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for a truss example. Choi and Santos developed 
variational formulations for nonlinear design 
sensitivity analysis [2]. Gopalakrishna and 
Greimann differentiated the equilibrium equation 
in each Newton-Raphson iteration to obtain 
incremental gradients and this method was used for 
the nonlinear sensitivity analysis of the plane 
trusses [3]. Santos and Choi presented a unified 
approach for shape sensitivity analysis of trusses 
and beams considering both geometric and 
material nonlinearities [4]. Ohsaki and Arora 
presented an accumulative and incremental 
algorithm for the design sensitivity analysis of 
elastoplastic structures including geometrical 
nonlinearity [5]. They performed the sensitivity 
analysis of trusses but they reported that the 
method is extremely time consuming for large 
structures. Lee and Arora developed design 
sensitivity analysis of structural systems with 
elastoplastic material behavior using the 
continuum formulation and performed sensitivity 
analysis of a truss and a plate by this technique [6]. 
Barthold and Stein presented a continuum 
mechanical-based formulation for the variational 
sensitivity analysis considering nonlinear hyper 
elastic material behavior using either the 
Lagrangian or Eulerian description [7]. Szewczyk 
and Ahmed presented a hybrid 
numerical/neurocomputing strategy for evaluation 
of sensitivity coefficients of composite panels 
subjected to combined thermal and mechanical 
loads [8]. Yamazaki suggested a direct sensitivity
analysis technique for finding incremental 
sensitivities of the path-dependent nonlinear 
problem based on the updated Lagrangian 
formulation [9]. Employing this method, they 
performed the sensitivity analysis of a plate. 
Bugeda et al. proposed a direct formulation for 
computing the structural shape sensitivity analysis 
with a nonlinear constitutive material model [10]. 
It was reported that their proposed approach was 
valid for some specific nonlinear material models. 
Schwarz and Ramm proposed the variational direct 
method for sensitivity analysis of structural 
response considering geometrical and material 
nonlinearity with Prantel-Reuss plasticity model 
[11]. Gong et al. presented a procedure for 
sensitivity analysis of planar steel moment 
frameworks with geometric and material 
nonlinearity [12]. In their work, analytical 

formulations defining the sensitivity of 
displacement were derived. Habibi A.R. and 
Moharrami H. developed a comprehensive 
formulation for sensitivity analysis of planar 
RCMRFs considering material nonlinearity and P-
Δ effects under pushover analysis based on 
Newton-Raphson method [13]. In their research, 
only flexure effect was considered to derive 
sensitivity equations.
     The objective of present research is to develop 
the nonlinear theory of sensitivity analysis for RC 
frames considering both axial and flexure effects. 
Also, sensitivity equations are modified to 
conclude effect of seismic loading that depends on 
design variables. To do this, pushover analysis that 
is a simplified nonlinear analysis is employed. The 
sensitivity equations are derived based on the 
analysis with incremental-load form. A three-story 
RCMRF has been used as an example to illustrate 
the applicability and efficiency of the developed 
sensitivity formulations.

2. NONLINEAR ANALYSIS

The first step of design optimization is the 
sensitivity analysis that in turn depends on the 
method of structural analysis. The simplest 
recommended method for nonlinear analysis is 
pushover method which is used in this study. This 
method of analysis that is recommended by 
FEMA273 [14] and ATC40 [15] is a popular tool 
for evaluation of seismic performance of existing 
and new structures. A proper material behavior 
model for elements and seismic loads for pushover 
analysis are explained in the next three sections.

2.1. Moment Curvature Relation  The moment-
curvature relation of every Reinforced Concrete 
(RC) structural element has a definitive effect on 
the behavior of the structure. In this research the 
tri-linear moment curvature relation, as shown in 
Figure 1, is used for expressing the nonlinear 
behavior of reinforced concrete sections. 
     To determine moment-curvature relation of RC 
members, some assumptions should be made that 
best fits with the test results. In this study, 
considering the effect of axial force in moment-
curvature relation, the following limitations for 
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moment, these equations can be used by 
substituting tb , bb , th  , sA and sA instead of bb , 

tb , t , sA and sA , respectively. Ignoring axial 
effect in beam elements, N, which has been 
appeared in some above equations, can be 
considered to be equal to zero. Now by having the 
moment-curvature relations, the flexural stiffness 
can be specified for ends of the element as follow:

pmcrpcrpp EI/φMEI  (17)

pmcrpypcrpypp EI)φ)/(φM(MEI  (18)

pmypupypupp EI)φ)/(φM(MEI  (19)

where Equations 17-19 are used for zones of 1, 2
and 3 of M curve, respectively. In these 
equations, pEI and pmEI are the stiffness and 

minimum stiffness of any section; crpM , ypM and 

upM are the cracking, yielding and ultimate 

moments; and crp , yp and up are corresponding 

curvatures. 

2.2. Material Nonlinearity   In this paper, a 
spread plasticity model that has been proposed by 
park et al. is utilized [18]. This plasticity model, 
that considers the cracking behavior of RC, can 
also consider material nonlinearity of RC elements 
with a very good approximation. It has been 
implemented in IDARK software [18]. In this 
model, for an element subjected to earthquake 
loading, the distribution of curvature follows 
Figures 2a,b which is considered for the flexibility 
distribution in the RC elements, where AEI and 

BEI are the flexural stiffness of the section at end 
‘A’ and ‘B’, respectively, and 0EI is the initial 
stiffness of the element; A and B are the yield 
penetration coefficients and L is the length of the 
element. 
     Adopting the above plasticity model for RC 
elements, the tangent stiffness matrix of each 
element can be derived. General derivation of 
tangent stiffness matrix is given by Park et al. [18]. 
Considering a RC element with six degrees of 
freedom, with its rigid parts, as shown in Figure 3, 
the tangent stiffness matrix of element can be 

found as follows:

bate KKK  (20)

where aK and bK are axial stiffness matrix and 
bending stiffness matrix, respectively and must be 
assembled in the element stiffness matrix teK . The 
element stiffness matrix calculated from Equation 
20 needs to be transformed to global system:

ete
T

ee TKTK  (21)

where eT is the transformation matrix of the 
element.

aK can be determined from:
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where LEA / is the axial stiffness of the element, 
A is the area of cross section and 0aK is a 
constant matrix. bK , is obtained from the 
following equation:

T
ESEb RKRK  (23)

(a)

(b)

Figure 2. (a) Curvature distribution along a RC element and 
(b) Flexibility assumption along a RC element.
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where:
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where L is length of element and L
~

can be 
obtained from the following equation:
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where A and B are the portions of rigid zone at 
the element ends. The elements of SK  in (24) are 
obtained from the following equation:









baS11S22bcS11S21S12

ebBA0S11

/ffKK;/ffKKK

DfLEIEI12EIK
(26)
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where 

BA1 EIEIS  ;   BA02 EIEIEIS  ; and 

  AB03 EIEIEIS  .

The yield penetration parameters used in Equation 
27, specify the portion of the element where it 
cracks. When the moment of the section under 
consideration is less than cracking moment, the 
values of these parameters are considered to be 
equal to zero. For the single curvature of the 
element, when its moments are greater than 
cracking moment, the values of the parameters are 
considered to be equal to 0.5. For other cases, 
assuming linear moment distribution along the 
element, these parameters can be determined from:

   pmBAcrppp α,,1MMMMminmaxα  (28)

where subscript p specifies any general point p and 
cr represents the cracking state under 
consideration. pm is the maximum yield 

penetration parameter, obtained in previous load 
steps. Usually, the flexural stiffness at the center of 
the element is equal to elastic stiffness and is 
determined from Equation 29. For the case of 
single curvature if moments are greater than 
cracking moments, their values can be modified by 
Equation 30.
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where 0AEI and 0BEI are the elastic stiffness at 
ends ‘A’ and ‘B’, respectively; and AEI and BEI

Figure 3. Rigid zone and ends definitions.
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are the inelastic stiffness at ends ‘A’ and ‘B’, 
respectively. For a member that yield penetration 
spreads over the whole element  1 BAwhen  , 

0EI is obtained from Equation 30. In this case, A
and B and initial flexibility are modified to 
capture the actual flexibility distribution. These 
modifications are:

B
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 (31)

AB   1 (32)

  AAAA ffff  /00  (33)

where:

00 /1;/1;/1 EIfEIfEIf BBAA  (34)

2.3. Seismic Loading   In the pushover analysis, 
the load vector must incrementally be increased. At 
each load step, the base shear increment is applied 
to the structure with a predefined profile over the 
height of the structure. The incremental lateral load 
vector can be computed as:

vCbV

nsvc

vc
vc

bVEP .

,

2,

1,

. 




























(35)

where bV is the incremental base shear and vC is 
the vector of lateral load distribution factors 

 storiesofnumbersc sv ,...,1,  , which is determined 

using the following relation [14]:
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 (36)

where sW is the portion of the building seismic 

weight at story level s ; sH is the vertical distance 
from base of the building to story level s ; ns is 
the number of stories; and k is a parameter that 

has been recommended by FEMA273 as follows 
[14]:
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where T is the fundamental period of the building. 

2.4. Nonlinear Responses   Since in nonlinear 
analysis of structure, stiffness isn’t constant and 
depends on the internal forces of elements and 
internal forces depend on displacement field, it will 
be a function of displacement field; on the other 
hand, displacement depends on stiffness. Then 
structural analysis is involved in incremental 
process. The equilibrium equation of the structure 
is solved using the simple incremental method 
considering several load steps. No iteration is 
required within one load step, and thus the 
numerical algorithm is generally well behaved and 
exhibits good computational efficiency. In each 
load step following equation must be solved [19]:

lll
T PuK  (38)

where l
TK is the tangent stiffness of the structure at 

load step l; lu is the incremental displacement 
vector of the structure at load step l and lP is the 
external load vector imposed on the structure at 
load step l. By having the incremental 
displacement vector from Equation 38, the 
displacement vector of the structure at each load 
step must be updated as follows:

lll uuu  1 (39)

where 1lu and lu are the displacement vector of 

the structure at load steps )1( l and (l),
respectively.  Considering equilibrium of forces for 
an element, the incremental internal forces of the 
element at load step l can be determined from 
Equation 40:

l
e

l
e

l
e uKF  (40)

where l
eK is the tangent stiffness matrix of the 
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element and l
eu is the incremental displacement 

vector of the element at load step l . By having the 
incremental internal forces from last mentioned 
equation, the internal forces of the element at load 
step l must be updated as follows:

l
e

l
e

l
e FFF  1 (41)

where 1l
e
F and l

eF are the internal force vectors 
of the element at load steps )1( l and )(l ,
respectively.

3. NONLINEAR SENSITIVITY ANALYSIS

In the structures undergoing inelastic behavior, 
incremental methods are usually used to solve 
equilibrium equation. In this case, displacements are 
nonlinear function of external loads. Also stiffness 
is a function of displacements and forces. This 
causes sensitivity coefficients such as displacement 
sensitivities to be dependent on stiffness sensitivity, 
displacement sensitivity, external load sensitivity 
and internal load sensitivity; while in linear 
structures, they only depend on stiffness sensitivity 
and external load sensitivity. Finding sensitivity 
relations in nonlinear structures is too difficult for 
this complicacy; on the other hand, applying linear 
sensitivity theory leads to incorrect results. In the 
present study, to drive relations for nonlinear 
sensitivities, equilibrium equations are differentiated 
at each load step. This is explained in the next 
section. 

3.1. Displacement Sensitivity   Considering 
incremental Equation 38 and differentiating it with 
respect to design variable jx , we get to:
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where l
TK is the global tangent stiffness matrix; 

lu is the incremental displacement vector; 
j
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is the sensitivity of the global tangent stiffness 

matrix; 
j
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ud
is the sensitivity of the incremental 

displacement vector and 
j
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dx

Pd
is the sensitivity of 

the incremental external load vector at load step l 
with respect to design variable jx . In this study, 

Equation 42 is used as the basic formulation for 
obtaining the incremental displacement 
sensitivities. Assuming that all terms in Equation 

42 except 
j
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are known, it will be rearranged to 

find:
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The total sensitivity of displacement vector can be 
obtained by summing up the sensitivities in all load 
steps as follows:
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where 
j

l

dx

du 1
and 

j
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dx

du
are the sensitivities of the 

incremental displacement vector at load steps 

)1( l and )(l , respectively. The term 
j

l

dx

ud
is the 

sensitivity of the incremental displacement vector 
which is obtained from Equation 43. For this, 
sensitivities of stiffness and external loads need to
be determined. In the coming sections, the way 
each sensitivity item in Equation 43 should be 
obtained, is explained.

3.1.1. Sensitivity of stiffness The tangent stiffness 
matrix of the structure at each load step is obtained 
by properly assembling of the tangent stiffness 
matrix of elements:





ne

e
e

l
T KK

1

(45)

where ne is the number of structural elements and 

eK is the tangent stiffness matrix of the element 
with material nonlinearity. Differentiating Equation 
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45 with respect to any generalized variable, jx , 

sensitivity of the tangent stiffness matrix can be 
obtained from:


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e j
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(46)

Based on the last equation, to compute tangent 
stiffness sensitivity, it is sufficient to calculate 
sensitivity of tangent stiffness of all elements. 
Sensitivity of tangent stiffness matrix of each 
element is obtained by differentiating from 
Equation 21:

e
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teT
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e T
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 (47)

In the above equation, 
j

te

dx

dK
is the sensitivity of 

the tangent stiffness matrix of the element 
including axial effects sensitivity and bending 
effects sensitivity in local system and can be 
obtained by differentiating from Equation 20:
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It is noted that the first and second terms in the 
right hand side of Equation 48 must be properly 
assembled. The first term represents the axial 
stiffness while the second one represents flexural 
stiffness. These two sensitivity matrix are obtained 
by differentiating Equations 22 and 23 noting that 
matrices of a0K and ER utilized in these 
equations are independent of design variables and 
can be determined as follow:
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Assuming rigid diaphragm for floors, there will be 
no change in axial forces of beams. Accordingly, 
the axial stiffness sensitivity for beams is zero. For 
column elements by defining bhA  , the sensitivity 
of A with respect to b is h , and with respect to h
is b . It is zero with respect to other variables. The 

sensitivity of matrix SK utilized in Equation 50 is 
determined by differentiating from Equation 24:
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In Equation 52, sensitivity of A with respect to 

Ah is L2/1 ; also sensitivity of B with respect to 

Bh is L2/1 . For a typical beam Ah and Bh have 
been shown in Figure 3. Similar definitions can be 
made for columns between two floor beams. In 
Equation 51 sensitivities of matrix SK  with respect 
to any design variable can be obtained by 
differentiation of its elements as follow:
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where:

 

  









































j

A
BA

j

B

j

j

B
AB

j

A

j

A
j

B
B

j

A

dx

dEI
EIEIEI

dx

dEI

dx

dEI
S

dx

dEI
EIEIEI

dx

dEI

dx

dEI
S

EI
dx

dEI
EI

dx

dEI
S

0
0

3

0
0

2

1

(61)

In these equations, the derivative of 0EI with 
respect to any variable X can be obtained by
differentiating from Equation 29 with respect to X. 
This leads to Equation 62:
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For an element with two end moments greater than 
cracking moment and single curvature, the 
sensitivity of EI0 with respect to X should be 
modified by Equation 63. Sensitivity of 0AEI and 

0BEI will be obtained from Equation 64

considering the case of crpp MM  :
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In Equations 53 and 61 to 63, to use the sensitivity 

AEI and BEI , it is sufficient to differentiate 
Equations 17 to 19 with respect to xj as follow: 
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where Equations 64, 65 and 66 are used for zones 
of 1, 2 and 3 of M curve, respectively.
     As observed above, sensitivities of moment-
curvature characteristics in various states of 
cracking, yielding and ultimate state have been 
appeared in three last equations. To calculate these 
sensitivities, both axial and flexural effects are 
considered is our next problem, because existence 
of axial force causes to change them. Since axial 
forces are variative at various load steps, moment-
curvature characteristics are not the same at all 
load steps. Hence, their sensitivities should be 
determined by differentiating from Equations 1 to 
(6) at each load step. These sensitivity calculations 
have been reported in the next section. According 
to section 2.2, the sensitivity of A and B that 
have been used in Equations 56 to 58, are zero 
provided that moments are less than cracking 
moments or the element undergoes single 
curvature with end moments greater than cracking 
moment. For other cases the sensitivities can be 
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determined by differentiating from Equation 28:
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where jp dxdM / is the sensitivity of moment at end 

'p' of the element; its value will be presented in 
section 3.3. In  Equation 67, if p >1, its 

sensitivity is zero and if p < pm , its sensitivity is 

equal to sensitivity of pm . When 1 BA  , the 

sensitivity of 0EI , A and B must be modified 
by differentiation of  Equations 31 to 33:
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where:
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3.1.2. Sensitivity of loads   Since seismic loads 
depend on the natural period of the structure and 
the natural period depends on structural stiffness 
and building mass, any change in the structure 

stiffness causes a change in the external loads. 
Since gravity loads are constant, the sensitivity of 
external load vector at any load step l comprises 
only sensitivity of lateral loads.
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where the second term in right hand side is the 
sensitivity of incremental seismic loads and is 
obtained from

j
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where the components of jv dxdC / vector are found 

from the following equation:
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In the above equation, for 5.0T and 5.2T , the 
sensitivity of k is zero. For other values of T , 
derivative of Equation 37 gives:

jj 0.5dT/dxdk/dx  (75)

where jdxdT / is the sensitivity of the fundamental 

period of the structure and can be found from the 
following relation [20]:


 dx

dK

8
T-=

dx

dT

j

T
2

3

j

(76)

where  is the first mode shape of the structure.

3.2. Force Sensitivity   Since in nonlinear 
structures, displacement is an implicit function of 
internal forces; force sensitivities need to be 
calculated for computation of displacement 
sensitivity. Sensitivity of the incremental internal 
forces of any typical element at load step l can be 
determined by differentiating from Equation 40:
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The sensitivity of internal forces of the element is 
updated by Equation 78:
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where 
j

l
e

dx

dF 1

is the sensitivity vector of internal 

forces at previous load step and 
j

l
e

dx

Fd
is the 

sensitivity vector of incremental internal forces 
determined from Equation 77. Components of the 
sensitivity vector, which is obtained by Equation 
78, give sensitivity of forces such as moment 
sensitivity and axial force sensitivity which are 
appeared in some sensitivity equations derived in 
previous sections. 

3.3. Moment-Curvature Curve Sensitivity  
Since moment-curvature relations are functions of 
design variables and axial forces and sensitivity 
equations derived in previous sections are 
dependent on their sensitivities, these sensitivities 
including cracking moment sensitivity, yielding 
moment sensitivity, ultimate moment sensitivity, 
cracking curvature sensitivity, yielding curvature 
sensitivity and ultimate curvature sensitivity need 
to be determined. These sensitivities at each load 
step are variable for existence of axial forces. This 
causes that nonlinear sensitivity analysis be more 
difficult than the state in which, sensitivity of axial 
loads is ignored. Sensitivities of moment-curvature 
characteristics can be obtained by differentiating 
from Equations 1 to 6 at various states:
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(c) Ultimate state
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In above equations, unknown sensitivities are 
obtained by differentiating from Equations 7 to 16
and R aqnd S (the extended form should be used) 
equations with respect to design variable jx from 

the following equations:
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In equations presented in this section, values of 
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that exists in 

some equations is one component of sensitivity 
vector obtained from section 3.2.

3.4. Summary of Sensitivity Analysis Procedure   
The nonlinear sensitivity analysis of RC frames 
that was developed in this study can be carried out 
in the following steps:

1. Compute the first mode shape, first period 
and its sensitivity from Equation 76

2. Calculate the matrixes L
~ and 1~L and their 

derivatives for each element from Equations 
25 and 52

3. Compute the lateral load distribution factors 
and their sensitivities by Equations 36 and 
74

4 Set load step index 1l and apply the 
gravity loads only 

5. Determine the moment-curvature relations 
from Equations 1 to 6 and compute their 
derivatives from section 3.3

6. Compute the lateral loads and their 
sensitivities from Equations 35 and 73

7. Compute the flexural stiffness and yield 
penetration parameters and their sensitivities 
for each element from Equations 17 to 19
and Equations 64 to 66

8. Compute the yield penetration parameters 
and their sensitivities for each element from 
Equations 28, 31, 32, and Equations 67 to 69

9. Compute the tangent stiffness matrix and its 
sensitivity for each element by Equations 21
and 47

10. Assemble the global tangent stiffness matrix 
and its matrix of sensitivity by Equations 45
and 46

11. Solve Equation 38 for displacements and 
find their incremental sensitivities from 
Equation 43

12. Calculate the internal forces and their 
sensitivities from Equations 40 and 77

13. Set 1 ll , if the roof lateral displacement 
is greater than target displacement, stop the 
sensitivity analysis and go to step 14; 
otherwise go to step 5.

14. Compute the total incremental sensitivities 
coefficients

4. NUMERICAL EXAMPLE

A three-story, two-bay planar frame of Figure 4 is 
used to illustrate the method of proposed analytical 
nonlinear sensitivity analysis. The concrete is 
assumed to have a cylinder strength of 30 MPa, a 
modulus of rupture of 3.45 MPa, a modulus of 
elasticity of 27,400 MPa, a strain of 0.002 (unit?) 
at maximum strength and an ultimate strain of 
0.003. The steel has yield strength of 300 MPa and 
a modulus of elasticity of 200,000 MPa. A 
uniformly distributed gravity load of 12 KN/m is 
applied on the beams of each story. 
Reinforcements have the cover to the steel centroid 
of 50 mm. It is assumed that columns and beams 
have rectangular cross sections. Fourteen design 
variables which have been given in Table 1 are 
defined in this frame. In order to allow the 
structure to enter to the inelastic behavior, target 
displacement of 2% has been chosen as a stop 
criterion for load steps of sensitivity analysis. 
     The pushover (capacity) curve of this frame is 
shown in Figure 5 and target point has specified on 
it for two cases namely (i) flexural effect only, C0
and (ii) both flexural and axial effects, C1. 
Nonlinear sensitivity analysis is performed on this 
frame by the proposed Analytical Method (AM) 

Figure 4. A three-story, two-bay RC frame.
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for cases of (i) and (ii) and compared to the results 
from central Finite Difference Method (FDM). As 
a sample, sensitivity analysis of the overall drift 
that may indirectly represent the sensitivity of 
internal forces to change in some design variables 
is considered.  The results have been briefed in 
Table 2. For interpreting the results, for example, 
consider the design variable No.7. The overall drift 
sensitivity shows that its value will be decreased 
by 1.1499% and -1.3875% for a unit change in the 
design variable No.7 for cases i and ii, 
respectively. Values of nonlinear sensitivity 
coefficients predict that if the value of width of 
beams increases from 250mm to 260mm; overall 
drift decreases 2% to 1.9885% and 1.9861% for C0
and C1, respectively. This prediction is very 
important in optimal performance-based design 
process. Sensitivity results for cases (i) and (ii) 
show that sensitivity coefficients of C0 and C1 are 

not the same. This difference is considerable for 
some design variables such as variable No.1. 
Therefore, existence of axial forces can affect 
sensitivity coefficients with respect to the design 
variables. For the present example, it is observed 
that the values of sensitivity coefficients of C1 are 
smaller than those of C0 for most of design 
variables. That is existence of axial loads decreases 
the displacement sensitivity in most of cases. In 
Table 2, percentage of error of FDM compared to 
AM has been evaluated from:

  AMAMFDM SSSERROR /100  (99)

In Equation 99, FDMS and AMS are the sensitivity 
coefficients obtained from FDM and AM, 
respectively. In the FDM method, the design 
variables perturbation has been considered to be 
1% and 0.001%. Comparing the AM results with 

TABLE 1. Design variables.

Number of 
Design Variable

Description Value 

1 Width of columns C1 and C3 350 mm

2 Height of columns C1 and C3 350 mm

3 Width of columns C2 450 mm

4 Height of columns C2 450 mm

5 Reinforcement area of columns C1 and C3 on each face of column 942.5 mm²

6 Reinforcement area of columns C2 on each face of column 1570.8 mm²

7 Width of beams 250 mm

8 Height of beams 350 mm

9
Lower reinforcement area for beams B1 at left hand and for beams 

B2 at right hand of beam  (first and second stories)
1256.6 mm²

10
Upper reinforcement area for beams B1 at left hand and for beams B2

at right hand of beam (first and second stories)
942.5 mm²

11
Lower reinforcement area for beams B1 at right hand and for beams 

B2 at left hand of beam (first and second stories)
1256.6 mm²

12
Upper reinforcement area for beams B1 at right hand and for beams 

B2 at left hand of beam (first and second stories)
1570.8 mm²

13 Lower reinforcement area for third story beams 628.3 mm²

14 Upper reinforcement area for third story beams 628.3 mm²
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that of FDM shows that by reducing perturbation 
values from 1% to 0.001% results of FDM for 
almost all design variables converge to AM results; 
that is, the AM results are in a good agreement 
with FDM results in very small perturbation cases. 
This matter verifies the AM results.
     The results of sensitivity analysis by FDM shows 

that assuming perturbation of 1% in design variables, 
this method in all cases generates inaccurate results; 
while this is not the case in the linear sensitivity 
analysis. On the other hand, considering small 
perturbations for some design variables may lead to 
run-time errors. Hence, the proposed method can 
efficiently reduce errors of FDM.

Figure 5. Capacity curve of the three-story RCMRF.

TABLE 2. Sensitivity Coefficients of Overall drift at Target Point (%).

Method
Sensitivity with Respect to Design Variable

1 4 5 7 8 9 12

AM
C0 -0.2688 -10.8864 -3284.1 -1.1499 -46.3542 -2333.1 -2183.6

C1 -0.0064 -7.9053 -1642.1 -1.3875 -41.7281 -1988.7 -1993.5

FDM 1%
C0 -0.4757 -10.6962 -3171.2 -1.7722 -61.3068 -2140.8 -2548.7

C1 -2.7673 -9.5303 -2128.5 -0.0931 -56.8434 -3020.5 -3106.0

FDM 0.001%
C0 -0.2688 -10.8859 -3284.1 -1.1499 -46.3487 -2332.9 -2183.3

C1 -0.0064 -7.9054 -1641.9 -1.3871 -41.7283 -1988.6 -1993.4

ERROR 1%
C0 76.95 -1.75 -3.44 54.12 32.26 -8.24 16.72

C1 42873 20.55 29.62 93.29 36.22 51.88 55.80

ERROR 0.001%
C0 -0.03 -0.005 -0.001 -0.001 -0.01 -0.006 -0.01

C1 0.43 0.00 0.01 0.02 0.00 0.01 0.01
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5. CONCLUSION

In the present study a procedure for exact nonlinear 
sensitivity analysis of RCMRF was proposed. The 
procedure includes both flexural and axial effects 
in the context of pushover analysis. The proposed 
sensitivity method does not face the difficulties 
that the FDM method confronts and can reduce 
errors of FDM. 
     Sensitivity analysis of a three-story RC frame 
illustrated the capability and effectiveness of the 
derived formulations. It was shown that existence 
of axial forces can affect sensitivity coefficients 
with respect to the design variables. Results of the 
case study for a nonlinear structure indicate that 
sensitivity calculation via FDM method may end 
up to inaccurate sensitivity results especially if the 
value of perturbation is high. 
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