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The coefficients S11, S12, S21 and S22 are indeed the 
stability functions of the semi-rigid member. 
Figure 2 illustrates the curves of these coefficients 
versus the variations of the axial force for different 
values of the end-fixity factors. For simplicity, the 
end-fixity factors of the two ends of the element 
are considered the same in these figures. 
Consequently, the functions S11 and S22 are also the 
same. It should be reminded that the curves of 
secant stiffness, which are shown in Figure 2, are 
similar to the work of Zhou and Chan [17]. These 
researchers presented Sij in terms of the non-
dimensional axial force, PL2/π2EI, and the 
connection-stiffness-control parameter 

)/4/( LEIrr  .
     Figure 2 shows that the values of S11 and S22

change from 0 to four when the connection 
stiffness increases from zero to infinite and the 
axial force is zero. In this case, the coefficients S12

and S21 also change in the range of 0-2. On the 
other hand, the critical compressive axial force is 
decreased if the connection stiffness decreases. 
According to Equation 11, the fixed-end moments 
are related to the coefficients S13 and S23 and also 
to the value of the distributed loads. In other 
words, the parameters S13 and S23 include the 
influence of the end-fixities and second-order 
effect of axial force on the fixed-end moments. 
The mentioned parameters are plotted in Figure 3. 
     As shown in Figure 3, the parameters S13 and 
S31 are in the 0-1/12 domain while the axial load is 
zero. Furthermore, the values of these coefficients 
change more rapidly, if the connection stiffness 
decreases. In common engineering practice, in 
addition to the fixed-end moments, the shear 
reactions are required for structural analysis. The 
suggested formulation does not require the explicit 
expressions of these forces. In other words, the 
fixed-end shears can be easily calculated utilizing 

Figure 2. The curves of stability functions for different values 
of end-rigidities.

Figure 3. The curves of S13 and S31 functions for different 
values of end-rigidities.
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the equilibrium equations.
     It is worth emphasizing that the proposed 
stability functions have some errors near the 
critical axial load in comparison to the exact 
solutions. However, the developed relations are 
simpler than the exact ones and the errors are not 
significant. It is reminded that the exact stability 
functions are two sets of functions, which are 
presented separately for compressive and tensional 
axial forces. Another merit of this study is that, the 
effect of tension and compression loads are treated 
in the same way by the present formulation. The 
effects of any kind of loading and the geometric 
imperfections can be also modeled by the 
suggested scheme.

3. EXPLICIT STIFFNESS MATRIX

The stiffness matrix of a semi-rigid member in the 
basic axis was obtained in the previous section. 
According to Equation 11, this matrix has three 
relations between the element principal forces and 
their relative displacements. On the other hand, a 
general plane frame element has six degree of 
freedom, as shown in Figure 4. By performing 
some matrix operations, the secant stiffness of the 
mentioned element is obtained utilizing the entries 
of the matrix given by Equation 11. The compact 
result is presented in the below form:

xKp SR
EL (14)

In this equation, SR
ELK is the stiffness matrix of the 

semi-rigid member in the local axis. The suggested 
matrix takes into account the second-order effects 
of the axial force and the connection flexibility. 
This matrix can be written in the below form:
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Nonzero arrays of the stiffness matrix are given in 
Appendix B. The global stiffness matrix is easily 
obtained using the following transform matrix:

RKRK SR
EL

TSR
EG  (16)

It is worth emphasizing that the obtained matrix 
can explicitly model a frame member with 
different types of connections. This element can be 
used in the second-order and buckling analysis of 
the steel frames as well. Furthermore, the stiffness 
formulation explicitly includes the effect of both 
tension and compression axial loads in a single 
relation. When the axial load is zero, Equation 15
changes to the required matrix for the first-order 
analysis of the semi-rigid frame. Furthermore, by 
setting the proper values for the end-fixity factors, 
the stiffness matrices of the truss or the common 
moment resistance frame elements are obtained. 
By utilizing this formulation, the special frame 
elements with different combination of rigid, 
pinned, semi-rigid connections for each end of the 
member are easily modeled. It is evident that the 
end-fixity factor is more important, since expresses 
the real condition of the connection. 

4. THE BEHAVIOR OF CONNECTIONS

Commonly, the moment-rotation relationship 
describes the behavior of connections [23]. In the 
present investigation, it is assumed that the semi-
rigid connections have a linear behavior. The basic 
equation for the linear model is defined as follows:

RM  (17)

In this equation, M is the moment and R and θ are 
the stiffness and rotation of the connection, 
respectively. The connection stiffness, R, could be 
considered as either the initial stiffness or the 

Figure 4. The six-DOF semi-rigid element.
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7.1. First-Order Analysis   The first-order 
analysis of two frames of Figures 5 and 6 are 
studied. The structures are loaded with the 
horizontal and vertical forces. At first, the portal 
frame of Figure 5 is considered. The section areas 
of the beam and its columns are respectively 76
cm2 and 110 cm2, and the corresponding moments 
of inertia are 21500 cm4 and 9460 cm4. The 
modulus of elasticity is assumed to be 205GPa. 
According to Table 1, a variety of connection 
stiffness values are considered for the beam to 
column and also for the base-plate connections. 
The absolute values of the internal moments at the 
end of the members are also computed and 
arranged in Table 1. The values in parentheses 
show the available solutions by other investigators 

[27]. The comparison between two groups of the 
results shows the accuracy of the proposed element 
for analysis of semi-rigid connections.
     Figure 6 shows the one-storey two-span frame. 
The sections of the beams and columns are 
W21×57 and W10×22, respectively. The stiffness  
the beams to columns connections are 7.8807
kN.m/rad (45000 kip-in/rad). The elasticity 
modulus of the material is also 200GPa. The 
curves of the bending moment are plotted in Figure 
7, for both rigid and semi-rigid connections. Chen 
studied this structure with semi-rigid connections 
[28]. The numbers in parentheses of Figure 7 are 
computed by Chen.
     Figure 7 shows that the solutions of the new 
element are correct. Furthermore, the results of the 

TABLE 1. The Absolute Values of Internal Moments (kN.m) for the frame of Figure 5.

Rigid ConnectionsSemi-Rigid Connections

Moments rc=1, rb=1
(Rc=∞,Rb=∞)

rc=1, rb=0
(Rc=∞,Rb=0)

rc=1, rb=0.40
(Rc=∞,Rb=4EIb/Lb)

rc=0.25, rb=0.40
(Rc=EIc/Lc,Rb=4EIb/Lb)

52.23 (52.2)30.04 (30)31.67 (31.7)0.32 (0.3)M13

127.50 (127.5)0.00 (0)93.65 (93.6)80.25 (80.3)M31

87.14 (87.1)29.96 (30)71.53 (71.5)24.16 (24.2)M24

152.59 (152.6)0.00 (0)113.80 (113.8)116.41 (116.4)M42

260.00 (260.0)400.00 (400)296.28 (296.3)301.67 (301.7)M54

31.9
57.8 (57.8)

Rigid connection 

Semi-rigid connection

7.9
10.1 (10.1)

11.0
11.5 (11.6)

3.7
6.4 (6.3)

14.1
9.8 (9.7)0.7

0.8 (0.7)

63.0
11.3 (11.3)

55.2
4.4 (4.5)

29.1
56.7 (56.7)

Figure 7. The bending moment diagrams (kN.m).
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Figure 8. Simple portal frame.

TABLE 2. The Results of Applying the Nodal Loads

Second-OrderFirst-OrderType of 
Connection

Outcome
Ref. [19]Presented StudyRef. [19]Presented Study

936.21936.3175.7375.72Pinned
Horizontal 

Displacement of 
Node 3(×10-4 m)

47.4947.1230.9530.79DWA

42.3942.9728.7028.96TSDWA

36.4236.4225.7925.79Rigid

46.62946.6384.5034.502Pinned
Bending Moment Of 

Node 1
(kN. m)

3.9083.8902.7282.722DWA

3.6633.6902.6392.649TSDWA

3.3763.3752.5242.524Rigid

TABLE 3. The results of Applying the Distributed Load.

Second-orderFirst-Order
Type of

Connection
Outcome

Ref. [19]Presented StudyRef. [19]Presented Study

137.64142.93122.63123.27DWA
Rotation of Node 

3(×10-3 Rad)
149.83152.13132.81131.54TSDWA

166.46166.84146.94146.91Rigid

233.08242.19193.69194.87DWA
Bending Moment 
of Node 1(kN. m)

253.12257.78209.78207.94TSDWA

281.87282.70232.09232.23Rigid
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    For the sake of comparison, the plastic moments 
of the joints and frame elements are considered

13.114int jo
pM kN.m and 96.1922  exp SM 

kN.m, respectively.
     Four cases of semi-rigid connections are 
considered for the mentioned frame. In the first 
case, all connections of 1 to 4 are semi-rigid. The 
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Figure 9. The influence of connection flexibility on the 
horizontal displacement in the first-order analysis.
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Figure 10. The influence of connection flexibility on the 
bending moment in the first-order analysis.
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Figure 11. The influence of connection flexibility on the 
horizontal displacement in the second-order analysis.
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Figure 12. The influence of connection flexibility on the 
bending moment in the second-order analysis.
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Figure 13. The braced and un-braced simple rectangular 
frames.



214 - Vol. 24, No. 3, September 2011 IJE Transactions A: Basics

beam to columns and columns to base connections 
are rigid for respectively the second and the third 
cases, and the other connections remain semi-rigid.  
All connections of the final case are assumed to be 
rigid. Furthermore, four classes of the moment-
rotation behavior for the semi-rigid connections are 
investigated, based on Figure 16.

The first set of analysis is performed for trilinear 
model of semi-rigid connections. The obtained 
ultimate load and the corresponding horizontal 
displacement of joint 2 and also the results of 
Ihaddoudène are arranged in Table 5. The 
presented solutions certify the accuracy of the 
proposed element. 

TABLE 4. The Buckling Load of the Simple Rectangular Frame (kN).

Braced, Hinged SupportUn-braced, Fixed Support

Type of
Connection Ref. 

[29]

Presented Study Number of Element 
Per MemberRef. 

[29]

Presented Study Number of Element 
Per Member

4141

100521006010060251325132513Pinned

116471165811659465846564655Semi-rigid

128051282312823724472277227Rigid
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Figure 14. The influence of the connection flexibility on the critical load.
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Figure 15. Portal frame
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TABLE 7. The section Properties of the 10-Story Frame.

Section member stories A (m2) I (m4)

C1 column 1-4 0.027 1.71×10-3

C2 column 5-7 0.0218 7.989×10-4

C3 column 8-10 0.0149 2.517×10-4

B beam all 0.306 2.569×10-3

Figure 22. Time-displacement curve for 10-story frame.

Figure 23. The 11-story structure.
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The rigid, TSDWA and DWA beam-column
connections are considered. It is reminded that the 
value of end-rigidities for the TSDWA and DWA 
connections are assumed as 0.795 and 0.6765, 
respectively. The value of 0.01 second is selected 
for the time step and the NCA and WTM time 
integration processes are utilized to analyze the 
structure. The time-displacement curves for the 
index displacement, u, are plotted in Figure 22. It 
should be noted that the results of these two 
methods are the same. Furthermore, the accuracies 
of the responses are checked using the NLA and 
also the IHOA-5 tactics, when the value of the time 
step is equal to 0.0005 s.
     The response of the mentioned structure with 
rigid connections was presented by Sekulovic et al. 
[30], which is the same as the corresponding curve 
of Figure 22. The other curves show the influence 
of end-fixities on the responses of the structure. 
The reduction of the connection rigidities causes 
the appreciable growth of the response magnitudes, 
especially when the structure oscillates freely. 
Figure 23 shows the other moment resistant steel 
frame which is analyzed dynamically. The 
structure is loaded by the uniform gravity and the 
lateral wind forces. The value of gravity loads at 
the roof story and the other stories are 59.45 and 
74.14 kN/m, respectively. The sections and the 
material properties of this structure are shown in 
Table 8.
     It should be reminded that this structure was 
used by Morris et al. [31] for studying the effect of 
semi-rigid connections. Further, Xu analyzed it and 
investigated the effect of P-delta effect [18]. 
Verifying the validity of the proposed element, 
three end-rigidity factors, such as 1, 0.8 and 0.5, 
are considered for beams in the present work. 
Some linear and second-order analyses are 
performed and the horizontal displacements of the 
middle-top node of building, u, are arranged in 
Table 9. It is worth emphasizing that the present 
solutions are the same as those obtained by Xu.
     In the second part, the merit of the new element 
for dynamic analysis is investigated. Consequently, 
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the gravity loads are assumed to be constants and 
the horizontal forces are applied during ten second. 
In other words, the equivalent wind loads are zero 
at the beginning time. They are increased linearly 
until they reach the values of Figure 23 at 10
second. After that, they are constants. Some 
lumped masses are also added to the joints and the 
weights of the members are ignored. The 
concentrated masses for the middle and outer joints 
of the roof are 52000 and 26000 kg, respectively. 
The similar values for the other stories are 66000
and 33000 kg, respectively.
     The first and also second-order dynamic 
analyses are performed for the 11-story structure 
using the WTM, NCA methods and st 1.0 . The 
results are verified by utilizing the NLA and 
IHOA-5 process, with 005.0t and 0.002
seconds, respectively. The curve of the indicative 
drifts of the structure, u, are presented in Figure 24
for the aforementioned values of end-rigidity 
factors. 
     As shown in Figure 24, the lateral 
displacements are increased when the end-rigidity 
factors of beams are decreased. Therefore, the 
second-order effects on the drifts of structure 
become appreciable. Moreover, the declines in the 
connection rigidity intensify the response 
amplitudes. In addition, the periods of solutions 
increase if the values of the end-fixities decrease. 
The P-delta effects for this frame also increase the 
period of solutions.

8. CONCLUSIONS

At first, a new formulation for the second-order 
elastic analysis of the plane steel frame was 
employed. The suggested element has semi-rigid 
connections and can take the nodal and uniformly 
distributed loads. The developed stiffness matrix 
can model the tensile and compressive members 
with one formulation, whereas the other 
researchers use different relations for comparison 
and tension. Moreover, the exact solutions which 
are in terms of hyperbolic sine and cosine 
functions are approximated employing a fifth-order 
interpolation. In addition, the stiffness matrix has a 
closed form. Consequently, the solution accuracy 
is preserved and the analysis duration decrease and 

the element become efficient. It should be noted 
that the proposed stiffness matrix is very general 
and can be utilized in the analysis of the frame 
member with different types of connections. 
Accordingly, the responses of steel framing with 
adoption of various end-fixity factors are 
accessible. The developed element is also suitable 
for dynamic analysis. Both linear and nonlinear 
frame analysis can be performed by this element.

TABLE 8. The Properties of Sections and Materials.

Section member stories
A 

(mm2)
I (mm4) E (GPa)

C1 column 1-2 52200 1.89×109

200

C2 column 3-4 35000 1.3×109

C3 column 5-6 34800 1×109

C4 column 7-8 31000 8.94×108

C5 column 9-11 22700 6.86×108

B beam all 15700 7.61×108

TABLE 9. The Middle-Top Node Displacements.

Rigidity Factor
Displacement , u (mm)

Linear Analysis Second-Order Analysis

1 126 140

0.8 168 196

0.5 286 377

Figure 24. The curves of the parameter u for different values 
of the end-rigidity.
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     In the second part of the paper, several first-
orders, P-delta, buckling, plastic and dynamic 
analyses are performed using the benchmark semi-
rigid structures. The comparisons of the solutions 
with those obtained by other researchers certify the 
high accuracy and capabilities of the employed 
element. In addition, the effects of connection 
flexibility on the responses of structures are 
studied. From the numerical solution point of view, 
the following results are concluded:

1. Changing the connection rigidities makes 
appreciable variations in the distribution of 
the internal loads and the nodal 
displacements. The second-order effects and 
non-linear behavior of connection also 
intensify these variations. 

2. The connection flexibility reduces the 
structural critical load. However, this effect 
in the braced frames is lower than the un-
braced one. The variation of the critical load 
with respect to the end-fixity values is 
approximately linear.

3. The sequence formation of the plastic hinges 
in frames, and their failure points depend on 
the connection flexibility and the 
corresponding moment-rotation curve. 
Among the different places of the 
connection, the foundation connections have 
more effect on the collapse point of 
structure. On the other hand, the flexibilities 
of the beam to column connections have 
little influence on the ultimate drifts and
only decrease the fracture load. Moreover, 
the ultimate loads of the frames are 
independent of the moment-rotation model 
of the connection and are only depended on 
the moment capacity of the connections or 
members.

4. The outcomes of dynamic analysis show that 
the reduction of the connection rigidities 
softens the structure. Consequently, the 
magnitude and period of structural vibration 
are appreciably increased, which intensify 
the lateral displacements and also the 
second-order effects of axial loads. It should 
be added that the P-delta effects also 
increase the period of structure. 

9. NOMENCLATURE

K = stiffness matrix
P= force vector
R= transformation matrix
M= mass matrix
C= damping matrix 
X, X , X = displacement, velocity and acceleration

vectors
R, r= rotational stiffness value and end-

fixity factor
M, P= internal moment and axial force
Sij = stability functions of the semi-rigid 

connection

10. APPENDIX

10.1. Appendix A   Coefficients of interpolation 
function
     The factors of the interpolation function, which 
is defined in Equation 1, are derived as below:
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10.2. Appendix B   Nonzero terms of the stiffness 
matrix
     The parameters of the stiffness matrix, which is 
used in Equation 13, are defined as below:

IAHKKK /144411 
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