
IJE TRANSACTIONS C: Aspects   Vol. 26, No. 9, (September  2013)   1043-1058 
 

 
 

International Journal of Engineering 
 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 
Comparing Three Proposed Meta-heuristics to Solve a New p-hub Location-
allocation Problem 
 
A. Ghodratnamaa, R. Tavakkoli-Moghaddam*b, A. Babolic 
 
a Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Karaj, Iran 
b Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran,Iran 
c INSA-Lyon, DISP Laboratory, 69621 Villeurbanne Cedex, France  

 

 

P A P E R  I N F O   
 

 

Paper history: 
Received 28 March 2013  
Received in revised form 02 May 2013 
Accepted 16 May 2013 

 
 

Keywords:  
Hub Location-allocation 
Vehicle Capacity 
Plant Production Capacity 
Simulated Annealing 
Genetic Algorithm 
 Particle Swarm Optimization 
 
 

A B S T R A C T  
   

This paper presents a sophisticated mathematical model, in which the location of hubs is 
fixed and their capacity is determined based on facilities and factories allocated to it. In 
order to feed the client's nodes, different types of vehicles of different capacities are 
considered, in which the clients are allocated to hubs, and types and numbers of vehicles are 
allocated to the factory's facilities. To come up with solutions, we propose to use three meta-
heuristic algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO), 
and simulated annealing (SA). The efficiency and computational results of these algorithms 
are compared with one another. 
 
 
 
 
 
 

doi: 10.5829/idosi.ije.2013.26.09c.11 

 

 
1. INTRODUCTION1 

 
In recent years, location and allocation issue has 
attracted the interests of many researchers, specifically, 
those who have studied the existing facts and constraints 
pertaining to transport problems and services provided 
by potential hub centers to other client nodes. There are 
different types of hub location problems. In a p-hub 
covering problem, the hub delivers services within a 
certain radius. The p-hub median problem minimizes 
the transport costs from the point of origin to the 
destination through the hub nodes. In fixed cost hub 
problem, minimizing total cost of installation hubs in 
such a way that operational constraints are to be 
satisfied, is taken into account, and the p-hub center 
problem minimizes the maximum cost or time in the 
communication lines. 

This paper deals with a p-hub median serving a 
single allocation, which means that a client can be 
linked with only one hub. New characteristics, such as 
different capacities for hubs feeding to their clients by 
                                                        
1 * Corresponding Author Email: tavakoli@ut.ac.ir (R. Tavakkoli-
Moghaddam) 

their plants and dedicated vehicles, are directly 
dependent upon the number and kind of established 
factories. To transport commodities from one feeder 
node to client nodes, different vehicles of different 
capacities are used. Thus, the types and number of 
facilities at different hubs which meet the minimum 
demands are also considered. We furthermore look at 
the type and number of vehicles used to transport 
commodities from the factories located at the hubs.  
Note that we define the total number and location of hub 
nodes as serving points, to manufacture raw materials 
originated from one specific node and thereafter sending 
the value added products to client nodes or customers. 

The concerned objective function has three parts. 
The first part tries to minimize the transport costs from 
the origin to the destination, through two mediator hubs, 
or only through one hub in special cases. Part two 
minimizes the set-up costs of different factories at 
various hubs, and part three attempts to minimize the 
total costs of purchasing different vehicles for the 
transfer of the goods from the facilities to other nodes. 

Taking into account the above points, and because of 
the NP-hard nature of the primary problems of the p-
hub median, three meta-heuristic algorithms, namely, 
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genetic, particle swarm, and simulated annealing are 
used to solve problems. In order to compare results of 
the algorithm applications, we use the branch and bound 
method as provided in the Lingo 8 software. 

The remainder of this paper is organized as follows: 
the literature review is provided in section 2. The 
proposed p-hub location allocation mathematical model 
is elaborated in section 3. The proposed three meta-
heuristic algorithms are discussed in section 4. 
Computational experiments and respective results are 
reported in section 5. Finally, the concluding remarks 
are given in section 6. 

 
 

 
Figure 1. Hubs and their plants serving client nodes 

 
 

2. LITERATURE REVIEW 
 

The literature on hub location covers a wide variety of 
models where the most important goal is to minimize 
some globalizing function of the operation costs. There 
are many alternatives: non-hub nodes may be allocated 
to only one single-hub-allocation [1-3] or to several 
multiple-hubs; allocation of the use of straight links 
between non-hub nodes may be permitted; the location 
of some (or all) hubs may be predetermined; hub nodes 
may be permitted to be located anywhere in a 
continuous region-continuous hub location problem [4] 
or may be chosen from a discrete set of place-discrete 
hub location problems; there may exist a limit in fixing 
the number of nodes that will be chosen as the p-hub 
problem [5] or a predetermined cost for establishing a 
hub may be taken into account; instead of choosing 
nodes to locate hubs, we can select the arcs connecting 
the non-hub nodes as hub arc location problem [6, 7].  

Capacities in hub location problems may have 
different aspects: there can be capacities on the hub 
nodes (restraining the volume of flow into the hub [8,9] 
or for the total flow through the hub) as well as on the 
flows between hubs or between hubs and non-hubs; on 
the other hand, a minimum flow amount required to 
allow for service on the link between a non-hub node 
and a hub may be present [10]. The first paper on 
capacitated single-allocation hub location problems was 
presented by Drezner and Hamacher [11]. Also, further 
modifications on his model were accomplished by 

Labbe et al. [12], who described the capacity of the flow 
that passed through each hub.  

Only operation costs related to the flow were 
investigated, namely, a cost for the flow transported 
between hubs (transfer cost) and a cost for the flow 
transported between non-hubs and hubs (the collection 
and distribution costs coincide). Yaman and Carello 
considered a hub location problem with modular link 
capacities in which there was also a limit on the entire 
flow going through a hub [13]. Only establishment costs 
were taken into account in this problem, namely, 
establishment costs for the hubs and for the relations. 
Exact and heuristic methods were proposed, namely, a 
branch-and-cut method and a tabu search procedure. 
Willoughby and Uyeno  developed a mixed integer 
programming location/allocation model that splited the 
bus assignments when capacity limitations were reached 
at a transit center [14]. To solve their problem, they 
proposed a heuristic procedure to assign buses to transit 
centers (garages) in such a way that all the buses on a 
particular route were assigned to a single transit center. 

Costa et al. presented a bi-objective approach [15], 
where the model proposed by Ernst and 
Krishnamoorthy was enlarged with the inclusion of a 
second objective function to be minimized, that 
quantified the time to process the flow entering the hubs 
[9]. Contreras et al. [16] proposed a similar formulation 
for the same problem studied by Ernst and 
Krishnamoorthy [9] and used this formulation for 
developing a Lagrangean relaxation-based procedure. 
Although most papers have been devoted to 
minimization of the overall transportation cost (sum), in 
some cases other objectives have also been taken into 
account. Many different cost functions have moreover 
been studied, for example, flow-dependent cost 
functions [17], and latest arrival time functions [18]. For 
further study see the surveys by Alumnar and Kara and 
Campbell et al. and the references therein [19, 20]. 

To solve the p-hub location allocation problems, 
many methods have been developed. The first approach 
by O'Kelly is based on an extensive search for all 
possible choices of p-hub locations [3]. In the first 
allocation method HEUR1, every location is allocated to 
the nearest hub, while the second HEUR2 allocates 
every non-hub to the nearest or the second nearest hub. 
An exchange heuristic based on local improvement was 
developed by Klincewicz [21], who made an allowance 
for both the single and double exchange methods. His 
comparison elucidated the fact that these heuristics are 
superior to the heuristics proposed by O’Kelly [3]. 
Klincewicz offered a tabu search and a greedy 
randomized adaptive search procedure (GRASP)  [22]. 
He considered the traffic among the hubs as well as the 
distance criteria and also proposed an associated 
clustering heuristic. A cluster represents one hub with 
all locations allocated to it. A simulated annealing (SA) 
method is described by Ernst and Krishnamoorthy [1]. It 
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begins with a randomly generated solution and uses a 
simple geometric cooling rule with two types of 
transitions to generate neighborhood solutions. Different 
from former studies on continuous BAP, a capable 
method is proposed to deal with the problem to 
recognize the possible locations for next vessel in the 
Time-space chart. Then two versions of GRASP are 
proposed to search for near optimal solutions. 

In this paper, we consider the installation cost of 
facilities in hubs and the purchasing of various vehicles 
that have the specific capacity to transfer goods between 
facilities and clients. It is worth noting that there is no 
research on these two features. We also consider the 
costs of transporting the produced goods, taking 
economies of scale into account. We thus assume the 
existence of a structure that has often been considered in 
the literatures [9, 15, 23, 24]. 

Costa et al. presented a different approach to the 
capacitated hub location problem [15]. In their paper 
instead of using capacity constraints to limit the amount 
of flow that can be received by the hubs, they introduce 
a second objective function into the model (besides the 
traditional cost minimizing function), in order to 
minimize the time to process the flow entering the hubs. 
Correia et al. considered an extension of the capacitated 
single-allocation hub location problem, in which not 
only the capacity of the hubs was part of the decision 
making process, but balancing requirements was also 
imposed on the network [25]. The decisions to be made 
included: i) the selection of the hubs, ii) the allocation 
of the spoke nodes to the hubs, iii) the flow distribution 
through the sub network defined by the hubs, and iv) the 
capacity level at which each hub should operate.  

Gelareh and Nickel proposed a 4-index formulation 
for the uncapacitated multiple allocation hub location 
problem tailored for urban transport and liner shipping 
network design [26]. Additionally, a very efficient 
greedy heuristic, proven to be efficient of obtaining high 
quality solutions was proposed. 

Rodriguez-Martin and Salazar-Gonzalez addressed a 
problem consisting of determining the routes and the 
hubs to be used in order to send, at a minimum cost, a 
set of commodities from sources to destinations in a 
given capacitated network [27]. The capacities and costs 
of the arcs and hubs were specified, and the arcs linking 
the hubs were not assumed to generate a complete 
graph. These authors presented a mixed integer linear 
programming formulation and described two branch-
and-cut algorithms based on decomposition techniques. 

Correia et al. revisited a well-known formulation for 
the capacitated single-allocation hub location problem 
[28]. In their research, an example was presented 
showing that for some instances this formulation was 
incomplete. The reasons for the incompleteness were 
known, leading to the inclusion of an additional set of 
constraints. Also, in another research Correia et al. 
investigated single-assignment hub location problems 

with multiple capacity levels [29]. In our study, we 
develop their mathematical model with the main 
difference that hubs are regarded as serving nodes, in 
which, plants with different capacities are established to 
process the raw materials. Also, to transport the raw 
material from the origin node to hub and final product 
from hub to destination node, various transporters are 
used.   

Alumnar et al. provided a uniform modeling 
treatment to all the single allocation variants of the 
existing hub location problems, under the incomplete 
hub network design [30]. No network structure other 
than connectivity was forced on the induced hub 
network. In this context, the incomplete hub location 
with predetermined costs, the incomplete hub covering, 
the single allocation incomplete p-hub median, and the 
incomplete p-hub center network design problems were 
introduced, as are efficient mathematical formulations 
for these problems with o(n3) variables. Computational 
results with these formulations were presented on the 
various instances of the CAB data set and on the 
Turkish network. 

Yaman studied the problem of designing a three-
level hub network where the top level consisted of a 
complete network connecting the so-called central hubs, 
and the second and third levels were unions of star 
networks connecting the remaining hubs to central hubs 
and the demand centers to hubs and central hubs, 
respectively [31]. 

Karimi and Bashiri accounted for hub covering 
location problems with different coverage types [32]. 
Fazel Zarandi et al. investigated the Q-coverage 
multiple allocation hub covering problem with 
mandatory dispersion [33]. 

Mohammadi et al. [34] presented a new model for 
the capacitated single-allocation hub-covering location 
problem. As an alternative to using the capacity 
constraint to limit the amount of the flows received by 
the hubs, the second objective function was introduced 
to minimize service times in the hubs. The service time 
in the hubs incorporated the waiting time of the received 
flows in a queue and the time to obtain services. Due to 
the NP-hardness of the problem, these authors proposed 
and designed a new weight-based multi-objective 
imperialist competitive algorithm (MOICA) to find 
near-optimal solutions. 

 
 

3. MATHEMATICAL MODEL 
 

The main assumptions, considered in the model 
formulation are as follows: 
v Positions of client nodes are predefined. 
v Positions and numbers of hub nodes are predefined. 
v Each client node is allocated to only one hub. 
v Flows between nodes are predefined. 
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v Costs of transportation of goods between nodes are 
calculated in relation to the specific equation. 

v Types and capacities of plants producing goods are 
predefined. 

v Cost of installing each plant is predefined. 
v Types and capacities of transporters conveying 

goods are predefined. 
v Cost of purchasing each type of transporter is 

predefined. 
The following notations are also used to formulate the 
problem mathematically. 
 
3. 1. Indices  
N={1,…, n} Set of nodes 

i,j Nodes i,j ∈  N 

Q  Number of types of plants 

q Type of plant, q={1,…,Q} 

T Number of types of transporter 

t Type of transporter, t = {1,…,T} 

 
3. 2. Parameters 
fq Production capacity of type q plant 

CPq Cost of installing type q plant 

gt Transportation capacity of type t transporter.  

CTt Cost of type t transporter  

wij Flow to be sent from node i to node j 

dij Distance between nodes i and j (i,j∈N) 

χ Cost per unit of flow and per unit of distance 
between a non-hub node and a hub. This value is 
usually known as the collection cost. 

δ  Cost per unit of flow and per unit of distance 
between a hub and a non-hub node. This value is 
usually known as the distribution cost. 

α       Cost per unit of flow and per unit of distance 
between hubs. This value is usually known as the 
transfer cost and it is often assumed that 0 ≤ α<1. It 
is assumed that α is lower than the collection and 
distribution costs. 

Cijkl Total cost for sending one unit of flow from node i to 
node j through hubs k and l. This means that the flow 
follows the path i → k → l → j and Cijkl = C1dik + 
C2dkl + C3dlji, j, k, l N). 

Xkk In case, the assigned value is equal to one. It 
indicates that node k is a hub )( Nk ∈  

∑ ∈
=

Nj iji WO :  Total flow originated at node i 

∑ ∈
=

Nj iji WD : Total flow distained to node i 

3. 3. Decision Variables 

Yijkl 
Fraction of the flow originated at i destined to j that 
is routed via hubs k and l in this order (i, j, k, l N. 

Xik {   
1 if node i is assigned to hub k 

0 otherwise 

Pqk Number of type q plants in hub k 

Trtqk 
Number of type t transporters for type q plant in hub 
k 

Using the above notations, the proposed 
mathematical programming model for the concerned p-
hub median location allocation problem is as follows: 

∑
∈

∑
∈

∑
∈

∑
∈Ni Ni Nk Ni

ijklyijklcijwmin  

∑
∈

∑
∈

+
Nk Qq

qkPqCP ∑∑∑
∈ ∈ ∈

+
Nk Qq Tt

tqktTrC  
(1) 

s.t.  

∑∑
∈ ∈

=
Nk Nl

ijkly 1                        Nl,i ∈  (2) 

∑
∈

∑
∈

+=+
Nj Nl

ikx)iDiO()jilkyjiwijklyijw(  

Nki ∈,  

(3) 

∑ ∑
∈ ∈

≤
Ni Qq

qkqiki PfxO             Nk∈  (4) 

∑ ∑
∈ ∈

≤
Tt Qq

qkqtqk pfTr               QqNk ∈∈ ,  (5) 

kkik xx ≤                            Nki ∈,  (6) 

}1,0{∈ikx                            Nki ∈,  (7) 

0ijkly ≥                         Nlkji ∈,,,  (8) 

0≥qkP                               NkQq ∈∈ ,  (9) 

0≥tqkTr                               kQqTt ,, ∈∈
 (10) 

The objective function (1) minimizes the overall cost 
which is divided into the cost of transportation 
activities, the total costs of installing plants in hubs, and 
the total cost of purchasing vehicles dedicated to plants. 
Constraint (2) ensures that the entire flow is delivered. 
Constraint (3) ensures that if a node is assigned to a hub 
then the entire flow which originated from or is destined 
to the node should go through the hub. Constraint (4) 
ensures that the total demand of client nodes dedicated 
to a particular hub node is less than the total capacities 
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of plants installed in related hub nodes. Constraint (5) 
ensures that the total capacities of various types of 
transporters dedicated to a particular plant in related 
hubs are more than the total capacities of a specific type 
of plant. Constraint (6) ensures that every client node is 
allocated only to specified hubs. Finally, constraints (7) 
to (10) are domain constraints. Note that for constraints 
(9)-(10), the integer variables are more realistic than 
continuous ones. But for simplicity and knowing that 
the fractional values does not affect significantly on the 
other variables and the related objective function as 
well, we consider them as continuous ones.  

 
 

4. PROPOSED META-HEURISTIC ALGORITHMS 
 

In this section, three meta-heuristic algorithms are 
considered to solve the proposed mathematical model. 
Each subsection introduces the initial researches 
implemented on the corresponding algorithm and the 
way of applying each algorithm on the proposed 
mathematical model. 
 
4. 1. Particle Swarm Optimization Algorithm   The 
particle swarm optimization (PSO) algorithm is an 
evolutionary computation technique developed by 
Eberhart and Kennedy [35]. Two years later, Salerno 
used PSO on a number of neural model architectures 
solving the XOR problem and then applied that to a real 
problem [36]. Eberhart and Shi worked on the 
developments, applications and resources related to 
PSO in the area of engineering and computer science 
[37]. 

As described by Eberhart and Kennedy [35], the 
PSO algorithm is an adaptive algorithm based on a 
social-psychological metaphor: a population of 
individuals (referred to as particles) adapts by returning 
stochastically toward previously successful regions. 
Particle swarm has two main operators: velocity update 
and position update. During each generation each 
particle is accelerated into the particles’ earlier best 
position and the global best position. For each iteration, 
a new velocity value for each particle is considered, 
based on its current velocity, the distance from its 
previous best position, and the distance from the global 
best position. After that the new velocity value is used 
to calculate the next position of the particle in the 
solution space. This process is then iterated for a set 
number of times or until a minimum error is achieved. 

 
4. 2. Simulated Annealing Algorithm      Krikpatrick 
et al. presented the concept of the SA algorithm [38]. 
This algorithm is a method to solve large combinatorial 
optimization problems, which is similar to the physical 
annealing process of solids. Solutions in a combinatorial 
problem are equivalent to situations of a physical 
system, and the cost of a solution is equal to the energy 

of a situation. In this search procedure, SA accepts not 
only better but also worse adjacent solutions with a 
definite probability. This means that the SA algorithm 
has the capability to escape from local minima. It can 
therefore find high-quality solutions that do not 
resolutely depend upon the selection of the initial 
solution compared to local search algorithms. In the 
other words, this algorithm is efficient and robust. 
Besides, it has been proven that the processing time of 
SA has a polynomial upper bound. The SA method 
consists of four basic segments [39, 40]:  
 
Procedure PSO  
    Repeat  
         For i = 1 to a number of 
individuals, Do 

 

           If )()( PgGP jG >  Then  →G() Evaluates 
goodness 

              For D = 1 to 
dimensions, Do 

→ Pid Is the best 
state found so far 

              Pid = Xid.   
             End For  
           End If  
           g = i → Arbitrary 
          For j = Indices of 
neighbors, Do 

 

     If )()( PgGP jG >  Then  

         g = j →G is the index of 
the best performer in 
the neighborhood 

      End If  
          End For  
         For d = 1 to number of 
dimensions, Do 

 

Vid (T) = F (Xid (T − 1), Vid (T − 1), Pid, 
Pgd)  

⊳Update 
velocity 

Vid  (−Vmax, +Vmax)  

Xid (T) = F (Vid (T), Xid (T − 1)) ⊳Update 
position 

        End For  
     End For  
  Until the stopping criterion is 
met 
End Procedure 
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• The configuration presents all of the possible 
solutions for the combinatorial problem. 

• The move set presents the set of allowable changes. 
These changes must be able to reach all of the 
configurations. 

• The cost function defines a criterion of how good 
any given configuration is. 

• The cooling plan defines the annealing of the 
problem from a random solution to a good, frozen 
solution. It is worth noting that the cooling plan 
specifies the initial temperature, the rule for 
decreasing the value of temperature, the number of 
iterations for searching for better configurations at 
each temperature, and the time at which annealing 
should be terminated. 

As a whole, one can use the following SA procedure to 
obtain the solution. 
 

Procedure SA 
   Initialization 

•  Initial configuration s. 
•  Get an initial temperature t > 0. 

While the stop criterion is not met: 
Performe the following loop l times: 

Pick a random neighbor s' of s. 
Let ∆  = Cost(s') - Cost (s) 
If  0≤∆ 0, Then set s =s'. 
If 0≥∆ , Then set s=s' with probability .  

n,...,2,1k;Tr 1kT k =× −=  

where r is a control parameter, small but close 
to 1. 

Return s. 
   End Procedure 

In this paper, the generation mechanism of solutions 
focuses on using a hyperbolic tangent function so that 
the random number matches the related function 
attribute. This random value mentioned below. 
 
4. 2. 1. Initial Temperature   In physical comparison, 
the initial temperature should be great enough to heat up 
the solid until all particles are randomly arranged in the 
liquid phase. This means that at the beginning, the 
initial temperature should be high enough to heat up the 
solid until all particles are randomly arranged in the 
liquid phase. The temperature of the annealing 
procedure must therefore be high enough to confirm that 
the system can be transferred to all possible situations. 
By this attribute, the algorithm can find a solution that 
does not robustly depend upon the initial configuration. 
Since the probability of accepting a worse solution is P0, 
the initial temperature T0 can be specified by means of 
the cost-increasing transitions, which would be accepted 

at the beginning of the annealing procedure with a 
probability P. Pilot runs are executed, and the means of 
cost increasing K

∆  transitions is determined. T0 is 
calculated by: 

)1
0p(In

...

0T
−

= ∆  

 
4. 2. 2. Number of Iterations at each Temperature 
(l)    The annealing procedure transfers from one 
configuration to one of its neighbors with a definite 
probability. This is equivalent to the Markov chain. It is 
therefore essential to set the upper bound of the Markov 
chain length or the number of iterations at each 
temperature. The upper bound can have the 
characteristics of the size of the neighborhood. 

 
4. 2. 3. Rules for Decreasing the Temperature   
For a specific temperature value, the temperature is 
reduced when the number of transitions reaches the 
upper bound of the Markov chain length. The control 
parameter (i.e., the reduction ratio of temperature) is 
generally chosen for small temperature changes. The 
Markov chain facilitates an easier move to an 
equilibrium state if the temperature change is small. 
Hence, we use the decrement rule as follows: 

 
n,...,2,1k;Tr 1kT k =× −=  

 

The control parameter r is small and close to 1. 
 

4. 2. 4. Stopping Condition     The annealing process 
is ended when the system is frozen (i.e. the value of the 
objective function of the feasible solution does not get 
better after a definite number of successive Markov 
chains). In this paper, the process is terminated if the 
current best configuration remains unchanged for ln|θ| 
number of temperature reduction steps. Aarts and Korst 
[41] have shown that the upper bound of the total 
number of temperature reduction steps (i.e., the number 
of Markov chains) is proportional to ln|θ|; θ is the 
solution space that denotes the finite set of all possible 
solutions. In this paper, θ is equivalent to the factorial of 
N, namely number of client nodes. Most of the elements 
in θ, however, are infeasible solutions because there are 
too many zoning constraints, so we use ln|θ| as the 
upper bound of the number of Markov chains. 

 
4. 3. Genetic Algorithm    Concepts of genetic 
algorithm (GA) were first devised by Holland [42] who 
subsequently developed this algorithm extensively [43-
45]. To adapt his concepts to specific fields, other 
authors also processed them to a large extent [46]. 

The basic structure of a GA can be summarized as 
follows. First, a mechanism is provided whereby each 
problem solution is converted into a chromosome. A set 
of chromosomes, which is in fact a series of solutions, is 
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then produced as an initial population. The size of the 
problem is flexible and determined by the user and is 
often created randomly. After this stage, the main 
challenge will be to establish new chromosomes called 
children, using genetic operations. This operation can be 
divided into two major species, i.e. crossover and 
mutation. Crossover rate and mutation rate are two 
factors that have many applications in selecting 
chromosomes that play parent roles. These factors are 
determined by the user before starting to apply the 
algorithm.  After producing a new series of 
chromosomes or children, the process of selecting the 
fittest chromosome by evolutionary operations gets 
underway. In this process, the fittest parents and 
children are chosen so that the final number of 
chromosomes is equal to the initial population size. The 
process of selection is based on the fitness value of each 
string. In fact, the evaluation process is the most pivotal 
issue in the selection process. Up to this stage, one 
repeat or generation of the algorithm is done. The 
algorithm gradually converges towards the optimal 
solution after several generations. The termination 
criteria of the problem are the navigation of a certain 
number of iterations determined by the user before the 
start of the algorithm. The basic structure of a GA can 
be shown in pseudo-code as follows. 

 
Procedure GA 
       Initialization 

Parameter setting 
• Pc  
• Pm 
• Stop criteria 
• Pop size 
• Selection strategy 
• Crossover operator 
• Mutation operator 
•  Perform scalability  

Initialize population 
• Randomly 

Fitness evaluation  
• Repeat 
• New generation 

     Individual selection for mating pool 
• Size of mating pool is equal to pop size 

For each consecutive pair apply crossover 
(for each consecutive pair apply crossover 
with probability Pc 
Mutate children 

• Mutation with probability 
Pm 

Replace the current population by the 
resulting mating pool 
Fitness evaluation 
Until stopping criteria are met 
End For 

End 
 

4. 3. 1. Roulette Wheel Base Selection Method    In 
this method, first the fitness value is calculated for each 
chromosome of the population. The total fitness is 
computed, and then a random number between zero and 
the total fitness is selected. Better chromosomes have 
higher chances of selection and the selection chance of 
each chromosome is commensurate with its fitness 
value. With this method the possibility of selection is 
directly proportional to the fitness value. 
 
4. 3. 2. Changing Methods    Making changes to 
chromosomes can be approached in two basic ways. 
The first and simplest is called mutation. Like mutations 
in organisms that involve changing one gene into 
another, GA mutation makes a small change to one 
point of the attributes’ code. 
 
4. 3. 2. 1. Gene Mutation    Before the chromosomes 
are transmitted to the next generation, they are likely to 
undergo abrupt changes or mutations. A mutation is a 
sudden change in a gene. The degree of mutation 
indicates the possibility of mutation in a gene. 

The mutation approach used in this paper is as 
follows. One gene is randomly selected, and after 
selection a random number that falls in the specified 
range of variables is generated, producing the new 
chromosome with a mutated gene. The fitness value of 
the chromosome prior to and after the swap is compared 
to ensure efficiency. If the fitness value is unchanged 
the chromosome is restored to its original state. Figure 2 
indicates this procedure. 

 
 

 
Figure 2. Mutation operator 

 
 

4. 3. 2. 2. Crossover    The second method is called 
crossover, in which two chromosomes are selected for 
the purpose of changing their code segments. This 
process simulates the combining of chromosomes 
during reproduction in living organisms. Most common 
crossover methods involve a single-point crossover in 
which the change point is positioned randomly among 
the chromosomes. The first section is before the first 
point and the second section continues after it. In this 
method every part is from a different parent and has an 
equal probability of being selected. 

(123456897) 

(123466897) 
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The two chromosomes each give some of their genes 
to create the next generation. If they remain unchanged 
they will be transferred to the next generation. The 
degree of crossover indicates that the chromosomes do 
change at times. It is approximately 65 to 85 percent. 
 
One-point Crossover 
 
First, a random number in the (1, length-1) range is 
produced. The two chromosomes are then broken and 
combined at a point. In this paper, one-point crossover 
is also investigated, as shown in Figure 3. 
 

 
Figure 3. One-point crossover 

 
4. 3. 3. Selection of a New Generation    The 
selection process for the purpose of generating a new 
generation is similar to parent selection, with the 
difference that the frequency of its occurrence is equal 
to the number of first-generation chromosomes. 
 
4. 3. 4. Stopping Criterion    In this paper, the 
stopping criterion is determined by the number of 
generations. 
 
 
5. COMPUTATIONAL RESULTS 

 
The presented model is solved by the Lingo 8 software 
and the proposed algorithms. The model is run on a 
computer with a capacity of 2.25 GHz and 3.00 GB 
capability. The proposed algorithms are coded in 
MATLAB in a Windows XP environment. The related 
results are compared in a pair wise manner. A number 
of test problems are generated randomly and then 
solved. The following parameters are considered in this 
paper. 
• Positions fall in the range of [0,100] 
• Weights fall in the range of [10, 80]. 
• C1 falls in the range of [80,100]. 
• C3 falls in the range of [0.8×C1, C1]. 
• C2 falls in the range of  

[0.4× )
2

C 3C1(
+ , 0.6×

  
)

2
( 31 CC +

 

] 

• A transporter capacity falls in the range of [0.25×Average 
weight, 0.5×Average weight]. 

• Plant capacity falls in the range of [0.5×Average capacity, 
Average capacity]. 

• A transporter cost falls in the range of [0.75×Average cost, 
1.25×Average cost]. 

• A plant cost falls in the range of [0.75×Average cost, 
1.25×Average cost]. 

 
5. 1. Tuning the Structural Parameters of the 
Algorithms   To find the optimum or best values of the 
structural parameters of each algorithm, we apply the 
Taguchi method in which the orthogonal arrays are used 
widely. The main aim of this method is to carry out the 
factorial analysis on a small scale. To do this, we choose 
four of the most important parameters of each algorithm 
and dedicate three levels to each of them. An orthogonal 
array relating to this specific plan that has 27 
combinations of the related levels of chosen parameters 
is used. The Minitab software is used to design the 
experiment (DOE). A test problem with forty nodes, ten 
hubs, five types of facilities and four types of 
transporters is considered for running the three 
algorithms.  
 
5. 1. 1. PSO Algorithm    For the proposed PSO, four 
parameters, namely, size of population, maximum 
iteration, personal and global learning factors, and 
inertia factor are investigated. Note that for each 
parameter, three levels are considered. Table 1 shows 
these factors and related levels.  After 27 runs, each 
with specified parameter levels, and analyzed with 
Minitab software, the related results are obtained as 
depicted in Figure 4. These results show that the larger 
population, maximum iteration, and personal and global 
learning factors generate the less OVF and the higher 
inertia factor results the more objective function value. 
To obtain the results within a reasonable time and to 
come close to DOE results, we set the number of 
populations at 50, maximum iteration at 300, personal 
and global learning factors at 1.5, and inertia factor at 
0.72.  
 
 
 
 
 

 
Figure 4. Outputs of the DOE analysis for the proposed PSO 
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TABLE 1. PSO parameters and related levels 

Factor 
Level 

1 2 3 

1 Size of population 25 50 75 

2 Maximum iteration 100 200 300 

3 Personal and global learning factors 0.5 1.5 2.5 

4 Inertial factor 0.5 0.75 1 

 
 

TABLE 2. SA parameters and related levels 

Factor 
Level 

1 2 3 

1 Length of Markov chain 2 3 4 

2 Temperature decreasing steps 100 200 300 

3 Moves to neighbors 3 5 7 

4 Decreasing multiplier 0.4 0.8 0.95 

 
 

TABLE 3. GA parameters and related levels 

Factor 
Level 

1 2 3 

1 Size of population 10 20 30 

2 Maximum iteration 100 200 300 

3 Mutation rate 0.4 0.7 1 

4 Crossover rate 0.4 0.7 1 

 
 
 
5. 1. 2. SA Algorithm     For the proposed SA, four 
parameters, namely, length of Markov chain, maximum 
number of temperature decreasing steps, number of 
moves to neighbors, and decreasing temperature 
multiplier, are taken into account. Note that for each of 
these parameters, three levels are considered. Table 2 
illustrates these parameters and related levels. After 27 
runs, each with specified parameter levels, and analyzed 
with Minitab software, the associated results are 
obtained as depicted in Figure 5. The outputs show that 
the longer Marko chain, temperature decreasing steps 
and moves to neighbors result in the less objective 
function. For a decreasing multiplier there is no 
significant difference between the three levels. To 
obtain the results within a reasonable time and to come 
close to the DOE outputs, we set the Markov chain 
length at 3, temperature decreasing steps at 500, moves 
to neighbors at 5, and decreasing multiplier at 0.95. 
 
5. 1. 3. GA Algorithm     For the proposed GA, four 
parameters, namely, size of population, maximum 

iterations, mutation rate and crossover rate are taken 
into account. For each of these factors, three levels are 
investigated. Table 3 elucidates these parameters and 
related levels. After 27 runs, each with the specified 
parameter levels, and analyzed with Minitab software, 
the related results are obtained as shown in Figure 6. 
The outputs show that the larger population, maximum 
iteration, mutation rate and crossover rate result in the 
less objective function. To obtain the results within a 
reasonable time and to come close to the DOE results, 
we set the number of populations at 25, maximum 
iteration at 500, crossover rate at 0.8 and mutation rate 
at 0.3. 
 
 

 
Figure 5. Outputs of the DOE analysis for the proposed SA 

 

 
Figure 6. Outputs of DOE analysis for the proposed GA 
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5. 2. Sensitivity Analysis   To make a sensitivity 
analysis, the following five important and efficient 
factors are evaluated: 
• Problem dimensions 
• Number of vehicle types 
• Number of plant types 
• Coefficient of weights 
• Coefficient of distances 

 
 

5. 2. 1. Analysis Based on Problem Dimensions    
In view of the above, the effect of the problem 
dimension is evaluated for a variety, ranging between 
three clients and 40 clients. Table 4 and Figures 7 and 8 
show the computational results in detail. Note that the 
objective function values reported by Lingo 8 software 
and the other three meta-heuristic algorithms are very 
close. Obviously, the Lingo software cannot solve the 
problems involving more than seven clients. This 
importance arises from to be NP_hard of the related 
problem. Additionally, the results show that when the 
problem size increases, the objective function values for 
all algorithms grow exponentially. 

Furthermore, the computational time for all 
algorithms tends to increase. Statistically, the ANOVA 
hypothesis test shows that in 0.95 significant level there 
is no significant difference between these algorithms 
regarding the objective function value (OFV) measure.  

However, when it comes to the computation time, a 
significant difference does exist. As a whole, the 
proposed SA algorithm introduces the best results 
simultaneously in terms of the OFV and the 
computational time. The second suitable algorithm is 
the proposed GA. However, it is worth mentioning that 
all the proposed algorithms have acceptable outputs. As 
a whole, the proposed SA algorithm introduces the best 
results simultaneously in terms of the OFV and the 
computational time. The second suitable algorithm is 
the proposed GA. However, it is worth mentioning that 
all the proposed algorithms have acceptable outputs. 

 
 

5. 2. 2. Analysis Based on the Number of Vehicles 
For more in-depth analysis, a problem with 40 clients is 
considered. Clearly, the Lingo 8 software is incapable of 
solving the models but proposed algorithms are used to 
survey the impact of the number of vehicle types. Table 
5 and Figures 9 and 10 show that the impact of this 
feature is not important. Statistically, the ANOVA 
hypothesis test shows that in 0.95 significant level, there 
is a significant difference between these algorithms 
regarding the OVF and the computational time 
measures all together. As a whole, the SA algorithm is 
the most effective of the three algorithms with respect to 
the processing time and objective function values 
criteria put together. As the second and third ranks, GA 
and PSO algorithms are considered consecutively. 

 
Figure 7. Comparison of the outputs based on the number of 
clients vs. the OFV 
 
 
 

 
Figure 8. Comparison of the outputs based on the number of 
clients vs. the computational time 
 
 
 

 
Figure 9. Comparison of the outputs in terms of the number of 
vehicle types vs. the OFV 
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TABLE 4. Comparison of outputs in terms of the computational time and objective function 

Test 
problem  

No. of 
clients 

No. of 
hubs 

Computational time (s) Objective function value 

Lingo 8 SA PSO GA Lingo 8 SA PSO GA 

1 3 1 2 15 72 25 734506 734697 1442898 1099052 

2 5 2 135 19 86 30 3296251 3422290 4979382 4203082 

3 7 3 22 98 37 10189154 12657520 10269177 

4 10 4 29 116 47 24982801 33974360 28754274 

5 15 5 38 153 68 41079108 49215348 45273432 

6 20 6 50 198 89 150376959 134785664 150970639 

7 25 7 69 246 119 156931884 157616712 150110712 

8 30 8 86 304 148 318704156 341858535 337313852 

9 35 9 102 361 181 446974225 491566270 456608088 

10 40 10   120 428 239   587772228 737720874 605894013 
 
 
TABLE 5. Comparison of the outputs based on the number of vehicle types in terms of the OVF and the computational time 

Test problem No. of vehicle 
types 

Computational time (s) Objective function value 

SA PSO GA SA PSO GA 

1 1 125 432 218 617109970 669232593 625555152 

2 2 126 427 221 625841892 703453206 637149889 

3 3 120 431 221 685570082 984294174 660161172 

4 4 120 428 239 587772228 737720874 605894013 

5 5 121 444 221 531846155 685270821 527844048 

6 6 122 429 221 551560402 1705744660 547084118 

7 7 133 434 220 363806126 2413057857 381485987 

8 8 123 434 221 531801558 2069838090 497897759 

9 9 125 438 229 503779317 2585031776 551754320 

10 10 125 430 222 392125462 1098836844 426563913 
 
 
 
 

 
Figure 10. Comparison of the outputs based on the number of 
vehicle types vs. the computational time 

5. 2. 3. Analysis Based on the Number of Plant 
Types    Related to this, the results show that when the 
number of plant types increases, the cost function 
decreases considerably, especially if the number of 
plants increases from one to three. The reason behind 
this can be the trade-off between the number of plants 
and the other features, which has a tremendous impact. 
Table 6 and Figures 11 and 12 show the related results. 
Statistically, the ANOVA hypothesis test shows that in 
0.95 significant level, there is a significant difference 
among these algorithms regarding the computational 
time measure. However, a big difference between 
algorithms related to the objective function measure is 
not reported. As a whole, three proposed algorithms 
have the same behavior, but as before the proposed SA 
algorithm outperforms the other two regarding the 
processing time mostly, and even more so the objective 
function criteria. The next best algorithm considering 
these two measures is GA and the last one is PSO. Note 
that the Lingo software is incapable of solving the 
considered problem up to 40 clients. 
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Figure 11. Comparison of the outputs in terms of the number 
of plant types vs. the OFV 
 

 
Figure 12. Comparison of outputs based on the number of 
plant types vs. the computational time 

 
Figure 13. Comparison of outputs based on the coefficient of 
weights vs. the OFV 
 

 
Figure 14. Comparison of outputs based on the coefficient of 
weights vs. the computational time 
 

 
TABLE 6. Comparison of the outputs based on the number of plant types 

Test problem No. of plant types 
Computational time (s) Objective function value 

SA PSO GA SA PSO GA 
1 1 118 430 217 5338781180 7538457315 5387144390 
2 2 132 456 243 1094460462 1930764781 1408173207 
3 3 148 436 227 536608643 1635927266 618161468 
4 4 129 477 224 530186458 1467187013 643649201 
5 5 120 428 239 587772228 737720874 605894013 
6 6 126 438 230 570977266 636959030 550704464 
7 7 125 433 227 497141929 634554907 518650348 
8 8 126 439 227 448173476 539289647 479058744 
9 9 125 439 225 438273942 595854991 459099023 
10 10 125 437 224 368072926 514038186 365776736 

 
 
TABLE 7. Comparison of the outputs based on the coefficient of weight in terms of the OVF and computational time 

Test problem Coefficient of weight  
Time (s) Objective function 

SA PSO GA SA PSO GA 
1 1 120 431 239 587772228 984294174 605894013 
2 2 123 434 220 1091717628 1192889409 1020727626 
3 3 122 435 222 1368515195 1976269600 1486194571 
4 4 181 428 236 1873030012 3513765423 1900757542 
5 5 119 425 219 2764401845 3054726895 2369530604 
6 6 121 425 219 2633583524 4310486813 3272230597 
7 7 120 427 223 2990812987 4861727193 3060946719 
8 8 120 426 219 4826933280 6037262112 4369947366 
9 9 120 428 221 4952833901 5858538820 4103637804 
10 10 121 430 221 4183719596 5745199660 4985728487 
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TABLE 8. Comparison of the outputs based on coefficient of distance in terms of the OVF and computational time 

Test problem Coefficient of distance  
Computational time (s) Objective function value 

SA PSO GA SA PSO GA 
1 1 120 431 239 587772228 984294174 605894013 
2 2 124 430 223 826021138 1243934910 890522866 
3 3 121 435 224 1346259157 2958138131 1439928464 
4 4 124 432 222 2208312539 2512563394 2552027357 
5 5 122 440 223 2119487386 2683599132 2761001100 
6 6 123 435 225 3968028787 4642243889 4764989635 
7 7 123 442 226 2837065965 4193329660 3672363027 
8 8 124 441 229 3999894256 7869075742 4363899935 
9 9 125 437 225 4339911433 6658532669 4670921822 
10 10 124 445 235 3585669956 4225698901 4355522704 

 
 
 

 
Figure 15. Comparison of the outputs based on the coefficient 
of distances vs. the OFV  
 

 
Figure 16. Comparison of the outputs based on the coefficient 
of distances vs. the computational time 
 
 
 
5. 2. 4. Analysis Based on the Coefficient of 
Weights     Considering this feature, when the related 
coefficient increases, the cost function rises steeply. The 
reason is clearly that the large flows among clients 
result in high transportation costs. Statistically, the 
ANOVA hypothesis test shows that in 0.95 significant 
level there is a significant difference between these 
algorithms regarding the computational time measure. 
However, there is no difference between the proposed 
algorithms regarding the objective function measure. 

Generally, as before, the capability order of these 
algorithms can be the GA first, SA second, and PSO 
last, regarding the objective function measure. But when 
it comes to the computational time criteria, the SA 
algorithm is first and GA and PSO algorithms are 
ranked second and third, respectively. Note that the 
Lingo 8 software is incapable of solving this problem 
with up to forty clients. Table 7 and Figures 13 and 14 
show the computational results regarding this feature. 
 
5. 2. 5. Analysis Based on the Coefficient of 
Distances    This feature corresponds to the coefficient 
of weight features, meaning that greater distances result 
in higher costs. Rationally this impact is expected, 
because greater distances generate the higher 
transportation costs. Statistically, the ANOVA 
hypothesis test shows that in 0.95 significant level there 
are no large differences between algorithms regarding 
the objective function criteria. Likewise, regarding the 
computational time criteria, no difference between the 
algorithms is reported. As a whole, three algorithms 
have the same manners, but the SA algorithm strongly 
outperforms the other two concerning the processing 
time and, to a lesser extent, the objective function 
criteria. The next best algorithm, considering these two 
measures, is GA and the last one is PSO. Note that the 
aggrandized behavior of GA and SA algorithms has 
been emerged in PSO pattern.  Also, the Lingo software 
is unable to solve the considered problem up to 40 
clients. Table 8 and Figures 15 and 16 show the 
computational results for this feature 
 
 
6. CONCLUSIONS 
 
This paper has presented a p-hub median problem with 
two new features, namely plants and their corresponding 
transporters, to meet the demand of client nodes. Since 
this type of location allocation problem belongs to a 
NP-hard class, obtaining an optimal solution by 
common software packages is almost impossible, or at 
best it is very time consuming. Thus, three meta-
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heuristic algorithms based on simulated annealing (S 
A), particle swarm optimization (PSO) and genetic 
algorithms (GA) have been proposed to solve this type 
of hard problem. To ensure that each algorithm is 
applied under the optimum conditions, the design of 
experiment (DOE) method has been used to obtain the 
best values of the structural parameters of these 
algorithms. The results obtained from the proposed 
algorithms are compared with those results reported by 
the Lingo 8 software using the branch-and-bound 
method for small problems, in order to demonstrate the 
efficiency and capability of our proposed algorithms. A 
wide sensitivity analysis has also been performed to 
demonstrate the impact of the number of plants, number 
of vehicle types, coefficients of weights and distances. 
The results show that the largest number of plant types 
generates the lowest costs. But, by increasing the 
number of vehicle types, coefficients of weights and 
distances, the related cost increases steeply. All in all, 
the proposed algorithms act equally and introduce 
solutions of high quality. In a myopic analysis, 
however, the proposed SA algorithm outperforms the 
other two, regarding both cost and computational time 
criteria. 

 
[1-46] 
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 چکیده
 

  

شان بر اساس تسهیلات و  - ها مشخص و ظرفیتدر این مدل مکان هاب. در این مقاله یک مدل ریاضی پیچیده ارائه می گردد
بمنظور برآورده ساختن نیازهاي گره هاي مشتري انواع مختلفی از . کارخانجاتی که به آن اختصاص می یابند تعیین می گردد

گره هاي مشتري به هاب ها تخصیص یافته و وسائط نقلیه به . وسائل نقلیه با ظرفیت هاي مختلف در نظر گرفته می شود
بمنظور بدست آوردن جواب ها از سه الگوریتم فراابتکاري با . کارخانجات و تسهیلات مستقر در هاب ها اختصاص  می یابند

کارایی و نتایج محاسباتی این الگوریتم . رات و شبیه سازي تبرید استفاده شده استنام هاي الگوریتم ژنتیک، بهینه سازي انبوه ذ
  ها با یکدیگر نیز مقایسه گردیده است
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