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In this paper, considering an adhesively bonded composite single-lap joint, a novel approach is presented
to predict the peel and shear stress distributions of the adhesive layer for an ASTM standard test sample.
In the current method, the equilibrium equations are derived using the energy method and based on the
Timoshenko’s beam theory. Two solution procedures then are discussed; one of them represents a solution
approach based on the direct variational method allied with use of the Ritz approximation; while the
second one is based on a linear estimating function. Unlike previous methods, in which the variation of
stress through the thickness of adhesive is neglected or is assumed to be linear and they cannot be used to
analyze the joints with thick adhesive layers; considering the effects of adhesive thickness makes it
possible to employ present method to analyze the joints with thick adhesive layers as well as thin ones.
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1. INTRODUCTION

Recently, use of fiber reinforced composites has been
widely increased due to their special improved
properties such as low weight, high relative strength
(o,/p) and relative stiffness (E/p), and also good
corrosion resistance (e.g. in glass fibers). As an
instance, most of panels and shells used for construction
of light planes in the aviation industries are made of
fiber reinforced composites, and the adhesively bonded
joints are used for joining them to the stiffeners, wing
spars, and frames, which can also be made of composite
materials [1, 2].

Nowadays, use of mechanical joints such as pivots
and bolts in composite structures has decreased because
high stress concentrations exists near the holes, their
adding weights, and also weak resistance to corrosion
around the joining regions. Adhesive bonding is the
most prevalent and appropriate joining method in
construction of composite structures.

Adhesive bonding is a joining process which is
widely used to connect at least two species in
particularly composite structures to do some tasks they
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cannot perform, solitarily. Nowadays, adhesively
bonded joints are widely used in composite structures.
Because of the large and mostly continuous joining
surface on which the forces are distributed, the adhesive
joints have lower stress concentration in comparison
with mechanical ones. Moreover, their low costs, higher
relative stiffness, better sealing capabilities, and some
other advantages make them more efficient and
operative to use.

One of the most important aspects of the analysis of
adhesively bonded joints is to determine how the
stresses are distributed along the bonding region and
through the thickness of the adhesive layer and
particularly around the free edges of the bonding region
in which the failure may start.

Most of presented analytical methods assume the
adhesive layer to be very thin, and so, variations of
stresses through the thickness of the adhesive are
ignored; while, experimental investigations have clearly
shown that the load carrying capacity of the adhesive
joints decreases by increasing the adhesive thickness [2-
4]. Therefore, designing the joint with this assumption
may result in destruction and failure of joints with thick
adhesive layers.

The first efforts about the analysis of adhesive joints
were made by Volkersen [5] in 1938. He studied an
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adhesively bonded single-lap joint (SLJ) in which the
adhesive layer was modeled as continuous shear
springs. In his model, the effects of bending moment
caused due to eccentricity of loading axes were ignored.
Afterwards, Goland and Reissner [6] modified the
Volkersen’s theory by introducing the adhesive layer as
continuous shear and normal springs.

Most researches on the analysis of adhesive joints
have been performed in 1973 by Hart-Smith [7-9] who
presented some methods to investigate the single- and
double-lap, stepped, and scarf adhesive joints with
isotropic materials in which the adhesive layer is
modeled as a linear elastic material. Adams and Peppiat
[10] demonstrated that there is lateral shear stress
through the thickness of the adhesive layer, which is
often neglected because of its smaller value in
comparison with longitudinal shear stress.

Bogdanovich and Kizhakkethara [11] simulated an
adhesively bonded composite double-lap joint (DLJ)
using three-dimensional finite element method. Rao and
coworkers [12, 13] provided static analyses of
adhesively bonded composite/hybrid single-lap joints
using the finite element method based on the three-
dimensional theory of elasticity, and determined the
transverse peel and shear stresses at the bonding lines
and mid-surface of the adhesive. They found out that
three-dimensional stress analysis approach is needed to
analyze the composite joints.

Considering the relatively thin adhesive layer as
simple tensile-compressive elastic springs, Krishna et
al. [14] modeled an adhesively bonded composite
single-lap joint using the finite element method. Selahi
et al. [15-20] investigated some common and
uncommon adhesively bonded composite joints, and
studied the influences of geometrical dimensions and
the spew fillets at boundaries of the joint.

Based on the Timoshenko’s beam theory for the
transverse shear deformations, Chen and Qiao [21]
presented a theoretical model of adhesive joints using
the first-order shear deformation theory. They assumed
the longitudinal normal stress varies linearly through the
adhesive thickness, and determined the stresses at the
bonding lines (interfacial stresses) as well as through
thickness of adhesive layer.

Diaz et al. [22] employed an analytical layered
(semi-layerwise) approach to model the classical
double-lap joints. Their model, in contrast with several
present methods, assumes the linear variation of
transverse stresses through each physical layer, and in
this manner, their model represents more accurate
results compared with other simple theories.

Yousefsani and Tahani [23, 24] presented analytical
solutions to interlaminar stresses through the adhesive
thickness and along the bond-lines of adhesively bonded
single- and double-lap composite joints using the full
layerwise theory, and studied the edge effects on the
peel, shear, and von Mises stress distributions. They

also investigated the effects of adhesive thickness,
different static loadings, and inhomogeneity of
materials.

Da Silva et al. [25, 26] reported a review on several
analytical methods for analysis of single- and double-
lap joints. They compared available methods as well as
their advantages and limitations from several
standpoints, such as the linearity/non-linearity of
material properties and the analysis approach, two- or
three-dimensionality of models, solution accuracy,
solution time, material elasticity/plasticity, etc.

They found that most of present methods provide
two-dimensional stress analysis approaches assuming
plane stress or plane strain states. Moreover, the non-
linear material properties are not considered in most of
present methods due to complexity of solution
procedure.

In this paper, a new analytical method to stress
analysis of adhesively bonded composite SLJs with
fixed-free and pin-roll end conditions subjected to axial
tensile load and bending moment are presented. The
equilibrium equations are obtained using energy method
based on Timoshenko’s beam theory and including the
effects of adhesive thickness. The previous methods, in
which the variation of interfacial stresses through the
thickness of adhesive layer is neglected or is assumed to
be linear, cannot accurately analyze the joints with thick
adhesive layers. The present method can be easily
employed to analyze these joints as well as joint with
thin adhesive layers.

2. MATHEMATICAL MODELING

Each adhesive joint consists of two regions (i.e., the
overlap region and outside of it) with different
governing equations. It should be noted that, for the
inside of overlap, where the joining is performed, the
governing equations are more complex than those
outside of it. In this research, adhesively bonded SLJ as
shown in Figure 1 is chosen for study in order to reduce
the number of governing equations. However, the
relations presented here can be easily extended to other
kinds of adhesive joints.

2. 1. Modeling of the Overlap Region

2. 1. 1. Adherends Using Taylor’s series, each
displacement component can be expanded as infinite
sum of terms that are calculated from the values of that
component’s derivatives at mid-plane of the plate. In the
first-order shear deformation plate theory, the
displacement components are assumed as:

u(Xa.Y’Z) = uO(X’ Y) + Zl//x(xa Y)
X 5,2) = (%, )+ 2y (X, ) (1)
WX, ¥, 2) = wy(X, ¥) + 2y (X, y)
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Figure 1. Schematic view of a common adhesively bonded SLJ.
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Figure 2. Schematic view of the upper and lower adherends.

In Equation (1), the functions yy and v, are the
rotation functions, y/x,y) denotes thickness change of
the plate, and z denotes the thickness coordinate. Also,
uy(x,y), w(x,y), and wp(x,y) represent the displacement
components of the points on the middle surface of the
plate in the x-, y~, and zdirections, respectively.

Moreover, u(x,y,2), Wx,y,2), and w(x,y,2) indicate the
displacement components of any material point in the
region in the x-, y~, and #directions, respectively.

Here, the adherends are assumed to be made of
orthotropic laminae with symmetric or asymmetric
stacking sequences. Moreover, since the joint width is
assumed to be small, the displacement field introduced
in Equation (1) can be safely simplified based on
Timoshenko’s beam theory. By modeling the adherends
as beams, it is almost safe to ignore the lateral
displacement W(x,y,2). Furthermore, it is assumed that &,
= 0, which means w(x,y,2) =wy(x,y). Therefore, the
assumed displacements can be expressed as follows:

u=1uy(x)+ 2y (x)
w= wp(x)

2

Using Equation (1), the force and moment resultants can
be represented as follows:

o, Ay (%) dy (x)
Ny =4, P B dx
d d
My =B ug}((x) +Dyy l/;ix) (3)

Q,- ksAss(wx<x)+Mj
dx

where Aj, Bj and Dj represent the extensional,
coupling, and bending stiffnesses, respectively, as:

Aj= zaij(k)(zk = Z1)

k=1

I =
By =5; (4 -4 @)

I~
D; =§;ka>(zi— %)

In Equation (3), k; is the shear correction factor
introduced in the first-order shear deformation theories.
Equation (3) can be solved to obtain derivatives of
displacement components as:

_ D Ny-BiM,

Y AD,-B,
_BiuN,—AM,

Y Bi-A D,

1
W’X_ksAss

Figure 2 illustrates both upper and lower adherends in
the bonding region. In this figure, the subscript index a
and superscript indices U and L are used to indicate the
adhesive layer, and the upper and lower adherends,
respectively (e.g., 7,” in Figure 2 represents the shear
stress on the upper boundary of adhesive layer). Upon
substitution of Equation (2) into the linear strain-
displacement relations of elasticity, the following
nonzero strain components will be obtained:

)

Qz_l//x
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o ou_du  dy,
oex dx dx 6)
LA 4

=— +
Vi 0z 0Ox Vx dx

Thus, the statement of variation of strain energy for the
adherends may be expressed as follows:

6U= [o825dv
\%4
L
- I I (04507 + 707 ) dAdx
0A

L
dou,  doy déw,
= J.J.{GXX(K + ZTXJ + TXZ(5WX+K)}dAdX
0A

(N
dow,

L
déu, déy
:J.{NXK-FMY dXX+QZ(6WX+K)}dX

L
dN, dM
:J.{— dxX5u° —Ky&y,ﬁ Qv
0

_%m} dx+[ NSu, + Mydy, + Q5 w]}
where L is the length of the overlap. On the other hand,

the expressions of virtual works done on the upper and
lower adherends by external forces are written as below:

L U
sV —J'(Ta%uff ro,Usw +%13U6l//,l(]]dx
0
L hL
SV = J'(Ta%uf ro,lsw —TTQL&,/,%]dx
0

The summations of SU and SV represent the total
potential energy which does not change in static
equilibrium condition (i.e., 8(U+V)=0). Therefore, the
equilibrium equations of the upper and lower adherends
are obtained as:

- a

U
su¥ :—de‘J =—Y, 5up:—d§)z =—cV
X

d
amy¥ U
51,1/5 — = Qg —h—ﬂ:y
dx 2 )
L L
1 L,L:—dN" =13L, WL:dQZ L
dx dx
amt e
swl ¥ L_h” g
WX dX Qz 2 Ta

2. 1. 2. Adhesive layer In this paper, it is assumed
that the normal stress along the x-direction in the
isotropic adhesive layer can be neglected. Hence, there

are only the peel and shear stresses, o,, and 7,,,
existing in the adhesive layer. With the assumption of
the plane-strain condition, the relation between the
strains ¢, yand &, , is:

Cax= "7 _€az (10)

By indicating the displacement components of the
adhesive layer in the x- and #directions as u,(x,z) and
wa(x,2), respectively, the peel and shear stresses can be
written as below:

E

-_— +(1—-

Ua,z (]+v)(1_2v)[vga,x ( V)ga,z:l
E __E ow,
LT e (D
ou, Ow,

=G —4&+——4

Faz ( 0z  0x j

where E, G, and v represent Young’s modulus, shear
modulus, and Poisson’s ratio of the adhesive,
respectively. Moreover, the adhesive thickness is set to
be t,. As previously discussed, interfacial peel and shear
stresses of the adhesive layer are introduced as:

U _ L _
Ta = Taxz,._t> Ta = Taxz Z=%a
2
. L 1)
Ca = 763*Z|z=—t—a’ Ca = 7Ga’z|z=ti
2 2

The variation of the strain energy of the adhesive layer
may be written as follows:

8U = [o85;av
14

L
= II(Ua,zaga,z + Ta,x257/a,xz)dAdX
0A

L
:II Lawﬁaa_wa_'.G(awa +%j
" 1-v?% 0z oz ox 0z

3] _p o2 olw
— — Wa _ 4 13)
= ow, — G( 5w, (

Ij{l—vz 07 ? ox? ?

0 -t

2

2 2 2

+6 Ya 54 0“u 0

u
Low, + 6221 5ua):| dzdx

L 2 L
+66u‘7(‘5ua:|2 dx + I[aawa5m1+aaua5wa:| dz
z . X z

[

Next, using the principle of minimum total potential
energy, the equilibrium equations are obtained as:
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ow JOu
ou : 14 2= (14)
* 0x0z oy
2 2 2 15
sw,: —E_0TWa 60, 0 (15)
1-v?2 822 ox? 0z0x

In what follows, two methods will be suggested and
discussed to define u,(x,2) and w;(x,2).

2. 1. 3. First Method Here, the direct variational
method is employed to obtain solutions for u,(x,2) and
wy(x,2). Multiplying Equations (14) and (15) by the
weight functions vi(2) and w(2), respectively, and
integrating the subsequent results yield:

~

o

o
[
—u]

2 2 2
Y E 8W3+G(3W3+Gaua dz
1-v?* 072 ox? dz0x

~

&

)

<

I
o—,.\,‘

2
-E 0w, 0y + Gy 0~ w, _gov ou, dz (16)
1-v? 0z 0z ox> 0z ox

~

o

[N]

t

a

[ wE ow, G 8113}7

1-v2 0z ' ox |-t
2
L
2 2 2
O:Jvz 6w3+6u3 dz
4 0x0z 9z
=
] (17)
2 L
=J LWy VO | ] Ve, O 2
0z O0x 0z 0z 0z |t.
. 2
2

Next, the Ritz approximate method is used to define w,
and u, as follows:

M N
W(62)= D (06,2, u(x9= D g (2) (18)

J=1 J=1

where ¢(2) and y{(2) are, respectively, the weight
functions vi(2) and w(2) defined in Equations (16) and
(17). It is to be noted that these weighting functions
must satisfy the essential boundary conditions.
Therefore, Equations (16) and (17) will be rewritten as:

t-’l
2 M
- . 7]
.[ E 6(/), f. (P] +G(p
. ]—\/2 62 J 0z
2

M ~2

o°f; op; 02
iza Zq)fﬁaz Zax Vi &
=

(19)

2 M N

oy N\ 9f; oy ; oy

e i —p ., ——1L : d
J.|: 6226xw1 6226’] 0z z

(20)

The matrix form of the equationsz above is:
o il el )

R o

where

(22)

Next, assuming [S;] and [S;] as the matrices of roots of
Equation (21), the answers for f{x) and g(x) can be
obtained as follows:

{ f(X)} [51 Jx
, € (23)
{g(x)}

Now, by denoting the functions f{x) and g{(x) for j = 1,

2, ..., M, the appropriate functions w,(x,2)=
M N

D (002 and u(x2)= gy (s may be
J=1 J=l

estimated, easily. Then, the peel and shear stresses o, ,

and 7,,, can be defined using Equation (11) at each

point of the adhesive layer (including ok, oY, .k, and

7,Y). Now, the previously discussed parameters for the

adherends may be written as follows:
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where the coefficients C; to C;, may be obtained
from the boundary conditions at the start or the
end points of the inside of the overlap region.
These boundary conditions include determination
of /.y, w', N/, Q/, M/, N}, @}, and M!
at x=0 and N, @V, and M at x=L (see Figure
1). It is to be noted that, N, Qf,and M| at x=0
and NY, QY, and M at x=L must satisfy the
free-end conditions; while, u”, Y w', NY,
QY, and M;’ at x=0 are determined by solving

the equilibrium equations of outside of overlap
region of upper adherend (i.e., —L1< x < 0).

2. 1. 4. Second Method In this method, u,(x,2)
and w,(x,2) may be assumed as appropriate estimating
functions of z (in the thickness direction). These
functions have two unknown coefficients that must be
determined by considering the continuity of
displacements at the interfacial surfaces of the
adherends and adhesive. With this in mind, considering
a linear estimating function for variations of u,(x,2) and
wu(x,2) along the zdirection, it may be written:

AL

AR (25)
2 2

v_v. by t

ua =u, +TWX’ "V;L;]:"%U 5 Z:_?a (26)

Linear combination of Equations (25) and (26) through
the adhesive thickness yields:

1 nY nt
u,(x,2) —t—(—uy ——l//g + uoL —71//,%)2

2 2
S N A
+- )+ —y Y un —— 27
z(u SV Uy 27
—wewt  wWawt
w,(x,2) = . z+ 3

a

Thus, substituting Equations (27) into the stress
functions of adhesive layer (i.e., Equations (11)) gives
the statements of peel and shear stresses in the adhesive
layer as:

E ow, ECW +w)

o =
Y1v? oz (1-v?)
ou, ow,

T, ,.,=G —2+—2

X2 ( 0z 8xj

28)
Iy Wy bty (
=G| —|-u ——yy +tu, ——
L]( > Vi > Vi

z 1 aug z 1 ang
+|-—+= 4| == |—
t, 2) 0x t, 2) 0x
As it can be seen, the peel and shear stresses, o, , and
T.x» are also functions of the identified parameters
which are specified for the adherends. Therefore, the
governing equations may be obtained in the form of

{dX/dX}=[A]{X} which is a system of 12 fully

coupled differential equations (see Appendix).
According to what was previously discussed about the
boundary conditions, an analytical solution in the form

of {X(x,2)} = {XFO}e[A]Xexists for this system.

2. 2. Modeling the Outside of the Overlap  As
Figure 1 illustrates, the outside of the overlap region
includes only one of the adherends. Therefore, the
equations of displacement and slope for the adherend
may be written like those of the inside of the overlap
zone (i.e., Equation (5)).Furthermore, the equilibrium
equations are the same, the only difference is that the
effects of external forces of the adhesive layer at the
boundary regions are eliminated. Thus, the variation of
the strain energy of the adherend may be written like
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Figure 3. Stress-strain diagram for Epoxy AY103 (Ciba
Geigy).

Equation (7). That is,

L
oU = j.j.(oxx&xx +T,,0¢ ,) dAdx
0A

L

dM

:J. _dNX5uO__y§wX+QZEWX (29)
dx dx

0

d L
_%5W}dx+|:NX5HO + M3y + Q8 W] =0

The virtual work done by external forces on the upper
and lower adherends is zero (i.e., 6V=0). Therefore, the
equilibrium equations can be written as follows:

ou, : (30)

dN, dM, do
=0, Sy,: =Q, ow: —£=0
dx Vx dx 2 v dx

Equation (30) and the equations of displacement and

slope of the adherend (i.e., Equation (5)) form a system
of 6 differential equations as {dX/dx}<[ A]{ X} which has

an analytical solution like {X( x)}:{ X } oAl

X=Xy

3. ANALYSIS OF A COMMON ADHESIVELY
BONDED COMPOSITE SLJ

At first, the mechanical behavior of a common
adhesively bonded SLJ is modeled as what ASTM
D1002 standard has suggested, and then the analytical
solutions obtained by employing the formerly discussed
second method will be presented. It should be noted
that, both the adherends are made of Glass/Epoxy
laminates, and the adhesive is chosen to be Epoxy
AY103. Epoxies have several applications in
aeronautical and marine industries. Moreover, they have
better mechanical properties in comparison with other
types of adhesives, yet they are more expensive in cost.
The stress-strain curve of Epoxy AY103, as it can be
seen in Figure 3, is approximately linear.

Referred to the ASTM DI1002 standard,
configuration and geometrical dimensions of this SLJ
are shown in Figure 4. Each adherend is made of eight
unidirectional Glass/Epoxy laminates with identical
thickness of t = 0.2 mm (i.e. h* = hY = 1.6 mm) and
fiber stacking sequence of (0/45/-45/90),. Furthermore,
the mechanical properties and thickness of adherends
and adhesive layer are listed in Table 1.

TABLE 1. Mechanical properties and thicknesses of adhesive layer and adherends

Adhesive Adherends
Young’s modulus E,=2.8 GPa E,=36.8 GPa, E,=E;=38.27 GPa
Shear modulus G,=E,/2(1+v,) G2 = Gi3=4.14 GPa, Gy =3 GPa
Poisson’s ratio v, =04 Vi = w3 =0.26, v»3=0.38
Thickness t,=0.33 mm W =hY=1.6mm
63.5 | | 63.5 |

S

: W -

Dimensions in mm

0

Figure 4. Geometrical dimensions of the SLJ corresponding to the ASTM D1002 [27].

RANANRNAY

®) W

(@) —=N_ = 10000 N /m

'z

Figure 5. SLJ with fixed-free end conditions subjected to uniaxial tension.
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4. RESULTS AND DISCUSSION

In order to verify the credibility of results obtained
within the theory presented in this paper, an adhesively
bonded SLJ with fixed-free end conditions subjected to
uniaxial tensile load is studied (see Figure 5). The
results are compared with those obtained using the
commercial finite element software ANSYS. Figure 6
illustrates that there is a good agreement between results
obtained using these two different methods, which
verifies the credibility of the analytical method
presented in this paper. Moreover, the results of current
method including the peel stress distributions on the mid-
surface of the adhesive layers of thin- and thick-adhesive
single-lap joints under uniaxial loading are verified by
comparing with those presented in Ref. [25]. Figure 7
illustrates a good agreement between the results for both
single-lap joints. The interfacial stress distributions at the
upper and lower interfaces and the mid-surface of the
adhesive layer of the SLJ illustrated in Figure 5 are
plotted in Figure 8. Although the shear stress
distributions show some different values approaching
the ends of the bonding region; the peel stress does not
show significant change through the thickness. The
maximum values of the shear stress distributions, as it is
expected, occur near the fixed end of the SLJ. Away
from the lower interface and approaching the upper one,
the maximum shear stress increases about 45 percents.

12 Present Theory
10 - = - FEM
—
I3
£ 8
=
@ 6
i
@ 4 |0
- A
£ 2
0 _._M
W
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- - —FEM
=
(= 8
=
=z
2
S 6
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=
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o 0.2 0.4 0.6 0.8 1

Normalized distance through the adhesive length
(b)
Figure 6. Comparison of interfacial stress distributions
obtained by the present theory with those obtained by ANSYS
software, (a) peel stress and (b) shear stress.
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Figure 7. Comparison of interfacial peel stress distributions
obtained by the present theory with those presented in Ref.
[25], (a) thin-adhesive joint and (b) thick-adhesive joint.
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under uniaxial tensile load, (a) peel stress and (b) shear stress.
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This confirms the importance of using this analytical
method instead of those methods which ignore the
thickness effects. Another sample investigated in this
paper is an adhesively bonded SLJ with pin-roll end
conditions subjected to uniaxial tensile load (see Figure
9). The distributions of the peel and shear stress through
the adhesive length are shown in Figure 10. It is seen
that the interfacial stress components experience great
variations near the edges; while, their values decreases
to zero going away from the ends of the bonding region.

Comparing the results presented in Figures 8 and 10
expresses that the maximum values of the shear stresses
for the SLJ with fixed-free end conditions are
considerably more than those of SLJ with pin-roll end
conditions. Moreover, the peel stress near the right end

© N

of the bonding region has negative values (or
equivalently the compressive stress state) for fixed-free
end condition; while it has positive values for pin-roll
end condition. An adhesively bonded SLJ with fixed-
free end conditions subjected to bending moment is
investigated as the final sample. The boundary and
loading conditions are defined as illustrated in Figure
11. The peel and shear stress distributions through the
length of the bonding region are plotted in Figure 12.

This figure indicates that imposing a small bending
moment on the right end of this SLJ can cause great
values of stresses in the bonding region. Therefore, in
designing the bonded joints, this kind of loading
conditions must be prevented to occur as much as
possible.

s

'z

0 = N, = 10000 N/m

Figure 9. SLJ with pin-roll end conditions subjected to uniaxial tension.
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Figure 10. Interfacial stress distributions through the length of the bonding region of the SLJ with pin-roll end conditions under

uniaxial tensile load, (a) peel stress and (b) shear stress.

(@) X

AP

M=100 N.m

z

® | )

Figure 11. SLJ with fixed-free end conditions subjected to bending moment.
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Figure 12. Interfacial stress distributions through the length of the bonding region of the SLJ with fixed-free end conditions under

bending moment, (a) peel stress and (b) shear stress.



E. Selahi et al. / IJE TRANSACTIONS C: Aspects

5. CONCLUSIONS

This paper presents new analytical

solutions to

adhesively bonded composite single-lap joints with
different boundary and loading conditions using the
energy method and Timoshenko’s beam theory. Some
important conclusions drawn within this paper are stated
below:

The shear stress distribution experiences significant
changes through the thickness of adhesive layer
particularly near the end-points. But no considerable
change of the peel stress can be seen through the
adhesive thickness.

Neither the peel nor the shear stress distribution is
symmetric along the bonding region due to
asymmetrical geometry, loading, and boundary
conditions.

Generally, the extreme values of both peel and shear
stresses in the adhesive layer occur at one of end-
points of the bond-line. Therefore, these points are
intensively susceptible regions to failure.

The loading and boundary conditions can
significantly affect the interfacial stress distributions
in adhesive layer. Thus, it is important to
appropriately design the joint according to the
applications in order to avoid its unforeseen and
sudden failure.
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APPENDIX

System of 12 fully coupled differential equations:
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