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Abstract Dynamic Analysis of an axially moving cable with time dependent tension and velocity is
studied in this paper. Tension force and the moving speed are assumed to be harmonic.

It is found that there exists a specific value of speed in which natural frequency of the system approaches
zero. This specific speed for such a critical condition is called critical speed and it will be proved that
increasing the cable tension increases critical speed of the moving cable. Multiple-Scales perturbation
technique is used to discretize the nonlinear equations of motions. Critical speeds are then obtained in
which vibrations of motion become unstable. Stability analysis is carried out for different sets of
excitation frequency. Dynamic responses of the system are calculated using Galerkin’s method. A
comprehensive parametric study is carried out and effects of different parameters like the moving speed
and tension force on the responses are studied both in frequency and time domain
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1. INTRODUCTION

Due to their technological importance, the
dynamics of axially moving materials has received
considerable attention from many researchers.
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Thread lines, high speed magnetic and paper tapes,
strings, belts and saw blades, fibers, chains, beams
and pipes transporting fluids are some of the
technological examples. The vast literature on
axially moving material vibrations is reviewed by
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Wickert and Mote [1]. They presented the complex
modal analysis for exact solutions to linear
vibration as well as approximate solutions for
nonlinear vibration. Pakdemirli and Ulsoy
presented the dynamic stability of an axially
accelerating string by using the method of multiple
scales [2]. Chen et al. studied the steady-state
transverse vibration of a parametrically excited
axially moving string with geometric nonlinearity
[3]. Chen et al. investigated an axially traveling
viscoelastic string by wusing the Boltzmann
superposition principle along with the Galerkin
method, and presented chaotic behaviors and
bifurcation diagrams with varying parameters [4].
A detailed literature review can be found in
Pellicano [5] on the nonlinear vibration and
complex dynamic behaviors associate with general
moving media. Recently, by using the Hamiltonian
dynamics in the symplectic space, Wang, Huang
and Liu studied the eigenvalue problem of the
axially moving string again and presented
bifurcation of eigenvalues and stability properties
of the motion at the critical transport speed [6].
Hwang and Perkins [7,8] investigated the effect of
an initial curvature due to supporting wheels and
pulleys on Dbifurcation and the stability of
equilibrium. Ravindra and Zhu [9] studied
pitchfork-type bifurcation and chaos in an axially
accelerating beam in a supercritical regime, and
Pellicano et al. [10] and [11] studied post-
bifurcation velocity with viscous damping and
external harmonic excitation in the supercritical
speed range using a high-dimensional discrete
model obtained by the Galerkin procedure.
Parametrically excited vibration of a moving string
was studied by Pakdemirli et al [12] using two
approaches of Floquet theory and Galerkin’s
approach.

Nonlinear free vibration and stability analysis of an
axially moving string in transverse motion was
studied by Wang et al. in [13]. Based on the
Routh—Hurwitz criterion, the condition for Hopf
bifurcation was presented in that paper with
multiple parameters for transverse motions
perturbed in the vicinity of the equilibrium
configurations. In [14], vibration characteristics of
a light axially moving band were investigated by a
numerical study in the subcritical and supercritical
speed ranges. The vibration examined through the
dependences between the fundamental frequency,
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axial velocity and vibration amplitude resulting
from nonlinear free vibration.
The latest progresses and future directions on
nonlinear dynamics for transverse motion of
axially moving strings have been summarized in
[15]. An asymptotic approach was proposed by
Chen et al [16] to investigate nonlinear parametric
vibration of axially accelerating viscoelastic
strings. Effects of the initial stress, the parameters
in the Kelvin model, and the axial speed
fluctuation amplitude on the amplitudes and the
existence conditions of steady-state responses were
studied. Transversal nonlinear vibration of an
axially moving viscoelastic string supported by a
partial  viscoelastic guide was analytically
investigated in [17]. In the case of principal
parametric resonance, the stability and bifurcation
of trivial and non-trivial steady-state responses
were analyzed through the Routh—Hurwitz
criterion in that paper.
Surveying the literature indicates that in most cases
the speed of the moving belt is assumed to be
constant for simplification. In very few published
papers the speed is adopted to be a harmonic
function. In our present study in order to generalize
the study and approaching to the real case both the
tension and moving speed are simultaneously
assumed to be harmonic functions.
Importance of the subject arises from the following
reasons:
1-Oscillating of the cables or belts leads to
dynamic deflection and consequently dynamic
stresses in their structures. Therefore, undesired
vibrations yield to fatigue phenomena and
dramatically reduce the life of cables and belts.
2-Uncontrolled vibrations in cables and belts may
finally lead to instability of vibration and failure
of the transmission system.
3-In sense of energy consumption, undesired
vibrations result in undesired energy loss in the
system. In other words, a considerable part of
energy is wasted in cable or belt oscillation.
4-Vibration of system may produce a lot of noise
especially in power transmission systems like
chain-sprocket driver systems.
5-Vibration of the cable or belt system may lead to
excessive force on pulley’s bearings and
supports, furthermore increases the level of
vibration transmitted to the body frame.
6-Vibrations of the cable or belt system reduce the
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allowable operational speed of the transmission
systems. The limitation arises from the belt
potential to be separated from its pulley at high
speed operation.
Dynamic Analysis of an axially moving cable with
time varying tension and velocity is studied in this
paper. Tension force and the moving speed are
assumed to be harmonic. Multiple Scales technique
is used to discretize the nonlinear equations of
motions. Critical speeds, in which vibrations of
motion become unstable, are then obtained and its
different parameters are recognized. Stability
analysis of the system is carried out for different
sets of excitation frequency. Vibration responses of
the system are calculated using an approximate
method i.e. Galerkin’s method. A comprehensive
parametric study is carried out and effects of
different parameters like the moving speed and
tension force on the responses are studied.

2. MATHEMATICAL MODELING

Schematic picture of the moving belt is shown in
Figure 1. The belt is modeled by a moving cable
traveling with time dependent tension and speed.

V and P are the cable tension and speed
respectively and p, A and E are respectively mass
density, cross sectional area and Yang modulus of
the cable. R is the pulley radius and L is the cable
length between the two spans.

The mathematical model is simulating vibration of
moving belts as shown in Figure 2. u(x,t) and
w(x,t) are axial and transversal displacements
respectively and F(x,t) represents external force
per unit length of the cable.
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Figure 1. Schematic picture of the moving belt with time
dependent tension and velocity
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Figure 2. Schematic picture of the moving cable with axial
and transversal displacements

Kinetic energy of the systems can be derived as

T = oAU +V (U [, Vi, e
! ()

The large deformation strain of the systems is

defined as

e —u 4w )
2

And potential energy of the systems is

U=["IP(te, + % EAe 2 Jdx 3)

Using Hamilton’s principle one can reach to

)
51. T -U)dt=0

, AU, +2Vu,, +V2u,, +
:J:J'L(p[n Xt XX S+ (4)

V(1+u,)]-EAu, +ww,)

X XX

+{pA(W, +V W, +2Vw,, +Vw,) -

0 w2
Pt)w,, — EAa—[(uX + TX)WX]}aN)dxdt =0
X

Since equation (4) are valid for any arbitrary oW
and AU then

pA[utt + 2Vuxt +V2UXX +

; )

V(1+u)] - EAL(u, + Wy
OX 2
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PALW + 2V W +V2Wxx ""VWx )=

of ©)
P(t)wyy — EAax[(ux +2)WXJ =F(x,t)
u(x,t):—%fwzxd“ xf, (1) + £, (t) (7)

Implementing the boundary conditions:

u0,H)=0= f,(t)=0 ®)
UL =0= f(t) :;-([szdx

Substituting Equation (7) into (6) the following
result can be achieved
PA(Wyt + 2VWp +V 2y +Viwy ) = ©)

1 L 5
F(X,t) + P(t)wyy +EEAWXXI0 wedx

Variable speed and cable tension are assumed to be
V =V, +¢V *SinQt (10)

P=P +&P*SinQ,t (1)

Using two dimensional perturbation techniques,
solution of the eaquation of motion can be assumed

to be

w(Xx,t,&)=wWo(x,Tg, Ty )+e1Wi (X, Tg, Ty )+
£aWo (X, To Ty )+ £16,W3 (X, T Ty )+ (12)

2w, (X,Tp. Ty )+ 5w (X, Tp, Ty )+0(e2)

Where

d
TQ=t,T1=(gl+52)t:a=DD+(51+52)DI+..., (13)

d2
e D, +2(&,+&,)D.D, + (¢, +&,)* D} +...

where ; _ 0 . Substation of the above equation in
Yoo,

(9) results in

160 - Vol. 23, No. 2, May 2010

\.Dg +2(e1 +62)DgDy + (&1 + &7 )2 DlzJ

[wo +E1Wy + E9Wy + £169W3 + glzw4 +522w5 +

V@ + &2V 2 sin 2yt + Ngsv sin2yt]

= (po +é&p p* sin ta)/(pA) (14)
WG + E1W] + E2W5 + £169W3 + glzwj{ + g§w§]+

2(Vg + &,V sinagt)

Do + (&1 +2)Dy ]

WO + E1W] + EpW) + £169W3 + glzwjt + ggwé]+

(Elv*.Ql COS.Qlt)

WO + E1W] + EoW) + £169W3 + glzwjl + g%wg]:o

If one assumes the coefficients of the same power

of & and &, equal to zero

&,ey — Diw, +V, W) — %Wg +2V,D,w, =0 (15)

811 - Dgwl + 2Dy D1y +V02W{ + (16)
ZVOV* Sin.Qlt w —%Wﬁ + 2V0 DOWi. + 2V0 D]_VV(’) +
P
2V" sin 2yt Dywh +V " 2, cos 2t wh =0
g% - Dng + 2Dy Dywy +V02w§ (17)

—P—sinﬂztw() —iwﬁ +
PA PA

2V0 DOW'2 + 2V0 DJ_W() =0

Solution of the equation (15) can be assumed as
WO :\ﬁoei(unt (18)

Substitution of the equation (18) in (15) leads to

P
P 2 m_ 0 " : r_
o, W, +V; W/ oA Wi +2V,(io, )W, =0 (19)

= [vg —ijwo” + (i, V)W, —oW, =0
pA
Using the following transformation
. , P ). . .
t=ip= [Vn‘ - p*;j(lﬁ)z +2i0, V,(iB) - o] =0 (20)
[ 2 By J 2 2
=V, ——= B +2V,0pf+0, =0
pA

One can assume

Y, (x) = Ae"* + B 21)
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and using the boundary conditions (y () -y ()=o)

= fo- Py :Z”T”,n 12,
22
R P 2 (22)
26()n 7—V0
PA 27mn _nz pA

— ==,
—(voz —ij L LR
PA PA
For a typical power transmission belt with
properties listed in Table 1, two first natural
frequencies are obtained using the presented
method in this paper (equation (22)) and illustrated
in Figures 3 and 4.
As it is seen from the two Figures, natural
frequency decreases by increasing the cable or belt
speed. There is a specific speed for each case in
which the natural frequency approaches to zero.
This specific value of the speed is called the
critical speed and as it is seen, the critical speeds
are increasing by increasing of the cable tension.

TABLE 1. Mechanical properties of the simulated belt [14]

Symbol Value Unit
p 7.68 x10° kg m’
A 4x107° m’
L 1.0 m

E 3x10° N/ m’
el=¢2 0.1

Py=300 N

Pe=100N

), Rad/s)

1 1
0 5 10 15 p.i} -] Ell )

Vo (m/s)

Figure 3. Variation of the first natural frequency versus the
cable speed
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Po=300N

Po=100N

), (Rad/s)

Vy (m/s)

Figure 4. Variation of the second natural frequency versus

the cable speed.

3. SOLUTION OF THE EQUATIONS OF
MOTION

Galerkin’s method is wused as the solution
technique. In this method, solution is approximated
with the below equation:

Wt =3, (x)q, (1)
= (23)

In which, @ is the mode shape functions and q(t) is
unknown functions of time to be determined. If
one substitutes Equation (23) into (9) and for a

four-term approximation one can reach

v2_ L
PA
R
PA

V(2.66q, +1.06q, )

dy +( ; Jofay =2V(2.660, —1.06d, )+
V

—%[48.7%3 ~348.340,q2 +194.81q,q2 +779.27q,2] (29
v2_ L

" A . .

a2 +(27ppo)w22qz =-2V(2.66q; —4.8d3)

0—;4

-V (2.66q; —4.89q3)
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_E|194.8q7 +1753.360,03

(25)
pL? | +779.2703 + 31179503
vio P
" PA . ' .
4, +( P Yw;d, =2V (6.85¢,-4.87,)
Vio_—o
PA
+V(6.850, —4.805 )~
E |438.340307 +394505 + 26)
pL? | 1763.36030] +7013 450307
v2_ P
Ga +(7p§4)w3q4 =2V (6.85¢3 +1.064; )
Vo? _721
' @7)

-V (6.85q5 +1.06q; )
E |779.27q4q7 +7013.45q,q3 +

pL? | 3117.090,405 +12468.36 43

To solve the above sets of nonlinear coupled
differential equations, the flowchart is used as
shown in Figure (5).

4. VALIDATION OF SIMULATION

A special case of a moving cable with constant
tension and variable speed [12] in the literature is
considered in this section. For such a special case
differential equations of motion can be derived as
[12]

PA(Y+Vy' +2w' )+
(Py + +/(pAv2 )y"=0 (28)

In which k is pulley effect coefficient and the
speed is assumed to have sinusoidal variation

Ut)=\psingt . For a real case with mechanical
parameters listed in Table 1 numerical simulation
has been carried out and the results are shown in
Figures (6) and (7)

162 - Vol. 23, No. 2, May 2010

Figure 5. Schematic picture of the simulated program

q (2}
=

00 05 10 15 20 25 30 HE
Time, ¢ (s)

(B)
Figure 6. Comparison between the results from the present
work (A) and Reference [12] (B) for v0=92, ©0=38

1JE Transactions B: Applications



e
TN

05 1 145 2 25 3
(A)
16
10}
0-5 ﬂ W H
. I’
< 00 |
= [
Y
_1.0.
_1.g . . . . .
0 05 01 13 20 26 30
Time, ¢ (s)
(B)

Figure 7. Comparison between the results from the present
work (A) and Reference [12] (B) v0=90, ®0=42

5. NUMERICAL RESULTS AND
DISCUSSIONS

Using the prescribed method of solution provided
for differential equations of motion a computer
program has been written employing MATLAB
(R2006b)  software and a comprehensive
parametric study is carried out.

For a real case with mechanical properties listed in
Table 1, different approximations for the response
of the midpoint of the cable are illustrated in
Figures (8) to (10). It is seen that the procedure
converges with acceptable accuracy for
approximations with four parts in Galerkin series.
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Figure 8. Response of the midpoint
Galerkin method second order approximation
Galerkin method first order approximation — — —
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Figure 9. Response of the midpoint
Galerkin method second order approximation
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Figure 10. Response of the midpoint
Galerkin method third order approximation
Galerkin method forth order approximation — — —
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As seen the harmonic tension force acts as the oscillations. Effects of the amplitude of harmonic

control force and reduces the amplitude of tension on reduction of the vibration amplitude are
vibration even up to 10%. This means that if the illustrated in Figure 12. As it is seen, amplitude of
moving cable is excited with the harmonic variable vibration reduces by increasing of the amplitude of
tension with the same frequency and phase of the the variable tension.

natural vibration the vibration amplitude will Effects of the frequency of harmonic tension on
decrease noticeably. That result is quite matched reduction of the vibration amplitude are illustrated
with physical experience when someone applies a in Figure (13). As it is seen, the variable tension
harmonic tension on a vibrating rope with the same acts as a controller force to reduce the vibration of
frequency and phase of its vibration to suppress the the cable. It is seen that if the frequency of the

x10'

| Al

‘lll I'|

i m'

‘l ‘wl( *.umhnl‘

il g
’ ‘H | z
002} % | |
-0.03 | {
-0.04 \ ] I y | ' y ’ ‘
005 S S 2 R R ) e a ads —
01=15%*nl=6424Rad’s —
Time (s) ) 1 2 3 4 5 6 T 8 8 10
Figure 11. Effect of the harmonic tension on reduction of the Time®
vibration amplitude - . .
O1=1.0%01=42.83 Rad/s  02=1 0*w1=42 83 Rad/s V*=4 Figure 13. Effect of the frequency of harmonic tension on

e reduction of amplitude
s PO N (Q1=1.0*w1=42.83 Rad/s V*=4m/s P*=40 N)

Q1=1.0¥01=42.83 Rad/s Q2=0 V*=4m/s P*=0N

0.015

08

om by N 5
= Ps=N — =
= Ps=y0N = o
I -3
% A Eg K
ons; - > 3 : s § % s 3 W 0015 N s f 2 1 1 1
Time () 0 5 w15 W 5 B4
Time (S)
Figure 12. Effect of the amplitude of harmonic tension on Figure 14. Effect of the frequency of variation of tension and
reduction of the vibration amplitude speed on reduction of the vibration amplitude
(Q1=1.0*01=42.83 Rad/s  Q2=1.0%01=42.83 Rad/s (Q1=0.5*w1=21.41 Rad/s Q2=0.5*w1=21.41 Rad/s
V*=4 m/s ) V*=2 m/s P*=20 N)

164 - Vol. 23, No. 2, May 2010 IJE Transactions B: Applications



variable tension is exactly equal to the first natural
frequency of the cable, it has its highest
performance in reducing the vibration level of the
cable.

Figure 14 shows dynamic responses of the system
when excitation frequency is less than natural
frequency of the cable. The response of the
systems is shown to be harmonic and stable.

Figure 15 shows dynamic responses of the system
when excitation frequency is exactly equal to
natural frequency of the cable. The response of the
systems is shown to have beating behavior.

0.02s

W{L/2,t)(m)

0025 ) L .
a
Time (8)

Figure 15. effect of the frequency of variation of tension and
speed on reduction of the vibration amplitude
(Q1=1.0*®1=42.83 Rad/s Q2=1.0*®1=42.83 Rad/s
V*=2m/s P*=20)

W(L2,t) (m)

0 15w % ® B W
Time (S)
Figure 16. Effect of the amplitude of variation of tension and
speed on reduction of the vibration amplitude
(Q1=1.0*®1=42.83 Rad/s Q2=1.0*®1=42.83 Rad/s
V*=4m/s P*=40) N
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Maximum amplitude reaches to 2.5 times of the
initial condition.

Figure 16 shows dynamic responses of the system
when excitation frequency is equal to 1.0 times of
natural frequency of the cable and amplitudes of
the variation of the cable tension and also speed
are increasing. In Figure (16) amplitudes of the
harmonic parts of the speed and tension are both
getting twice with respect to the Figure (15). A
comparison between two Figures (15) and (16)
shows that by increasing of the amplitude of
variation of tension and speed frequency of beating

0oms

WLZ, 0 (m)

001 1 1 I L
00 5D 5 10 15 20 r-) 0 £ 40

Time (3)
Figure 17. Effect of the frequency of variation of tension and
speed on reduction of the vibration
(Q1=1.5*01=64.24 Rad/s Q2=1.5*w1=64.24 Rad/s
V*=2m/s P*=20N)

0015

WL/2,t){m)

o0 . . . . ) .
00 SU 5 10 15 20 %5 30 % 40
Time (5)

Figure 18. Effect of the frequency of variation of tension and
speed on reduction of the vibration amplitude
(Q1=2.0*01=85.67 Rad/s Q2=2.0*®w1=85.67 Rad/s
V*=2m/s P*=20 N)
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increases.

Figure 17 shows dynamic responses of the system
when excitation frequency is equal to 1.5 times of
natural frequency of the cable. The response of the
systems is shown to have harmonic behavior again.
Figure 18 shows dynamic responses of the system
when both excitation frequencies are equal to 2
times of natural frequency of the cable. The
response of the systems is shown to have beating
behavior again.

Figure 19 shows effects of the magnitude of
variation of the tension force and moving speed
when the excitation frequency is exactly two times
of the natural frequency of the system.

Figure 20 shows effects of the frequency of
variation of the tension force and moving speed
when the frequency variation of the variable
tension is equal to two times of the natural
frequency and simultaneously frequency of
variation of the speed is exactly the natural
frequency of the system. A comparison between
two Figures (18) and (20) shows that beating
frequency is considerably increasing if one of the
excitation frequencies drops from two times to
exactly the natural frequency of the system.

Figure 21 shows effects of the frequency of
variation of the tension force and moving speed
when the frequency variation of the variable speed
is equal to two times of the natural frequency and
simultaneously frequency of variation of the
variable tension is exactly the natural frequency of
the system. Again, a comparison between two
Figures (18) and (21) shows that beating frequency
is considerably increasing if one of the excitation
frequencies drops from two times to exactly the
natural frequency of the system.

Figure 22 shows effects of the frequency of
variation of the tension force and moving speed
when the frequency variation of the variable
tension is equal to three times of the natural
frequency and simultaneously frequency of
variation of the wvariable speed is exactly the
natural frequency of the system. Again, a
comparison between three Figures (20), (21) and
(22) shows that beating frequency is lower than
two previous cases (Q1=2.0*w1 , Q2=1.0*w1) and
(Q1=1.0*wl 5 Q2=2.0*wl) and also magnitude of
the vibration is considerably lower.

Figure (23) shows effects of the frequency of
variation of the tension force and moving speed

166 - Vol. 23, No. 2, May 2010

when the frequency variation of the variable speed
is equal to three times of the natural frequency and
simultaneously frequency of variation of the
variable tension is exactly the natural frequency of
the system. Again, a comparison between three
Figures (21), (22) and (23) shows that beating
frequency is lower than two previous cases
(Q1=2.0*wl , Q2=1.0*wl) and (Q1=1.0*wl
02=2.0*w1) and also magnitude of the vibration is
considerably lower.

0.04

W(Li2,t) (m)

[P [ ! l|-

] 5 10 15 20 25 0 35 )
Time (5)

Figure 21. Effect of the frequency of variation of tension and
speed on reduction of the vibration amplitude
(Q1=2.0*®1=85.67 Rad/s Q2=1.0*®1=42.83 Rad/s
V*=2m/s P*=20 N)

o
o
3
i
"
2
i
21
w
o
=
]

Time (5)

Figure 22. Effects of the frequency of variation of tension and
speed on reduction of the vibration amplitude
(Q1=1.0*0w1=42.83 Rad/s Q2=3.0*w1=128.49 Rad/s
V*=2m/s P*=20N)
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'. ‘1 . |
|

W(L/2,t) (m)

-25
o

Time (S)

Figure 23. Effects of the frequency of variation of tension and
speed on reduction of the vibration amplitude
(Q1=3.0*01=128.49 Rad/s Q2=1.0*01=42.83 Rad/s
V*=2m/s P*=20 N)

Figure 24. effects of the frequency of variation of tension and
speed on reduction of the vibration amplitude
(Q1=3.0*0w1=128.49 Rad/s  Q2=3.0*n1=128.49 Rad/s
V*=2m/s P*=20N)

Figure 24 shows effects of the frequency of
variation of the tension force and moving speed
when the frequency variation of the variable speed
is three times of the natural frequency and
simultaneously frequency of variation of the
variable tension is also three times of the natural
frequency of the system. A comparison between
three Figures (22), (23) and (24) shows that
beating phenomena vanishes and amplitude of
vibration considerably decreases.
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5. CONCLUSION

Dynamic Analysis of an axially moving cable with
time dependent tension and velocity was
developed. It was found that a specific value of
speed in which natural frequency of the system
approaches to zero do exist. This specific speed is
called critical speed and it was proved that
increasing the tension will increase the critical
speed of the moving cable. In addition to that the
harmonic tension can act as a controller and
reduces the amplitude of vibration up to 25 times.
Optimal frequency of the variable tension was
found to be exactly the same as the first natural
frequency of the systems and also it was proved
that increasing the amplitude of the variable
tension can considerably reduce the level of
vibration. It was found that the behavior of the
systems is harmonic when the excitation frequency
is higher or lower than the natural frequency. At
the natural frequency, the system has beating
behavior and by increasing the amplitude of the
moving speed, the variable tension and the
frequency of beating will also increase. It was
shown that the dynamic response of the system
when both excitation frequencies are equal to 2
times of natural frequency of the cable has beating
behavior. The beating frequency is considerably
increasing if one of the excitation frequencies
drops from two times to exactly the natural
frequency of the system. In the case, the frequency
variation of the variable speed and tension are
simultaneously three times of the natural frequency
of the system, beating phenomena vanishes and the
amplitude considerably decreases.
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