the response of micro-mirrors [15]. 
Guo and Zhao studied the effects of these forces on the 
static and dynamic behavior of electrostatic torsional 
micro and nano-electromechanical actuators [16, 17]. In 
another study, they also investigated the effect of 
Casmir and capillary forces on the stability of the 
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micro-mirrors [18]. Bifurcation analyses have also been 
done on the dynamics of nano-electromechanical 
actuators, where the Hopf and saddle node bifurcations 
were detected [19]. In the analysis of micro-mirrors, 
besides the torsional mode bending mode may also 
affect the response. But, due to ignoring the coupling 
effects, the related works are not addressed here. 
Referring to the above mentioned researches, the main 
focus in the previous studies has been on the eigen-
frequency analysis or developing the response of the 
system to step excitations or mechanical shocks.  

However, in some applications such as micro 
scanners, the micro-mirror may be excited by a 
harmonic (ac) component superimposed on the steady 
(dc) voltage [20-22]. Therefore, the stability of the 
system due to imposing (ac) components could be 
important. Stabilizing effects of a (dc) component have 
been investigated in some MEMS structures. Imposing a 
harmonic component using piezoelectric layers, Azizi et 
al. [23] investigated the stability of a micro-beam 
actuated by electrostatic voltage. Employing parametric 
excitations, they showed stability margins due to 
variations of (ac) excitation parameters. Krylov et al. 
[24] investigated stability margins of a micro-beam 
actuated symmetrically by a pair of electrostatic 
actuators (double electrode micro-beam). Employing 
electrostatic (ac) excitation, they extracted Mathieu type 
governing equation and studied the (ac) and (dc) 
components on the stability margins of the system. 
Moreover, based on variational iteration method, 
Rezazadeh et al. [25] studied the parametric excitations 
of a micro-beam actuated symmetrically by a pair of 
electrostatic actuators and specified it’s stability 
margins. Rhoads et al. [26]studied a double electrode 
micro-beam which couples the inherent benefits of a 
resonator with purely-parametric excitation with a 
simple geometry. They analyzed the local nonlinear 
response characteristics of the proposed micro-beam. 
Their results showed that the (ac) voltages could have a 
stabilizing effect and permits an increase of the steady 
(dc) component actuation voltage beyond the pull-in 
value. Detailed information related to parametric 
excitations of Mathieu equation has been presented in 
[27]. 

In micro and nano applications, the thickness of 
elements is typically on the order of microns and sub-
microns. At this scale, size effect could affect the results 
[28, 29]. On the other hand, Sadeghian et al. [30, 31] 
showed that for silicon beams with thickness greater 
than 1μm, the effective Young's modulus reaches an 
asymptotic value equal to its macro-scale value (see also 
experimental results reported by [32-35]). Accounting 
for the thickness of torsional beams considered in this 
study,  the results will not be affected by size.  

In this paper, the stability of a micro-mirror actuated 
symmetrically by two electrostatic electrodes are 
investigated. At first, by imposing steady (dc) voltage 

the static stability of the system is studied, where the 
pull-in instability, equilibrium positions and bifurcation 
points of the micro-mirror are determined. Then, 
assuming different initial conditions, the micro-mirror 
trajectories are plotted in the phase plane, where the 
attraction zones of each point is specified. The results 
are compared with those of a micro-mirror excited by a 
single electrode. In the next stage, by superimposing a 
harmonic (ac) component and driving a Mathieu type 
governing equation, the stability margins are plotted and 
effects of excitation parameters on stability of the 
system is investigated. Stability of the theoretically 
obtained regions is verified using numerical Runge-
Kutta integration method. Finally, the transition curves 
in conventional parameters plane (δ- ε) are mapped into 
the physical parameters space (Vdc- Vac), where the 
stability is investigated in the vicinity and beyond the 
static pull-in voltage Vsp. The results show that the 
superimposing harmonic (ac) voltages could have a 
stabilizing effect and permits an increase of the steady 
component Vdc voltage beyond the pull-in value. 

 
 

2. MATHEMATICAL MODELING 
 

A schematic view of a micro-mirror actuated by 
electrostatic electrodes is shown in Figure 1. The micro-
mirror may be actuated by only one electrode (Figure 
1b), or by two symmetrically parallel electrodes (Figure 
1c). The micro-mirror plate is suspended by two 
torsional micro-beams with length l, width w, and 
thickness t. The length and width of the micro-mirror 
plate are denoted by L and a, respectively, and the initial 
gap separating the micro-mirror and electrode plates is 
denoted by D. 

By applying a voltage to the system, the micro-
mirror will rotate around its center axis producing an 
angular deflection in the micro-beams. The equation for 
the torsional vibration of the micro-mirror with moment 
of inertia It is stated by [22]: 

( , )t t elecI K M Vϕ ϕ ϕ+ =&&  

2  p
t

GJ
K

l
ϕ ϕ=  

(1) 

where Kt, G and Jp are torsional stiffness, shear 
modulus, and area moment of inertia of the beams, 
respectively. The overall electrostatic torque acting on 
the mirror for single electrode and double electrode 
actuation is specified as [22]: 
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(a) 

 
(b) 

 
(c) 

Figure 1. Schematic view of an electrostatic micro-mirror, (a) 
3-D isometric view, (b) cross-sectional view of single 
electrode actuation, (c) cross-sectional view of double 
electrode actuation 
 
 

where ε and V denote the electric permittivity and 
the applied voltage respectively. By defining the 
dimensionless parameters,  

0 0 0
0

 ;    ;  sin  ;  sinD
a

ϕϕ ϕ ϕ ϕ ϕ
ϕ

= Γ = ≅ ≅  (3) 

the electrostatic torque can be rewritten as: 
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In the case of double electrode actuation, the governing 
equation can be written as: 

( ) ( ){ }
3

1 23
1γ  γ ,  γ ,  γ
2t t

aI K L T V T V
D

ε+ = −&&  (5) 

where 

( ) ( )
2

1 2
 γ,  γ [ ln 1  γ ]

1  γ γ
VT V = + −

−  
(6a) 

( )
2

2 2
 γ,  γ [ ln(1  γ)]

1  γ γ
VT V −

= + +
+

 (6b) 

By expanding the dimensionless electrostatic torques 
(T1, T2) up to second order, the relationship for torque 
values are obtained as:  
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in which δV is the time-dependent alternating voltage 
cos(ω )acV V tδ = and Vdc the constant bias voltage. 

Upon neglecting higher order terms in Equation (7) and 
inserting it into Equation (5), the following parametric 
equation with a time-dependent component is obtained: 

( )( )3 21 1γ [1 ( ( ) ) 1.334 1.334 cos ω ]γ 0
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By applying transformation *
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the following parameters  
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governing equation of the system is stated as: 

( )( )γ 2 cos 2  γ 0δ τ+ + =&& ε  (10) 

Equation (10) is in the form of Mathieu equation with 
time-dependent harmonic coefficient, where its stability 
can be investigated. It should be noted that in micro and 
nano applications the size effect could change the 
analysis results. Sadeghian et al. [30,31] demonstrated  
that  there  is a strong  size-dependency  as  the  
characteristic dimensions  of  the  structure  approach  
the material length-scale parameter. However, they 
showed that for silicon beam thickness greater than 
1μm, the effective Young's modulus reaches an 
asymptotic value equal to its macro-scale value. Figures 
2 and 3 show the evolution of experimentally evaluated 
modulus of elasticity for silicon made structures as 
reported by them. Therefore, accounting for the 
thickness of torsional beams considered in this study 
(Table 1 in numerical results section), analysis results 
will not be affected by size. 
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Figure 2. Measured effective Young’s modulus of silicon 
nano-cantilevers for different thicknesses (taken from 
reference [30]). 
 
 

 
Figure 3. Measured effective Young’s modulus of silicon 
nano-cantilevers for different thicknesses (taken from 
reference [31]). 
 
 
 
3. STABILITY ANALYSIS 
 
3. 1. Static Stability   Static stability of the system 
requires that the action of the applied electrostatic 
torque ( ( , )elecM Vγ ) be neutralized by the opposite action 
of elastic restoring torque of the torsional beams            
( ( )con tM Kγ γ= ). The equilibrium condition is stated by 
defining Φ as the following net applied torque: 

( ) ( ) ( ), , 0con elecV M M Vγ γ γΦ = − =  (11) 

Substituting Equation (4a) and (4b) into Equation (11), 
the equilibrium equation for single and double electrode 
actuation can be rewritten respectively as: 
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Solving Equations (12a) and (12b) gives the equilibrium 
points where their stabilities depends on the sign of 

/ 0γ∂Φ ∂ < . An equilibrium point is stable if / 0γ∂Φ ∂ < , 

while it is unstable if / 0γ∂Φ ∂ > . Therefore, the 
stability condition for each case is:  
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Eliminating HV2 in Equations (12) and (13), the 
nonlinear equation of motion about the critical tilting 
angle for the two cases is: 
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Substituting γcr into Equations (12a) and (12b), the 
value of critical voltage for single and double electrode 
actuation can be rewritten respectively as: 

3
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3. 2. Dynamic Stability     Applying harmonic (ac) 
voltage can affect the stability conditions of the double 
electrode actuation. In order to investigate the stability 
of the system governed by Equation (10) and extract the 
transition curves, δ=δ(ε),the perturbation method based 
on strained parameters is employed [27]. To this end, 
equation parameters γ and δ are expanded uniformly in 
powers of ε: 
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δ δ

= + + +
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 (16) 

Upon substituting Equation (16) into Equation (10) and 
equating the coefficients of like powers of  , following 
set of equations are obtained: 
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Note that in the absence of time-dependent components 
(ε=0), positive sign of δ corresponds to a stable position 
of the system, and vice versa. On the other hand, when 
there is a small time varying component, the system 
loses to have periodic solution when n is an integer. 
Therefore, to evaluate the relation between δ and ε (or 
to draw transition curves),   is assumed as an integer 
(n=0, 1, 2 …) in the power expansion Equation (16) and 
the general solution of Equation (17) is as: 

( )0 ( ) ( )acos n bsin nγ τ τ τ= +  (21) 

which yields the bounded solution (γ0=a) for (n=0). 
Substituting this into Equations (18) through (20), while 
eliminating secular terms following  results are 
obtained:  

1 1

2 2

1 0 , (2 )
2

1 1( 0,    ), (4 )
2 32

acos

a for nontrivial solution acos

δ γ τ

δ γ τ

 = =   
 = − ≠ =  
 

 
(22) 

Thus, the (δ- ε) relation for (n=0) up to the second order 
reads as: 

21
2

δ  = −  
 

ε  (21) 

Transition curve given by Equation (23) and starting 
from δ=0 specifies the periodic solutions and separates 
the stable and unstable regions. The same procedure is 
followed to obtain transition curves for n=1, 2, 3… [27]. 
 
 
4. NUMERICAL RESULTS AND DISCUSSIONS 
 
Simulation results are presented in two separate 
subsections, where the micro-mirror is excited with 
some levels of (dc) voltages and superimposing an (ac) 
component on it. The values of the parameters of the 
micro-mirror used in the simulations are taken from [22] 
and listed in Table 1. 
 
 
 

TABLE 1. Data used in the simulations  
Item Parameter Value 

Material properties  
(Silicon) 

Shear modulus G (GPa) 
Young’s modulus, E (GPa ) 
Density, ρ (Kg/m3) 

66 
170.28 
2,330 

Micro-mirror 
Width, 2a (µm) 
Length, L (µm) 

100 
100 

Torsional micro-beam 
Length, l (µm) 
Width, w (µm) 
Thickness, t (µm) 

65 
2 

1.5 

Electrode 
Width, a (µm) 
Gap, D (µm) 

100 
2.75 

4. 1. Steady Voltage Excitation    Fixed points of the 
micro-mirror in cases of single and double side 
electrode actuation are depicted in Figure 4. In the 
double electrode type, for low applied voltages three 
equilibrium points exist only one of which is stable. For 
sufficiently high voltages, beyond the Pitchfork 
bifurcation point, the pull-in phenomena takes place and 
system possesses only one unstable equilibrium point. 
In the case of single actuating electrode, there are two 
equilibrium points one of them is stable and the other 
unstable for applied voltages lower than the pull-in 
value. As the applied voltage reaches pull-in value, 
saddle node bifurcation occurs and the equilibrium 
points vanish. 

In order to gain a better insight of the stability, 
dynamic response of the system is evaluated for 
different initial conditions and different applied voltages 
(Figures 5 and 6). For double electrode actuating, in the 
absence of bias voltage (V=0 volt), there exists only one 
stable center at γ=0 (Figure 5a). As the system is 
excited by a step-input voltage, two other unstable 
equilibrium points (unstable saddle nodes) emerge. 
 
 
 

 
(a) 

 
(b) 

Figure 4. Dimensionless tilting angle of micro-mirror versus 
applied (dc) voltage, (USB: unstable branch, SB: Stable 
branch), a) Double electrode actuation. b) Single electrode 
actuation. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Phase portraits of the double electrode micro-mirror 
with different initial conditions;  (a)V=0 volt,  (b) V=5 volt,  
(c) Vsp=9.325 volt, and   (d) V=15volt. 
 
 

Figure 5b shows the basin of attraction of stable 
center bounded by a homoclinic orbit and basins of 
repulsion of unstable saddle nodes. As shown in Figure 
4a, when the applied voltage approaches a critical value, 
the stable (S. B) and unstable branches (U. S. B) of the 
fixed points approach and meet at the pitchfork 
bifurcation point. The voltage corresponding to this 
point is known as the static pull-in voltage (Vsp) in the 
MEMS literature. However as the applied voltage 
increases beyond the pull-in value the basin of attraction 
of stable attractor is eliminated and the micro-mirror 
will be unstable for any set of initial conditions (Figures 
5c, d).  

When the micro-mirror is subjected to single 
electrode actuation a qualitative changes in the behavior 
is take placed. In low ranges of applied voltage, the 
system behavior includes a stable center and an unstable 
saddle node (Figure 6b). For voltages higher than the 
pull-in value (which is lower than the pull-in value of 
double electrode case), the saddle node bifurcation 
occurs and the attractions no longer exist' Figure 6c and 
Figure 6d.  

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Phase portraits of the single electrode micro-mirror 
with different initial conditions;    (a)V=0 volt,    (b) V=5 volt,   
(c) Vsp=6.95 volt, and    (d) V=10volt. 
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component is superimposed on the applied (dc) voltage 
and symmetrical double electrode actuation is utilized, 
(Figure 1c), the applied (dc) and (ac) voltages appear 
implicitly in the relations containing conventional 
parameters δ and ε (Equation (9)). The periodic 
solutions of the Mathieu type Equation (10) is studied in 
the space δ and ε, and the transition curves are drawn 
using the perturbation method. Moreover, using δ-ε 
relations obtained analytically for the transition curves, 
the stable and unstable regions in the δ-ε plane are 
illustrated Figure 7. It was proved that along these 
transition curves there exists at least one normal 
solution, which is periodic with the period of either 2π 
or 4π depending on the case. In order to investigate the 
stability of the specified regions, numerical simulations 
have been carried out for four specific points located in 
stable region (B and D) and unstable region (A and C). 
Figure 8 illustrates phase portrait corresponding to point 
A located in the unstable region, where the solution is 
unbounded. Referring to Equations (9), it can be 
concluded that this point corresponds to the physical 
parameters  9.1349 , 0.3806 ,  0.4dc acV volt V volt= = Ω =  
 
 
 

 
(a) 

 
(b) 

Figure 7. Stable (shaded) and unstable regions in the 
parametric plane: (a) 0.5 20, 0  10δ ε− < < < < , and (b) 

0.5 6,  0  1δ ε− < < < <  

Numerical simulation associated to point B in the δ-ε 
plane is shown in Figure 9. Point B is located in the 
stable region which is substantiated by bounded 
oscillatory solution. It is noteworthy that an important 
feature of the proposed parametric analysis is to show 
the possibility of stabilizing a statically unstable system, 
where the imposed bias voltage is beyond the pull-in 
value, by imposing an appropriate alternating voltage. 
To this end, stability of points C and D is investigated. 
Figure 10 illustrate phase portrait corresponding to point 
C located in the unstable region, where the solution is 
unbounded. However, Figure 11 shows that in spite of 
imposing high (higher than the static pull-in voltage) 
value as step (dc) voltage the system could be stable by 
superimposing an (ac) component. In other words, when 
the applied (dc) voltage is greater than the pull-in value, 
the system can be stabilized by adding an (ac) 
component with an appropriate amplitude and 
frequency. 

In order to shed light on the effects of the 
superimposed harmonic voltage, the numerical results 
related to point D is shown again in Figure 12, where 
sudden removal of the (ac) voltage renders the system 
unstable.  

 
 

 
Figure 8. Phase plane associated to point  ( 1, 0.5)A δ = =ε  
equivalent to ( )9.1349 ,  0.3806 ,  0.4dc acV volt V volt= = Ω =   

 
  

 
Figure 9. Phase plane associated to point  ( 2, 0.3)B δ = =ε  
equivalent to (  8.9425 ,  0.2333 ,  0.4)dc acV volt V volt= = Ω =   

4. 2. Parametric Excitations    When a harmonic (ac) 
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Figure 10. Phase plane associated to point  ( 0.2, 0.4)C δ = − =ε
equivalent to ( 9.3604 ,  0.2972 ,  0.4 )dc acV volt V volt= = Ω =  
 
 

 
Figure 11. Phase plane associated to point ( 0.27, 0.90)D δ = − =ε
equivalent to ( ) 9.3734 ,  0.6677 ,  0.4dc acV volt V volt= = Ω =  
 
 

 
Figure 12. Pull-in instability associated to the point 

( 0.27, 0.90)D δ = − =ε  when the (ac) voltage is suddenly 
removed at t=75 
 
 

It should be noted that the two classical parameters δ 
and   defining the stability margins or transition curves 
of the Mathieu type equation depend on the three 
parameters of the physical problem, Vdc, Vac and the 
dimensionless forcing frequency Ω. In order to estimate 
the boundaries of the stable regions in terms of explicit 
excitation characteristics, a nonlinear mapping is carried 
out from (δ- ε) plane to the (Vdc- Vac ) plane for given Ω.  
Figure 13 illustrates the stability regions in (Vdc- Vac) 

plane for different values of dimensionless forcing 
frequency. The figure gives descriptive results of 
stability conditions in terms of input voltages. The 
results show that imposing the (ac) component to an 
unstable system ( 9 .325d c s pV V> = ) can stabilize it, 
where the (ac) amplitude may have a relatively 
significant value. On the other hand, stabilization of the 
system at higher (dc) voltages requires higher (ac) 
amplitudes. Furthermore, amplitudes of the (ac) 
voltages increase with increasing the forcing frequency 
Ω . However, as shown by numerical simulations, 
despite employing the (ac) amplitudes which is not 
necessarily small, the amplitude of vibrations around the 
equilibrium position is significantly smaller with respect 
the distance between the mirror plate and the electrodes. 

 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 13. Stable (shaded) and unstable regions of the system 
in the plane of forcing parameters (Vdc- Vac), (a) Ω =0.2 (b) Ω 
=0.4 (c) Ω =0.6 6 (d) Ω =0.8  
 
 
 
5. CONCLUSION 

 
Electrostatic torsional micro actuators may be excited 
by a steady (dc) or harmonic (ac) voltage superimposed 
on the (dc) one or by an electrode or symmetrically 
double electrodes as well. In this paper, the pull-in 
conditions of a micro-mirror due to an applied steady 
(dc) voltage were investigated in both types of 
actuations. When the steady voltage is imposed 
suddenly, the basins of attractions associated with stable 
centers are observed. The results show that the system 
response varied qualitatively in single and double 
electrode actuations. Assuming double electrode 
actuation and simultaneously step-input (dc) and 
harmonic (ac) voltages, the Mathieu type parametric 
equation was extracted. The transition curves are plotted 
in the classical (δ- ε) plane and in the physical problem 
parameters (Vac- Vdc) plane for different forcing 
frequencies. The correctness of the stable and unstable 
regions was checked by numerical simulations. The 
results showed that imposing (ac) component on an 
unstable system (Vdc> Vsp) can stabilize it. On the other 
hand, stabilization of the system at higher (dc) voltages 
requires higher (ac) amplitudes. Furthermore, it was 
shown that the amplitude of the (ac) voltage increases 
with increasing the forcing frequency Ω.  
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  چکیده 

  
 

. آینه در شرایط تحریک پارامتریک مورد بررسی قرار گرفته استدر این مقاله پایداري استاتیکی و دینامیکی یک میکرو
استاتیک قرار صورت متقارن در بین دو الکترود از نوع تحریک الکتروه که ب استآینه سیستم مورد نظر شامل یک میکرو

 ،در ابتدا با اعمال ولتاژ ثابت. دشوزمان توسط یک ولتاژ ثابت و یک ولتاژ هارمونیک تحریک میصورت همه گرفته و ب
با  ،سپس. اندو ولتاژ ناپایداري، نقاط تعادل و نقاط دوشاخگی سیستم استخراج شده ،بررسیپایداري استاتیکی سیستم 

و پایداري سیستم باشد استخراج میفرم معادله ماتیو ه معادله حاکم بر سیستم که ب ،اضافه کردن ولتاژ متناوب به ولتاژ ثابت
هاي گذر منحنیبا تغییر پارامترهاي تحریک سیستم نظیر اندازه ولتاژ ثابت و دامنه ولتاژ تناوبی  ،در ادامه. است شده بررسی

صورت عددي نیز ه دست آمده از روش اغتشاشات براي نقاط خاص به نتایج ب. انددهشآینه مشخص و نواحی پایدار میکرو
دهند که با افزودن یک مولفه هارمونیک نشان مینتا یج . صورت موردي بررسی شده استه حل شده و پایداري سیستم ب

گذر و نواحی  يهامنحنی. سیستم را افزایش داده و به مقدار بالاتر از ناپایداري استاتیکی نیز رساندتوان ولتاژ ناپایداري می
    . .کار گرفته شونده ها بآینهتوانند در طراحی و ساخت میکرودست آمده میه پایدار ب

  

doi: 10.5829/idosi.ije.2014.27.03c.17
  

 
 



 

 


