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A B S T R A C T  

   

In this paper, considering an adhesively bonded composite single-lap joint, a novel approach is presented 
to predict the peel and shear stress distributions of the adhesive layer for an ASTM standard test sample. 
In the current method, the equilibrium equations are derived using the energy method and based on the 
Timoshenko’s beam theory. Two solution procedures then are discussed; one of them represents a solution 
approach based on the direct variational method allied with use of the Ritz approximation; while the 
second one is based on a linear estimating function. Unlike previous methods, in which the variation of 
stress through the thickness of adhesive is neglected or is assumed to be linear and they cannot be used to 
analyze the joints with thick adhesive layers; considering the effects of adhesive thickness makes it 
possible to employ present method to analyze the joints with thick adhesive layers as well as thin ones. 
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1. INTRODUCTION* 
 
Recently, use of fiber reinforced composites has been 
widely increased due to their special improved 
properties such as low weight, high relative strength 
(σu/ρ) and relative stiffness (E/ρ), and also good 
corrosion resistance (e.g. in glass fibers). As an 
instance, most of panels and shells used for construction 
of light planes in the aviation industries are made of 
fiber reinforced composites, and the adhesively bonded 
joints are used for joining them to the stiffeners, wing 
spars, and frames, which can also be made of composite 
materials [1, 2]. 
     Nowadays, use of mechanical joints such as pivots 
and bolts in composite structures has decreased because 
high stress concentrations exists near the holes, their 
adding weights, and also weak resistance to corrosion 
around the joining regions. Adhesive bonding is the 
most prevalent and appropriate joining method in 
construction of composite structures. 
     Adhesive bonding is a joining process which is 
widely used to connect at least two species in 
particularly composite structures to do some tasks they 
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cannot perform, solitarily. Nowadays, adhesively 
bonded joints are widely used in composite structures. 
Because of the large and mostly continuous joining 
surface on which the forces are distributed, the adhesive 
joints have lower stress concentration in comparison 
with mechanical ones. Moreover, their low costs, higher 
relative stiffness, better sealing capabilities, and some 
other advantages make them more efficient and 
operative to use.  
     One of the most important aspects of the analysis of 
adhesively bonded joints is to determine how the 
stresses are distributed along the bonding region and 
through the thickness of the adhesive layer and 
particularly around the free edges of the bonding region 
in which the failure may start. 
     Most of presented analytical methods assume the 
adhesive layer to be very thin, and so, variations of 
stresses through the thickness of the adhesive are 
ignored; while, experimental investigations have clearly 
shown that the load carrying capacity of the adhesive 
joints decreases by increasing the adhesive thickness [2-
4]. Therefore, designing the joint with this assumption 
may result in destruction and failure of joints with thick 
adhesive layers. 
     The first efforts about the analysis of adhesive joints 
were made by Volkersen [5] in 1938. He studied an 

  

 

mailto:mtahani@um.ac.ir


E. Selahi et al. / IJE TRANSACTIONS C: Aspects   Vol. 27, No. 3, (March 2014)  475-486                                         476 
 

adhesively bonded single-lap joint (SLJ) in which the 
adhesive layer was modeled as continuous shear 
springs. In his model, the effects of bending moment 
caused due to eccentricity of loading axes were ignored. 
Afterwards, Goland and Reissner [6] modified the 
Volkersen’s theory by introducing the adhesive layer as 
continuous shear and normal springs.  
     Most researches on the analysis of adhesive joints 
have been performed in 1973 by Hart-Smith [7-9] who 
presented some methods to investigate the single- and 
double-lap, stepped, and scarf adhesive joints with 
isotropic materials in which the adhesive layer is 
modeled as a linear elastic material. Adams and Peppiat 
[10] demonstrated that there is lateral shear stress 
through the thickness of the adhesive layer, which is 
often neglected because of its smaller value in 
comparison with longitudinal shear stress.  
     Bogdanovich and Kizhakkethara [11] simulated an 
adhesively bonded composite double-lap joint (DLJ) 
using three-dimensional finite element method. Rao and 
coworkers [12, 13] provided static analyses of 
adhesively bonded composite/hybrid single-lap joints 
using the finite element method based on the three-
dimensional theory of elasticity, and determined the 
transverse peel and shear stresses at the bonding lines 
and mid-surface of the adhesive. They found out that 
three-dimensional stress analysis approach is needed to 
analyze the composite joints. 
     Considering the relatively thin adhesive layer as 
simple tensile-compressive elastic springs, Krishna et 
al. [14] modeled an adhesively bonded composite 
single-lap joint using the finite element method. Selahi 
et al. [15-20] investigated some common and 
uncommon adhesively bonded composite joints, and 
studied the influences of geometrical dimensions and 
the spew fillets at boundaries of the joint. 
     Based on the Timoshenko’s beam theory for the 
transverse shear deformations, Chen and Qiao [21] 
presented a theoretical model of adhesive joints using 
the first-order shear deformation theory. They assumed 
the longitudinal normal stress varies linearly through the 
adhesive thickness, and determined the stresses at the 
bonding lines (interfacial stresses) as well as through 
thickness of adhesive layer. 
     Diaz et al. [22] employed an analytical layered 
(semi-layerwise) approach to model the classical 
double-lap joints. Their model, in contrast with several 
present methods, assumes the linear variation of 
transverse stresses through each physical layer, and in 
this manner, their model represents more accurate 
results compared with other simple theories. 
     Yousefsani and Tahani [23, 24] presented analytical 
solutions to interlaminar stresses through the adhesive 
thickness and along the bond-lines of adhesively bonded 
single- and double-lap composite joints using the full 
layerwise theory, and studied the edge effects on the 
peel, shear, and von Mises stress distributions. They 

also investigated the effects of adhesive thickness, 
different static loadings, and inhomogeneity of 
materials. 
     Da Silva et al. [25, 26] reported a review on several 
analytical methods for analysis of single- and double-
lap joints. They compared available methods as well as 
their advantages and limitations from several 
standpoints, such as the linearity/non-linearity of 
material properties and the analysis approach, two- or 
three-dimensionality of models, solution accuracy, 
solution time, material elasticity/plasticity, etc. 
     They found that most of present methods provide 
two-dimensional stress analysis approaches assuming 
plane stress or plane strain states. Moreover, the non-
linear material properties are not considered in most of 
present methods due to complexity of solution 
procedure. 
     In this paper, a new analytical method to stress 
analysis of adhesively bonded composite SLJs with 
fixed-free and pin-roll end conditions subjected to axial 
tensile load and bending moment are presented. The 
equilibrium equations are obtained using energy method 
based on Timoshenko’s beam theory and including the 
effects of adhesive thickness. The previous methods, in 
which the variation of interfacial stresses through the 
thickness of adhesive layer is neglected or is assumed to 
be linear, cannot accurately analyze the joints with thick 
adhesive layers. The present method can be easily 
employed to analyze these joints as well as joint with 
thin adhesive layers. 

 
 

2. MATHEMATICAL MODELING 
 
Each adhesive joint consists of two regions (i.e., the 
overlap region and outside of it) with different 
governing equations. It should be noted that, for the 
inside of overlap, where the joining is performed, the 
governing equations are more complex than those 
outside of it. In this research, adhesively bonded SLJ as 
shown in Figure 1 is chosen for study in order to reduce 
the number of governing equations. However, the 
relations presented here can be easily extended to other 
kinds of adhesive joints. 
 
2. 1. Modeling of the Overlap Region 
 
2. 1. 1. Adherends    Using Taylor’s series, each 
displacement component can be expanded as infinite 
sum of terms that are calculated from the values of that 
component’s derivatives at mid-plane of the plate. In the 
first-order shear deformation plate theory, the 
displacement components are assumed as: 
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Figure 1. Schematic view of a common adhesively bonded SLJ. 

 
 

 
Figure 2. Schematic view of the upper and lower adherends. 

 
 

In Equation (1), the functions  ψx and  ψy are the 
rotation functions, ψz(x,y) denotes thickness change of 
the plate, and z denotes the thickness coordinate. Also, 
u0(x,y), v0(x,y), and w0(x,y) represent the displacement 
components of the points on the middle surface of the 
plate in the x-, y-, and z-directions, respectively. 
     Moreover, u(x,y,z), v(x,y,z), and w(x,y,z) indicate the 
displacement components of any material point in the 
region in the x-, y-, and z-directions, respectively. 
     Here, the adherends are assumed to be made of 
orthotropic laminae with symmetric or asymmetric 
stacking sequences. Moreover, since the joint width is 
assumed to be small, the displacement field introduced 
in Equation (1) can be safely simplified based on 
Timoshenko’s beam theory.  By modeling the adherends 
as beams, it is almost safe to ignore the lateral 
displacement v(x,y,z). Furthermore, it is assumed that εz 
= 0, which means w(x,y,z) =w0(x,y). Therefore, the 
assumed displacements can be expressed as follows: 
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Using Equation (1), the force and moment resultants can 
be represented as follows: 
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where Aij, Bij, and Dij represent the extensional, 
coupling, and bending stiffnesses, respectively, as: 
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In Equation (3), ks is the shear correction factor 
introduced in the first-order shear deformation theories. 
Equation (3) can be solved to obtain derivatives of 
displacement components as: 
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Figure 2 illustrates both upper and lower adherends in 
the bonding region. In this figure, the subscript index a 
and superscript indices U and L are used to indicate the 
adhesive layer, and the upper and lower adherends, 
respectively (e.g., τa

U in Figure 2 represents the shear 
stress on the upper boundary of adhesive layer). Upon 
substitution of Equation (2) into the linear strain-
displacement relations of elasticity, the following 
nonzero strain components will be obtained: 
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Thus, the statement of variation of strain energy for the 
adherends may be expressed as follows: 
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where L is the length of the overlap. On the other hand, 
the expressions of virtual works done on the upper and 
lower adherends by external forces are written as below: 
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The summations of δU and δV represent the total 
potential energy which does not change in static 
equilibrium condition (i.e., δ(U+V)=0). Therefore, the 
equilibrium equations of the upper and lower adherends 
are obtained as: 
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2. 1. 2. Adhesive layer     In this paper, it is assumed 
that the normal stress along the x-direction in the 
isotropic adhesive layer can be neglected. Hence, there 

are only the peel and shear stresses, σa,z and τa,xz, 
existing in the adhesive layer. With the assumption of 
the plane-strain condition, the relation between the 
strains εa,x and εa,z is: 
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By indicating the displacement components of the 
adhesive layer in the x- and z-directions as ua(x,z) and 
wa(x,z), respectively, the peel and shear stresses can be 
written as below: 
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where E, G, and ν represent Young’s modulus, shear 
modulus, and Poisson’s ratio of the adhesive, 
respectively. Moreover, the adhesive thickness is set to 
be ta. As previously discussed, interfacial peel and shear 
stresses of the adhesive layer are introduced as: 
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The variation of the strain energy of the adhesive layer 
may be written as follows: 
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Next, using the principle of minimum total potential 
energy, the equilibrium equations are obtained as: 
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In what follows, two methods will be suggested and 
discussed to define ua(x,z) and wa(x,z). 
 
2. 1. 3. First Method      Here, the direct variational 
method is employed to obtain solutions for ua(x,z) and 
wa(x,z). Multiplying Equations (14) and (15) by the 
weight functions v1(z) and v2(z), respectively, and 
integrating the subsequent results yield: 
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Next, the Ritz approximate method is used to define wa 
and ua as follows: 
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where φj(z) and ψj(z)  are, respectively, the weight 
functions v1(z) and v2(z) defined in Equations (16) and 
(17). It is to be noted that these weighting functions 
must satisfy the essential boundary conditions. 
Therefore, Equations (16) and (17) will be rewritten as: 
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The matrix form of the equations above is: 
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Next, assuming [S1] and [S2] as the matrices of roots of 
Equation (21), the answers for f(x) and g(x) can be 
obtained as follows: 
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Now, by denoting the functions fj(x) and gj(x) for j = 1, 
2, …, M, the appropriate functions ( , )aw x z =  
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estimated, easily. Then, the peel and shear stresses σa,z 
and τa,xz can be defined using Equation (11) at each 
point of the adhesive layer (including σa

L, σa
U, τa

L, and 
τa

U). Now, the previously discussed parameters for the 
adherends may be written as follows: 
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(24) 

where the coefficients C1 to C12 may be obtained 
from the boundary conditions at the start or the 
end points of the inside of the overlap region. 
These boundary conditions include determination 
of ,Uuo

,U
xψ  ,Uw ,U

xN ,U
zQ ,U

yM ,L
xN ,L

zQ  and L
yM  

at x=0 and ,U
xN  ,U

zQ and U
yM  at x=L (see Figure 

1). It is to be noted that, ,L
xN ,L

zQ and L
yM  at x=0 

and ,U
xN ,U

zQ  and U
yM  at x=L must satisfy the 

free-end conditions; while, ,Uu o
 ,U

xψ ,Uw ,U
xN

,U
zQ  and U

yM  at x=0 are determined by solving 
the equilibrium equations of outside of overlap 
region of upper adherend (i.e., −L1< x < 0). 
 
 
2. 1. 4. Second Method      In this method, ua(x,z) 
and wa(x,z) may be assumed as appropriate estimating 
functions of z (in the thickness direction). These 
functions have two unknown coefficients that must be 
determined by considering the continuity of 
displacements at the interfacial surfaces of the 
adherends and adhesive. With this in mind, considering 
a linear estimating function for variations of ua(x,z) and 
wa(x,z) along the z-direction, it may be written: 

,       ;   
2 2

L
L L L L L a
a x a

thu u w w zψ= − = =o o  (25) 

,       ;   
2 2

U
U U U U U a
a x a

thu u w w zψ= + = = −o o

 
(26) 

Linear combination of Equations (25) and (26) through 
the adhesive thickness yields: 
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 (27) 

Thus, substituting Equations (27) into the stress 
functions of adhesive layer (i.e., Equations (11)) gives 
the statements of peel and shear stresses in the adhesive 
layer as: 
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 (28) 

As it can be seen, the peel and shear stresses, σa,z and 
τa,xz, are also functions of the identified parameters 
which are specified for the adherends. Therefore, the 
governing equations may be obtained in the form of 
{ } [ ]{ }/dX dx A X=  which is a system of 12 fully 
coupled differential equations (see Appendix). 
According to what was previously discussed about the 
boundary conditions, an analytical solution in the form 
of { } { } [ ]

0
( , )

x

A xX x z X e
=

= exists for this system. 
 
 
2. 2. Modeling the Outside of the Overlap    As 
Figure 1 illustrates, the outside of the overlap region 
includes only one of the adherends. Therefore, the 
equations of displacement and slope for the adherend 
may be written like those of the inside of the overlap 
zone (i.e., Equation (5)).Furthermore, the equilibrium 
equations are the same, the only difference is that the 
effects of external forces of the adhesive layer at the 
boundary regions are eliminated. Thus, the variation of 
the strain energy of the  adherend  may  be  written  like  
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Figure 3. Stress-strain diagram for Epoxy AY103 (Ciba 
Geigy). 
 
 
Equation (7). That is, 
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The virtual work done by external forces on the upper 
and lower adherends is zero (i.e., δV=0). Therefore, the 
equilibrium equations can be written as follows: 

: 0, : , : 0yx z
x z

dMdN dQu Q w
dx dx dx

δ δψ δ= = =o  (30) 

Equation (30) and the equations of displacement and 

slope of the adherend (i.e., Equation (5)) form a system 
of 6 differential equations as { } [ ]{ }/dX dx A X=  which has 

an analytical solution like { } { } [ ]
0

( ) A x
x xX x X e== . 

  
  

3. ANALYSIS OF A COMMON ADHESIVELY 
BONDED COMPOSITE SLJ 
 
At first, the mechanical behavior of a common 
adhesively bonded SLJ is modeled as what ASTM 
D1002 standard has suggested, and then the analytical 
solutions obtained by employing the formerly discussed 
second method will be presented. It should be noted 
that, both the adherends are made of Glass/Epoxy 
laminates, and the adhesive is chosen to be Epoxy 
AY103. Epoxies have several applications in 
aeronautical and marine industries. Moreover, they have 
better mechanical properties in comparison with other 
types of adhesives, yet they are more expensive in cost. 
The stress-strain curve of Epoxy AY103, as it can be 
seen in Figure 3, is approximately linear. 
     Referred to the ASTM D1002 standard, 
configuration and geometrical dimensions of this SLJ 
are shown in Figure 4. Each adherend is made of eight 
unidirectional Glass/Epoxy laminates with identical 
thickness of t = 0.2 mm (i.e. hL = hU = 1.6 mm) and 
fiber stacking sequence of (0/45/-45/90)s. Furthermore, 
the mechanical properties and thickness of adherends 
and adhesive layer are listed in Table 1.   

 
 

TABLE 1. Mechanical properties and thicknesses of adhesive layer and adherends 
 Adhesive Adherends 
Young’s modulus Ea = 2.8 GPa E1 = 36.8 GPa,  E2 = E3 = 8.27 GPa 
Shear modulus Ga =  Ea / 2(1+νa) G12 = G13 = 4.14 GPa,  G23 = 3 GPa 
Poisson’s ratio νa = 0.4 ν12 = ν13 = 0.26, ν23 = 0.38 
Thickness ta = 0.33 mm hL =  hU = 1.6mm 

 
 

 
Figure 4. Geometrical dimensions of the SLJ corresponding to the ASTM D1002 [27]. 

 
 

 
Figure 5. SLJ with fixed-free end conditions subjected to uniaxial tension. 
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4. RESULTS AND DISCUSSION 
 
In order to verify the credibility of results obtained 
within the theory presented in this paper, an adhesively 
bonded SLJ with fixed-free end conditions subjected to 
uniaxial tensile load is studied (see Figure 5). The 
results are compared with those obtained using the 
commercial finite element software ANSYS. Figure 6 
illustrates that there is a good agreement between results 
obtained using these two different methods, which 
verifies the credibility of the analytical method 
presented in this paper. Moreover, the results of current 
method including the peel stress distributions on the mid-
surface of the adhesive layers of thin- and thick-adhesive 
single-lap joints under uniaxial loading are verified by 
comparing with those presented in Ref. [25]. Figure 7 
illustrates a good agreement between the results for both 
single-lap joints. The interfacial stress distributions at the 
upper and lower interfaces and the mid-surface of the 
adhesive layer of the SLJ illustrated in Figure 5 are 
plotted in Figure 8. Although the shear stress 
distributions show some different values approaching 
the ends of the bonding region; the peel stress does not 
show significant change through the thickness. The 
maximum values of the shear stress distributions, as it is 
expected, occur near the fixed end of the SLJ. Away 
from the lower interface and approaching the upper one, 
the maximum shear stress increases about 45 percents. 
 
 

 
(a) 

 

 
(b) 

Figure 6. Comparison of interfacial stress distributions 
obtained by the present theory with those obtained by ANSYS 
software, (a) peel stress and (b) shear stress. 

 
(a) 

 

 
(b) 

Figure 7. Comparison of interfacial peel stress distributions 
obtained by the present theory with those presented in Ref. 
[25], (a) thin-adhesive joint and (b) thick-adhesive joint. 
 
 

 
(a) 

 

 
(b) 

Figure 8. Interfacial stress distributions through the length of 
the bonding region of the SLJ with fixed-free end conditions 
under uniaxial tensile load, (a) peel stress and (b) shear stress.  
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     This confirms the importance of using this analytical 
method instead of those methods which ignore the 
thickness effects. Another sample investigated in this 
paper is an adhesively bonded SLJ with pin-roll end 
conditions subjected to uniaxial tensile load (see Figure 
9). The distributions of the peel and shear stress through 
the adhesive length are shown in Figure 10. It is seen 
that the interfacial stress components experience great 
variations near the edges; while, their values decreases 
to zero going away from the ends of the bonding region. 
     Comparing the results presented in Figures 8 and 10 
expresses that the maximum values of the shear stresses 
for the SLJ with fixed-free end conditions are 
considerably more than those of SLJ with pin-roll end 
conditions. Moreover, the peel stress near the right end 

of the bonding region has negative values (or 
equivalently the compressive stress state) for fixed-free 
end condition; while it has positive values for pin-roll 
end condition. An adhesively bonded SLJ with fixed-
free end conditions subjected to bending moment is 
investigated as the final sample. The boundary and 
loading conditions are defined as illustrated in Figure 
11. The peel and shear stress distributions through the 
length of the bonding region are plotted in Figure 12. 
     This figure indicates that imposing a small bending 
moment on the right end of this SLJ can cause great 
values of stresses in the bonding region. Therefore, in 
designing the bonded joints, this kind of loading 
conditions must be prevented to occur as much as 
possible. 

 
 

 
Figure 9. SLJ with pin-roll end conditions subjected to uniaxial tension. 

 
 

  
(a) (b) 

Figure 10. Interfacial stress distributions through the length of the bonding region of the SLJ with pin-roll end conditions under 
uniaxial tensile load, (a) peel stress and (b) shear stress. 
 
 

 
Figure 11. SLJ with fixed-free end conditions subjected to bending moment. 

 

  
(a) (b) 

Figure 12. Interfacial stress distributions through the length of the bonding region of the SLJ with fixed-free end conditions under 
bending moment, (a) peel stress and (b) shear stress. 
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5. CONCLUSIONS 
 
This paper presents new analytical solutions to 
adhesively bonded composite single-lap joints with 
different boundary and loading conditions using the 
energy method and Timoshenko’s beam theory. Some 
important conclusions drawn within this paper are stated 
below: 
• The shear stress distribution experiences significant 

changes through the thickness of adhesive layer 
particularly near the end-points. But no considerable 
change of the peel stress can be seen through the 
adhesive thickness. 

• Neither the peel nor the shear stress distribution is 
symmetric along the bonding region due to 
asymmetrical geometry, loading, and boundary 
conditions. 

• Generally, the extreme values of both peel and shear 
stresses in the adhesive layer occur at one of end-
points of the bond-line. Therefore, these points are 
intensively susceptible regions to failure. 

• The loading and boundary conditions can 
significantly affect the interfacial stress distributions 
in adhesive layer. Thus, it is important to 
appropriately design the joint according to the 
applications in order to avoid its unforeseen and 
sudden failure. 
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APPENDIX 
 
System of 12 fully coupled differential equations: 
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  چکیده

  
 

در این مقاله، روشی جدید براي پیش بینی توزیع تنش هاي میان لایه اي عمودي و برشی در لایه چسب اتصالات چسبی 
در این روش، معادلات . ارائه می شود ASTMلبه معرفی گردیده و نتایج تحلیل براي یک نمونه استاندارد - کامپوزیتی تک

در ادامه دو روش حل معرفی می . استفاده از روش انرژي و بر اساس تئوري تیر تیموشنکو استخراج می گرددتعادل با 
که روش به دست می دهد؛ درحالی Ritzشود که یکی از آن ها پاسخ را بر اساس روش حساب تغییرات مستقیم و تقریب 

یشین، که در آن ها از تغییرات تنش در راستاي برخلاف روش هاي پ. دوم بر پایه یک تابع تخمینی خطی استوار است
ضخامت چسب صرفنظر شده و یا این تغییرات به صورت خطی درنظر گرفته می شود و از این رو، قادر به تحلیل 
اتصالات با لایه چسب ضخیم نیستند، روش حاضر با در نظر گرفتن اثرات ضخامت لایه چسب، امکان تحلیل اتصالات با 

 . و نازك را فراهم می آوردلایه چسب ضخیم 
  

doi: 10.5829/idosi.ije.2014.27.03c.16
  

 

 


