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Abstract   Dynamic Analysis of an axially moving cable with time dependent tension and velocity is 
studied in this paper. Tension force and the moving speed are assumed to be harmonic. 
It is found that there exists a specific value of speed in which natural frequency of the system approaches 
zero. This specific speed for such a critical condition is called critical speed and it will be proved that 
increasing the cable tension increases critical speed of the moving cable. Multiple-Scales perturbation 
technique is used to discretize the nonlinear equations of motions. Critical speeds are then obtained in 
which vibrations of motion become unstable. Stability analysis is carried out for different sets of 
excitation frequency. Dynamic responses of the system are calculated using Galerkin’s method. A 
comprehensive parametric study is carried out and effects of different parameters like the moving speed 
and tension force on the responses are studied both in frequency and time domain 
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كابلهاي متحرك با سرعت و نيروي كشش نوساني مورد مطالعه قرار مي  يكميانياله تحليل دقدر اين م   چكيده
اله انرژي جنبشي و پتانسيل كابل متحرك محاسبه وبه كمك اصل هميلتون معادلات حركت قدراين م .گيرد

ادامه، معادلة حركت به  در .نيروي كشش متغير استخراج مي گردد با ارتعاشات كابل متحرك باسرعت متغيرو
نمودارهاي فركانسي برحسب سرعتها و پارامترهاي موثر  مورد تحليل واقع شده و Multiple Scalesكمك روش 

سرعتهاي بحراني كه به ازاي آن سرعتها، فركانس طبيعي ارتعاشات كابل متحرك صفر مي . بر آن رسم مي گردد
حركت با در نظر گرفتن ضرايب وابسته به زمان و جملات غير خطي،  معادلة ديناميكي. گردد، محاسبه مي شوند

 Multiple Scalesبا استفاده از روش . مورد مطالعه قرارگرفته و تحليل پايداري معادلات حركت انجام مي پذيرد
به ازاي مقادير مختلف فركانسهاي تحريك مرزهاي پايداري پاسخهاي سيستم بر حسب مقدار پارامتر انحراف 

)Detuning parameter( سپس با استفاده از روش گالركين به تحليل پاسخ ديناميكي كابل . محاسبه مي شوند
اين روش، معادلات ديفرانسيل غيرخطي  در. متحرك با سرعت و نيروي كشش متغير با زمان پرداخته مي شود

معادلات حاصل با  يل وبا مشتقات جزئي به دستگاه معادلات ديفرانسيل غير خطي زماني جفت شده، تبد
براساس الگوريتم حل شرح داده شده، يك برنامة . تحليل واقع مي شود روش عددي مناسب مورد استفاده از

ازجمله دامنه و فركانس  پارامترهاي مختلف روي اثر رايانه اي تهيه و با استفاده از آن يك مطالعة پارامتريك بر
نظر گرفته شده بر روي پاسخهاي  اثر تعداد مودهاي درسرعت و نيروي كشش در رزونانسهاي مختلف، 

اي تهيه شده، براي دو  برنامة رايانه و الگوريتم حل از صحت منظور اطمينان به. ديناميكي انجام خواهد پذيرفت
مورد خاص موجود در مقالات ديگر محققين، شبيه سازي ديناميكي انجام مي پذيرد و پاسخهاي ديناميكي با 

 .مقايسه مي شود نتايج موجود
 

 
1. INTRODUCTION 

 
Due to their technological importance, the 
dynamics of axially moving materials has received 
considerable attention from many researchers. 

Thread lines, high speed magnetic and paper tapes, 
strings, belts and saw blades, fibers, chains, beams 
and pipes transporting fluids are some of the 
technological examples. The vast literature on 
axially moving material vibrations is reviewed by 
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Wickert and Mote [1]. They presented the complex 
modal analysis for exact solutions to linear 
vibration as well as approximate solutions for 
nonlinear vibration. Pakdemirli and Ulsoy 
presented the dynamic stability of an axially 
accelerating string by using the method of multiple 
scales [2]. Chen et al. studied the steady-state 
transverse vibration of a parametrically excited 
axially moving string with geometric nonlinearity 
[3]. Chen et al. investigated an axially traveling 
viscoelastic string by using the Boltzmann 
superposition principle along with the Galerkin 
method, and presented chaotic behaviors and 
bifurcation diagrams with varying parameters [4]. 
A detailed literature review can be found in 
Pellicano [5] on the nonlinear vibration and 
complex dynamic behaviors associate with general 
moving media. Recently, by using the Hamiltonian 
dynamics in the symplectic space, Wang, Huang 
and Liu studied the eigenvalue problem of the 
axially moving string again and presented 
bifurcation of eigenvalues and stability properties 
of the motion at the critical transport speed [6]. 
Hwang and Perkins [7,8] investigated the effect of 
an initial curvature due to supporting wheels and 
pulleys on bifurcation and the stability of 
equilibrium. Ravindra and Zhu [9] studied 
pitchfork-type bifurcation and chaos in an axially 
accelerating beam in a supercritical regime, and 
Pellicano et al. [10] and [11] studied post-
bifurcation velocity with viscous damping and 
external harmonic excitation in the supercritical 
speed range using a high-dimensional discrete 
model obtained by the Galerkin procedure. 
Parametrically excited vibration of a moving string 
was studied by Pakdemirli et al [12] using two 
approaches of Floquet theory and Galerkin’s 
approach. 
Nonlinear free vibration and stability analysis of an 
axially moving string in transverse motion was 
studied by Wang et al. in [13]. Based on the 
Routh–Hurwitz criterion, the condition for Hopf 
bifurcation was presented in that paper with 
multiple parameters for transverse motions 
perturbed in the vicinity of the equilibrium 
configurations. In [14], vibration characteristics of 
a light axially moving band were investigated by a 
numerical study in the subcritical and supercritical 
speed ranges. The vibration examined through the 
dependences between the fundamental frequency, 

axial velocity and vibration amplitude resulting 
from nonlinear free vibration. 
The latest progresses and future directions on 
nonlinear dynamics for transverse motion of 
axially moving strings have been summarized in 
[15]. An asymptotic approach was proposed by 
Chen et al [16] to investigate nonlinear parametric 
vibration of axially accelerating viscoelastic 
strings. Effects of the initial stress, the parameters 
in the Kelvin model, and the axial speed 
fluctuation amplitude on the amplitudes and the 
existence conditions of steady-state responses were 
studied. Transversal nonlinear vibration of an 
axially moving viscoelastic string supported by a 
partial viscoelastic guide was analytically 
investigated in [17]. In the case of principal 
parametric resonance, the stability and bifurcation 
of trivial and non-trivial steady-state responses 
were analyzed through the Routh–Hurwitz 
criterion in that paper. 
Surveying the literature indicates that in most cases 
the speed of the moving belt is assumed to be 
constant for simplification. In very few published 
papers the speed is adopted to be a harmonic 
function. In our present study in order to generalize 
the study and approaching to the real case both the 
tension and moving speed are simultaneously 
assumed to be harmonic functions.    
Importance of the subject arises from the following 
reasons: 
1-Oscillating of the cables or belts leads to 

dynamic deflection and consequently dynamic 
stresses in their structures. Therefore, undesired 
vibrations yield to fatigue phenomena and 
dramatically reduce the life of cables and belts. 

2-Uncontrolled vibrations in cables and belts may 
finally lead to instability of vibration and failure 
of the transmission system. 

3-In sense of energy consumption, undesired 
vibrations result in undesired energy loss in the 
system. In other words, a considerable part of 
energy is wasted in cable or belt oscillation. 

4-Vibration of system may produce a lot of noise 
especially in power transmission systems like 
chain-sprocket driver systems. 

5-Vibration of the cable or belt system may lead to 
excessive force on pulley’s bearings and 
supports, furthermore increases the level of 
vibration transmitted to the body frame. 

6-Vibrations of the cable or belt system reduce the 



IJE Transactions B: Applications Vol. 23, No. 2, May 2010 - 159 

allowable operational speed of the transmission 
systems. The limitation arises from the belt 
potential to be separated from its pulley at high 
speed operation. 

Dynamic Analysis of an axially moving cable with 
time varying tension and velocity is studied in this 
paper. Tension force and the moving speed are 
assumed to be harmonic. Multiple Scales technique 
is used to discretize the nonlinear equations of 
motions. Critical speeds, in which vibrations of 
motion become unstable, are then obtained and its 
different parameters are recognized. Stability 
analysis of the system is carried out for different 
sets of excitation frequency. Vibration responses of 
the system are calculated using an approximate 
method i.e. Galerkin’s method. A comprehensive 
parametric study is carried out and effects of 
different parameters like the moving speed and 
tension force on the responses are studied. 
 
 
 

2. MATHEMATICAL MODELING 
 
Schematic picture of the moving belt is shown in 
Figure 1. The belt is modeled by a moving cable 
traveling with time dependent tension and speed. 
V and P are the cable tension and speed 
respectively and ρ, A and E are respectively mass 
density, cross sectional area and Yang modulus of 
the cable. R is the pulley radius and L is the cable 
length between the two spans.  
The mathematical model is simulating vibration of 
moving belts as shown in Figure 2. u(x,t) and 
w(x,t) are axial and transversal displacements 
respectively and F(x,t) represents external force 
per unit length of the cable. 
 
 

 
Kinetic energy of the systems can be derived as  
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Figure 1. Schematic picture of the moving belt with time 
dependent tension and velocity 

 
Figure 2. Schematic picture of the moving cable with axial
and transversal displacements 
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Implementing the boundary conditions:  
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Substituting Equation (7) into (6) the following 

result can be achieved  
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Variable speed and cable tension are assumed to be 

tSinVVV 11 *  
                                         (10) 

tSinPPP 22 *  
                                         (11) 

 

Using two dimensional perturbation techniques, 

solution of the eaquation of motion can be assumed 

to be 
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If one assumes the coefficients of the same power 

of 1  and 2  equal to zero 

02, 0000
0

0
2

00
2
0

0
2

0
1  wDVw

A

P
wVwD


          (15) 

  (16) 

0wtcosVwDtsinV2

wDV2wDv2w
A

P
wtsinVV2

wVwDD2wD

011
*

001
*

0101001
0

01
*

0

1
2

00101
2
0

1
1













 

  (17) 

0wDV2wDV2

w
A

P
wtsin

A

P

wVwDD2wD

010200

2
0

02

2
2

00102
2
0

1
2














 

 

Solution of the equation (15) can be assumed as  
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and using the boundary conditions ( 0)L(Y)0(Y nn  ) 
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For a typical power transmission belt with 
properties listed in Table 1, two first natural 
frequencies are obtained using the presented 
method in this paper (equation (22)) and illustrated 
in Figures 3 and 4. 
As it is seen from the two Figures, natural 
frequency decreases by increasing the cable or belt 
speed. There is a specific speed for each case in 
which the natural frequency approaches to zero. 
This specific value of the speed is called the 
critical speed and as it is seen, the critical speeds 
are increasing by increasing of the cable tension. 

 
3. SOLUTION OF THE EQUATIONS OF 

MOTION 
 
Galerkin’s method is used as the solution 
technique. In this method, solution is approximated 
with the below equation: 
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TABLE 1. Mechanical properties of the simulated belt [14] 

Symbol Value    Unit 

ρ 7.68 X103 kg m3 
A 4 X10-5 m2 

L 1.0 m 
E 3 X109 N/ m2 
ε1=ε2 0.1  

 

 
Figure 3. Variation of the first natural frequency versus the 
cable speed 

 

Figure 4. Variation of the second natural frequency versus 

the cable speed. 
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To solve the above sets of nonlinear coupled 
differential equations, the flowchart is used as 
shown in Figure (5). 
 
 
 

4. VALIDATION OF SIMULATION 
 
A special case of a moving cable with constant 
tension and variable speed [12] in the literature is 
considered in this section. For such a special case 
differential equations of motion can be derived as 
[12] 
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In which k is pulley effect coefficient and the 
speed is assumed to have sinusoidal variation 

tsinv)t(v 00   . For a real case with mechanical 
parameters listed in Table 1 numerical simulation 
has been carried out and the results are shown in 
Figures (6) and (7)  

Figure 5. Schematic picture of the simulated program

 

 
(A) 

 
(B) 

Figure 6. Comparison between the results from the present 
work (A) and Reference [12] (B) for v0=92, ω0=38 
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5. NUMERICAL RESULTS AND 
DISCUSSIONS 

 
Using the prescribed method of solution provided 
for differential equations of motion a computer 
program has been written employing MATLAB 
(R2006b) software and a comprehensive 
parametric study is carried out.  
For a real case with mechanical properties listed in 
Table 1, different approximations for the response 
of the midpoint of the cable are illustrated in 
Figures (8) to (10). It is seen that the procedure 
converges with acceptable accuracy for 
approximations with four parts in Galerkin series. 

 
(A) 

 

(B) 
 
Figure 7. Comparison between the results from the present
work (A) and Reference [12] (B) v0=90, ω0=42 
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Figure 8. Response of the midpoint  
Galerkin method second order approximation   
Galerkin method first order approximation  
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Figure 9. Response of the midpoint  
Galerkin method second order approximation   
Galerkin method third order approximation  
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Figure 10. Response of the midpoint  
Galerkin method third order approximation  
Galerkin method forth order approximation  
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As seen the harmonic tension force acts as the 
control force and reduces the amplitude of 
vibration even up to 10%. This means that if the 
moving cable is excited with the harmonic variable 
tension with the same frequency and phase of the 
natural vibration the vibration amplitude will 
decrease noticeably. That result is quite matched 
with physical experience when someone applies a 
harmonic tension on a vibrating rope with the same 
frequency and phase of its vibration to suppress the 

oscillations. Effects of the amplitude of harmonic 
tension on reduction of the vibration amplitude are 
illustrated in Figure 12. As it is seen, amplitude of 
vibration reduces by increasing of the amplitude of 
the variable tension.  
Effects of the frequency of harmonic tension on 
reduction of the vibration amplitude are illustrated 
in Figure (13). As it is seen, the variable tension 
acts as a controller force to reduce the vibration of 
the cable. It is seen that if the frequency of the  

 
Time (s)  

Figure 11. Effect of the harmonic tension on reduction of the 
vibration amplitude
Ω1=1.0*ω1=42.83 Rad/s      Ω2=1.0*ω1=42.83 Rad/s  V*=4 
m/s P*=40 N  
Ω1=1.0*ω1=42.83 Rad/s      Ω2=0   V*=4 m/s    P*=0 N  
 
 
 

 
 

 
Figure 12. Effect of the amplitude of harmonic tension on
reduction of the vibration amplitude 
( Ω1=1.0*ω1=42.83 Rad/s      Ω2=1.0*ω1=42.83 Rad/s      
V*=4 m/s )  

 
 

 
 
Figure 13. Effect of the frequency of harmonic tension on 
reduction of amplitude 
( Ω1=1.0*ω1=42.83 Rad/s      V*=4 m/s     P*=40  N ) 
 
 
 

 

  
 

Figure 14. Effect of the frequency of variation of tension and 
speed on reduction of the vibration amplitude 

(Ω1=0.5*ω1=21.41 Rad/s  Ω2=0.5*ω1=21.41 Rad/s          
V*=2 m/s     P*=20  N) 
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variable tension is exactly equal to the first natural 
frequency of the cable, it has its highest 
performance in reducing the vibration level of the 
cable. 
Figure 14 shows dynamic responses of the system 
when excitation frequency is less than natural 
frequency of the cable. The response of the 
systems is shown to be harmonic and stable.  
Figure 15 shows dynamic responses of the system 
when excitation frequency is exactly equal to 
natural frequency of the cable. The response of the 
systems is shown to have beating behavior. 

Maximum amplitude reaches to 2.5 times of the 
initial condition. 
Figure 16 shows dynamic responses of the system 
when excitation frequency is equal to 1.0 times of 
natural frequency of the cable and amplitudes of 
the variation of the cable tension and also speed 
are increasing. In Figure (16) amplitudes of the 
harmonic parts of the speed and tension are both 
getting twice with respect to the Figure (15). A 
comparison between two Figures (15) and (16) 
shows that by increasing of the amplitude of 
variation of tension and speed frequency of beating 

 
Figure 15. effect of the frequency of variation of tension and
speed on reduction of the vibration amplitude 
(Ω1=1.0*ω1=42.83 Rad/s  Ω2=1.0*ω1=42.83 Rad/s          
V*=2 m/s     P*=20)   
 

 
 

 
 
Figure 16. Effect of the amplitude of variation of tension and
speed on reduction of the vibration amplitude 
(Ω1=1.0*ω1=42.83 Rad/s  Ω2=1.0*ω1=42.83 Rad/s          
V*=4 m/s     P*=40)  N 

 
Figure 17. Effect of the frequency of variation of tension and
speed on reduction of the vibration  
(Ω1=1.5*ω1=64.24 Rad/s  Ω2=1.5*ω1=64.24 Rad/s      
V*=2 m/s     P*=20 N ) 
 
 

 
 

 
Figure 18. Effect of the frequency of variation of tension and
speed on reduction of the vibration amplitude 
(Ω1=2.0*ω1=85.67 Rad/s  Ω2=2.0*ω1=85.67 Rad/s          
V*=2 m/s     P*=20  N) 
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increases. 
Figure 17 shows dynamic responses of the system 
when excitation frequency is equal to 1.5 times of 
natural frequency of the cable. The response of the 
systems is shown to have harmonic behavior again. 
Figure 18 shows dynamic responses of the system 
when both excitation frequencies are equal to 2 
times of natural frequency of the cable. The 
response of the systems is shown to have beating 
behavior again.  
Figure 19 shows effects of the magnitude of 
variation of the tension force and moving speed 
when the excitation frequency is exactly two times 
of the natural frequency of the system. 
Figure 20 shows effects of the frequency of 
variation of the tension force and moving speed 
when the frequency variation of the variable 
tension is equal to two times of the natural 
frequency and simultaneously frequency of 
variation of the speed is exactly the natural 
frequency of the system. A comparison between 
two Figures (18) and (20) shows that beating 
frequency is considerably increasing if one of the 
excitation frequencies drops from two times to 
exactly the natural frequency of the system. 
Figure 21 shows effects of the frequency of 
variation of the tension force and moving speed 
when the frequency variation of the variable speed 
is equal to two times of the natural frequency and 
simultaneously frequency of variation of the 
variable tension is exactly the natural frequency of 
the system. Again, a comparison between two 
Figures (18) and (21) shows that beating frequency 
is considerably increasing if one of the excitation 
frequencies drops from two times to exactly the 
natural frequency of the system. 
Figure 22 shows effects of the frequency of 
variation of the tension force and moving speed 
when the frequency variation of the variable 
tension is equal to three times of the natural 
frequency and simultaneously frequency of 
variation of the variable speed is exactly the 
natural frequency of the system. Again, a 
comparison between three Figures (20), (21) and 
(22) shows that beating frequency is lower than 
two previous cases (Ω1=2.0*ω1 , Ω2=1.0*ω1) and 
(Ω1=1.0*ω1 و   Ω2=2.0*ω1) and also magnitude of 
the vibration is considerably lower. 
Figure (23) shows effects of the frequency of 
variation of the tension force and moving speed 

when the frequency variation of the variable speed 
is equal to three times of the natural frequency and 
simultaneously frequency of variation of the 
variable tension is exactly the natural frequency of 
the system. Again, a comparison between three 
Figures (21), (22) and (23) shows that beating 
frequency is lower than two previous cases 
(Ω1=2.0*ω1 , Ω2=1.0*ω1) and (Ω1=1.0*ω1 و  
Ω2=2.0*ω1) and also magnitude of the vibration is 
considerably lower. 
 

 
 
Figure 21. Effect of the frequency of variation of tension and 
speed on reduction of the vibration amplitude  
(Ω1=2.0*ω1=85.67 Rad/s  Ω2=1.0*ω1=42.83 Rad/s          
V*=2 m/s     P*=20  N) 
 
 
 

 
 
 
Figure 22. Effects of the frequency of variation of tension and 
speed on reduction of the vibration amplitude  
(Ω1=1.0*ω1=42.83 Rad/s  Ω2=3.0*ω1=128.49 Rad/s          
V*=2 m/s     P*=20 N)  
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Figure 24 shows effects of the frequency of 
variation of the tension force and moving speed 
when the frequency variation of the variable speed 
is three times  of the natural frequency and 
simultaneously frequency of variation of the 
variable tension is also three times of the natural 
frequency of the system. A comparison between 
three Figures (22), (23) and (24) shows that 
beating phenomena vanishes and amplitude of 
vibration considerably decreases. 

 
5. CONCLUSION 

 
Dynamic Analysis of an axially moving cable with 
time dependent tension and velocity was 
developed. It was found that a specific value of 
speed in which natural frequency of the system 
approaches to zero do exist. This specific speed is 
called critical speed and it was proved that 
increasing the tension will increase the critical 
speed of the moving cable. In addition to that the 
harmonic tension can act as a controller and 
reduces the amplitude of vibration up to 25 times. 
Optimal frequency of the variable tension was 
found to be exactly the same as the first natural 
frequency of the systems and also it was proved 
that increasing the amplitude of the variable 
tension can considerably reduce the level of 
vibration. It was found that the behavior of the 
systems is harmonic when the excitation frequency 
is higher or lower than the natural frequency. At 
the natural frequency, the system has beating 
behavior and by increasing the amplitude of the 
moving speed, the variable tension and the 
frequency of beating will also increase. It was 
shown that the dynamic response of the system 
when both excitation frequencies are equal to 2 
times of natural frequency of the cable has beating 
behavior. The beating frequency is considerably 
increasing if one of the excitation frequencies 
drops from two times to exactly the natural 
frequency of the system. In the case, the frequency 
variation of the variable speed and tension are 
simultaneously three times of the natural frequency 
of the system, beating phenomena vanishes and the 
amplitude considerably decreases. 
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