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Abstract   In this paper it is tried to estimate the reliability of a fully connected network of some 
unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic 
messaging has been witnessed during the last few years. The acute problem of node failure and 
connection failure is frequently encountered in communication through various types of networks. 
We know that a network can be defined as an undirected graph N(V,E). It is believed that in a 
network the nodes as well as the connections can fail and hence can cause unsuccessful 
communication. So, it is important to estimate the network reliability to encounter the network 
failure. Various tools have been used to estimate the reliability of various types of networks. In this 
paper we are considering the approach of neuro optimization for estimating the network reliability. 
We use the simulation annealing to estimate the probabilities of various nodes in the network and 
Hopfield model to calculate the energies of these nodes at various thermal equilibriums. The state of 
the minimum energy represents the maximum reliability state of the network. 
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رقابل ي گره غيوسته که شامل تعدادي پک شبکه کاملاًينان يت اطمين مقاله تلاش شده تا قابليدر اچكيده       

ر، شاهد ي اخيها در سال. ن زده شوديباشد، تخم يها م ن گرهين اينان بيرقابل اطميغ) يها لبه(نان و اتصالات ياطم
ها و افت اتصالات   مختلف، مشکل حاد افت گرهيها شبکهدر. ميا  بودهيکي الکترونيها اميع ارسال پيش سريافزا

. ف کردي تعرN(V,E)م يرمستقيتوان به صورت نمودار غ يک شبکه را ميم که يدان يم. است به دفعات اتفاق افتاده
جه باعث يتوانند دچار افت شوند و در نت يها هم مانند اتصالات م ک شبکه، گرهين است که در يتصور بر ا
 يها روش. شود ن زدهينان شبکه در مواجهه با افت شبکه تخميت اطميلذا مهم است که قابل. وفق گردندارتباط نام

کرد ين مقاله، ما رويدر ا. برده شده است کار ها به نان انواع مختلف شبکهيت اطمين قابلي تخمي برايمختلف
ن ي تخمي براي حرارتيساز هيما از شب. ميا کار برده نان شبکه بهيت اطمين قابلي تخمي را براي عصبيساز نهيبه

 مختلف، ي حرارتيها ها در موازنه ن گرهي اي محاسبه انرژيم و برايا احتمال انواع گره در شبکه استفاده کرده
 .نان شبکه را دارديت اطمين قابلي ممکن، بالاترين انرژي کمتريتِ دارايوضع. ميا لد را به کار گرفتهيف مدل هوپ

 
 

1. INTRODUCTION 
 
In recent years, enormous growth has been seen in 
electronic message traffic. There is a matching 
growth of demand in computer and communication 
networks, both in complexity and size [1]. The 

major concern with the communication is about its 
reliability. The network which is used for the 
communication must be reliable, i.e. the network 
must work without any failure in specific period of 
time. It is obvious that the network reliability 
concerns with availability of the route to 
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communicate among the nodes in a computer 
network, so the data can reach successfully to the 
destination. In other words, it is the probability that 
the network is in operational state for the given 
time period [2]. In the network design process, a 
successful design relies on many factors. Reliability 
is just one measure of a network that contributes to 
its overall performance [3]. Hence to achieve the 
maximum reliability, the nodes and the edges 
(communication link) both should function properly 
or with the highest operational probability. The 
network can become unreliable due to the failure of 
either node or edge, i.e. failure of networks can cause 
due to the component failure or communication 
failure. For example, the routing protocol may fail 
to recognize a functioning route and hence some 
data can not reach to the destination, or traffic 
being concentrated and congested to certain part of 
network may cause system overload. These are the 
examples of software and control failure rather 
than the topological component failures. The 
topological failure can be categorized as random or 
non-random. In the network reliability measures 
we consider the probability of network being 
operational subject to random failure of its 
component which includes the nodes failure and 
communication link failure. 
     There are various approaches available in the 
literature to estimate the reliability for the network 
[4-19]. Almost in every approach, the estimation is 
based on either the unreliable nodes or edges in the 
network. Shpungin [20] has proposed a model for 
estimating the reliability of the network for 
unreliable nodes and edges as 
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Where, pv and pe are the probabilities of the nodes 
and edges in up (operational) state and qv, qe are 
the probabilities of the nodes and edges in down 
(non-operational) state, respectively. n and m are 
number of nodes and the communication links in 
the network, respectively. 
     Hence, it is clear from the model of Y. 
Shpungin [20] that it is the combinatorial approach 
of estimating the reliability. It is well known that 

the combinatorial approach suffers the complexity 
as the size of the network increases. 
     Most of the traditional problems of combinatorial 
permutations can be solved with help of Artificial 
Neural Network (ANN) [21,22]. It is well known 
that the ANN consists of various non liner 
processing units. These processing units can be 
interconnected in various topological structures 
[23,24]. One of the widely used topological 
structure is feedback neural network, in which the 
output of each unit is fed as input to all other units, 
with each link connecting any two units, a weight 
is associated which determines the strength of the 
input signal. The function of the feedback network 
with non linear unit can be described in terms of 
the trajectory of the states of the network with 
time. Associating an energy function with each 
state of the network, the trajectory describes the 
traversal along the energy landscape. The minima 
of the energy landscape correspond to the stable 
states, which can be used to show the minimum 
failure state of the network or the stability for the 
network [25]. Thus, the stability in the network can 
be interpreted as the minimum disturbance state or 
the maximum reliable state of the network. The 
minimum energy state has been considered as the 
state of equilibrium, where all the perturbations are 
adjustable. So that, the equilibrium states of the 
network will exhibit the state of network with 
maximum reliability. There is the probability that 
the network can exhibit more than one minimum 
energy states. It means that we have more than one 
reliable state, but the state which consists with 
minimum energy among the minimum energy states 
will be the most reliable state. Hence the problem 
can be mapped as an optimization problem, in 
which the minimum energy state expected to 
explore in the terms of network parameters besides 
all the given constrains of the network must be 
satisfied. One of the most prevalent uses of neural 
network is neural optimization, which is a technique 
for solving a problem by casting it into a 
mathematical equation that when either maximized 
or minimized, solve the problem without going 
into detailed dynamics of the concerned physical 
system. It is possible to map such problem onto a 
feedback network, where the units and connection 
strengths are identified by comparing the cost 
function of the problem with the energy function of 
the network expressed in terms of the state values 
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of the units and connection strength. The Neural 
dynamics, in order to search for the global stable 
state (minimum energy state), may trap in the local 
minimum of the energy function. Hence, to achieve 
the global minima, skipping the local minima, the 
feedback neural network can implement with 
stochastic units. It is understood that for stochastic 
unit the state of the unit is updated using a probability 
law, which is controlled by a temperature parameter 
(T). Hence at the higher temperature many states 
are likely to be visited irrespective of the energies 
of the states. Thus, the local minima of the energy 
function can be escaped. As the temperature is 
gradually reduced, the states having lower energies 
will be visited more frequently. Finally, at T = 0, 
the state with the lowest energy will have the 
highest probability. This method of search for a 
global minimum of the energy function is known 
as a simulated annealing [26]. In this paper, we are 
considering a fully connected network. Every node 
is connected to other nodes, except itself. Some 
constrains are also employed in the network. The 
connections between the nodes have been considered 
in symmetric fashion and the nodes are considered 
in bipolar states. We have also assumed that the 
nodes as well as edges of the network may be 
unreliable, i.e. both nodes and edges can fail. If 
any node or any edge or both are down (fail), then 
they are represented with -1 or if they are up 
(operational) are represented with +1. This network 
works as the Hopfield type neural network and can 
be used for optimization. The probabilistic function 
has used to determine the state update and simulated 
annealing process has been also employed in order 
to search the global minimum. The minimum 
energy states of the network are exhibiting the 
stability for the network at the given condition. It is 
quite obvious that as the network becomes more 
and more stable its reliability will also increase. 
Thus, in each minimum energy state the network 
will exhibit some reliability, but the most reliable 
state of the network may represent with global 
minimum energy state i.e. the minimum energy 
state among all the energy minima’s. The proposed 
method for estimating the network reliability for the 
given conditions has been implemented with neuro 
optimization tools and the evolutionary search 
method i.e. simulated annealing. The following 
subsections describe the proposed method and its 
implementation. 

2. NETWORK MODEL AND NEURO 
OPTIMIZATION 

 
The states of the nodes and the communication links 
between the nodes are described with the undirected 
graph. Let us consider an undirected graph (or 
network) N(V,E), where V is set of n vertices 
(nodes) and E is the set of m edges. Associate with 
each node x ∈  V and each edge e ∈  E is a bipolar 
random variable Xε, denoting the operational and 
failure state of the edge/node. In particular {Xε=1} 
represents the event that the node/edge is up 
(operational) and {Xε=-1} represents the event that 
the node edge is down (failed). Hence, the network 
N consists of a set of n nodes or vertices V 
(representing the computers, routers, servers etc) 
and a set of m edges E (representing the links 
between computer and routers etc). The nodes and 
edges are subject to random bipolar failure i.e. when 
a node or edge fails, it fails completely, and 
otherwise it functions fully. We also consider a 
subset of nodes k ⊆ V as the “terminal nodes”. 
These nodes represent the machines that actually 
interface with the users or servers that perform the 
computations. These terminal nodes are essential to 
the system function and required to interconnect 
with each other. Thus, the network is considered 
functioning if and only if every terminal is 
connected with each other terminal i.e. it constitutes 
the fully connected network with the assumed 
constraints of symmetric weights between the nodes 
and the zero threshold value for each node. Thus, 
depending upon the types of link and the number of 
terminals, the reliability problem can be divided into 
the different cases i.e. the edge set in the network 
can be directed or undirected, the numbers of 
terminal can range from a minimum of two to a 
maximum of n. Therefore, to accomplish the task of 
network reliability estimation, we consider the 
undirected fully connected network using Hopfield 
type with the maximum number of nodes in the 
network. Thus, the selected network model can 
successfully mapped to the neural network 
architecture of Hopfield type. For this purpose, the 
nodes are considered as the bipolar processing units 
with zero threshold values and the edges are 
considered as the connection strength (weight) 
between the processing units with the constraints of 
symmetric weight between the nodes. The Hopfield 
model of the feedback neural network architecture 
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can be defined as the fully connected network of 
Mcculloch Pitt’s neuron (processing unit) with the 
bipolar output state of the units. The output of each 
unit is fed to all the other units with weight Wij for 
all i and j. The weights between the units are 
considered as the symmetric weights i.e. Wij = Wij 
for all i and j. The bipolar output state of each unit 
can be defined as: 
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and for the convince, θi = 0 (for all i) we have, 
 

ji
n

1j
jsijwfis ≠
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
=

=  (3) 

 
[The state of each unit is either +1 or -1 at any 
given instant of time]. One of the most successful 
applications of Hopfield type neural network 
architecture is in solving the optimization problems 
[24-27]. An interesting application of the Hopfield 
network can be observed in a heuristic solution to 
the NP-complete traveling salesman problem [28]. 
It is possible to map such type of problem onto a 
feedback network, where the units and connection 
strengths are identified by comparing the cost 
function of the problem with the energy function of 
the network expressed in terms of the state values 
of the units and the connection strength as: 
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The solution to the problem lies in determining the 
state of the network at the global minimum of the 
energy function. In this process it is necessary to 
overcome the local minima of energy function. 
This is accomplished by adopting a simulated 
annealing scheduled for implementing the search 
for global minimum. 
     The dynamics of the network by using the 
bipolar states for each unit can be expressed as: 
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Hence, the direct application of the dynamics of 

network as specified in Equation 5 in search of a 
stable state may lead to a state corresponding to a 
local minimum of the energy function. In order to 
reach the global minimum, skipping the local 
minima, the implementation of stochastic unit is 
required in the activation dynamics of the network. 
The state of a neural network with stochastic units 
is described in terms of probability distribution. 
The probability distribution of the states at thermal 
equilibrium can be represented as: 
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Where Eα is the energy of the network in the state 
Sα and z is the partition function. 
     The network with stochastic update exhibits the 
stability on thermal equilibrium at a given 
temperature (T). Thus, the average value of the 
state of the network remains constant due to 
stationary of the probability P(Sα) of the states of 
the network at thermal equilibrium. The expected 
value of the network state can be expressed as: 
 

)S(PSS α∑
α
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This is obvious from the Equation 6 that at the 
higher temperatures many states are likely to be 
visited, irrespective of the energies of these states. 
Thus, the local minima of the energy function can 
escape as the temperature is gradually reduced, the 
states having the lower energies will visit more 
frequently. Finally, at T = 0, the state with the 
lowest energy will have the highest probability. 
Thus, the state corresponding to the global 
minimum of the energy function can reach by 
escaping the local minima’s. This approach for the 
searching the global minimum of the energy 
function is referred as simulated annealing for the 
neuro optimization. This approach of neuro 
optimization is being used for the estimation of 
network reliability. This problem can be mapped in 
the feed back neural network of the Hopfield type 
by considering the nodes and edges of the network 
with the process unit and connection strengths of the 
neural network architecture. In the next section we 
will discuss the implementation details of this 
process with its mathematical modeling. 
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3. MODELING AND SIMULATION DESIGN 
 
The neural optimization tool with simulated 
annealing process to ensure the global optimal 
solution has been employed for estimating the 
reliability of a network. The network consists of 
unreliable nodes and edges. This problem has 
mapped to the neural network of Hopfield type 
architecture. The unreliable nodes and edges of the 
network have been considered with processing 
elements and the connection strength between the 
process elements in the network. The processing 
elements exhibit bipolar out put states +1 or -1. It 
has been considered that if the node of the network 
is reliable (Operational) then it is in state 1 and the 
unreliability of the node is exhibited with the state -1. 
Here, we are representing the network reliability in 
the form of energy function of the network, which 
will express in terms of state of the nodes and the 
connection strength i.e. edges. The objective is to 
minimize the energy or maximize the reliability of 
the network by adjusting the network parameters to 
their optimal values. The dynamics of neural 
network leads the network towards the stable state, 
which corresponds to the minimum energy state 
for the given condition. The global minimum 
energy state will exhibit the maximum reliability 
for the network. It is quite obvious that the 
connection strength or the weights on the edges 
will be obtained in order to settle the network in 
the global minimum energy state. Hence, here we 
employ the Boltzmann learning law for determining 
the weight for each annealing schedule. The 
thermal equilibrium has been achieved for each 
value of the temperature (T) and the probability 
distribution of the states of the network has been 
explored for the thermal equilibrium. This process 
continues until we reached the lower temperature 
T≈ 0. At this lower temperature value, the network 
will settle in the global energy minimum state and 
this will exhibit the maximum reliability state of 
the network for the given condition. Now, to 
represent the mathematical modeling of this process 
we consider a fully connected network with n 
nodes and 2n edges. At any instant of time one or 
more nodes or one or more links or both can be 
down, even though the network remains in 
operational mode. Thus, it reflects the reliability of 
the network. In order to determine the global 
minimum energy state for the network at any given 

condition the Hopfield energy function analysis 
has been used with stochastic activation dynamics. 
The simulated annealing process with Boltzmann 
learning rule has been employed for obtaining the 
optimal weights on edges to explore the global 
minimum energy state or maximum reliable state 
for the network. The final optimal values of the 
weight vector represent the status of operationally 
for the edges to achieve the reliability for network. 
A network with stochastic activation dynamics will 
evolve differently each time it runs, in the sense 
that the trajectory of the state of the network 
becomes a sample function of random process. So 
that, there will never be a static equilibrium or 
static stable state for the network, instead of this 
the network can settle in the dynamic equilibrium. 
     In the dynamic equilibrium, the probability 
distribution of the network states will remain 
stationary or time independent at a given temperature 
(T). Thus, the ensemble average of the network 
states does not change with time. The average of 
the state can represent in terms of the average 
value (<Si>) of the output of each unit of the 
network i.e. 
 

∫=>< idS)iS(PiSiS  (8) 

 
Where P(Si) is the joint probability density function 
of state vector Si. The network at the thermal 
equilibrium that exhibits the probability of network 
state is inversely proportional to the energy of the 
state. Hence, at the higher temperature the higher 
energy states or less reliable states are more likely 
to be observed. Now, we reduce the temperature in 
smaller steps as the annealing schedule and 
determine the thermal equilibrium for each value of 
the temperature. It can be observed that as the 
temperature decreases according to annealing 
schedule, the probability of visiting the lower 
energy state increases, and finally the network settle 
in the global minimum energy state of the network 
i.e. the state of maximum reliability. To accomplish 
this process, the weight vector of the network is 
computed using Boltzmann learning rule as: 
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Where C

ijP  is the probability of the state when the 
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network is clamped and f
ijP  is the probability of 

states when the network is running freely. Hence, 
the weight vector is computed for each annealing 
schedule till the network does not occupy the 
global minimum energy state. To speed up the 
process of simulated annealing, the mean field 
approximation [29] is used. In this process 
stochastic update of the bipolar unit is replaced 
with deterministic analog state. 
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Where <xi> the average activation value of the ith 
unit and <Sj> represents the expectation of the jth 
output state. 
     Therefore, using the Hopfield energy function 
analysis and the mean field approximation, we 
define the expression of energy function for the 
network of unreliable nodes and edges as: 
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Where <Si> is the expectation of the ith unit at the 
present thermal equilibrium (TP) and P(Si) is the 
operational probability of the node si.. Let us 
consider the kth node in the network which has 
been selected at any instant of time for the state 
updating. 
     The energy of the network before the update of 
kth unit can be expressed as: 
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As the kth unit updates its state, the energy function 

of the network will change as: 
 

jkw)new
kS(P)new

jS(P
j2

1
ikw)new

kS(P

)new
iS(P

i2
1

ijw)new
jS(P)new

iS(P
ji2

1

new
kSnew

jS
j

jkw
2
1new

kSnew
iS

i
ikw

2
1new

jSnew
iS

j
ijw

i2
1new

NE

∑−

∑−∑∑−

>><<∑−>><<

∑−>><<∑∑−=

(13)  

 
Now, the change in energy i.e. Old

N
New
N EEE −=Δ  for 

the two different states of the network at the 
thermal equilibrium should always less than or 
equal to zero in order to settle the network at 
global energy minima. Thus, as the network evolve 
with the new state, the energy of state should either 
remain same or decreases along the energy 
landscape as the temperature is reduced as per 
annealing schedule. 
     Hence, this process can be formulated as: 
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This is true because there is no change in the state 
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of other units as well as no change in their 
operational probability. Since from Equation 14 we 
have, 
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Hence, from the symmetric weights i.e. Wij = Wji 
we have, 
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Where Δ<Sk> has been defined according to 
stochastic update for the thermal equilibrium at the 
given temperature (T) as: 
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Hence for this case 
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Therefore, for both cases the first terms of Equation 
16 will always be positive, i.e. 
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Now, we investigate the second term (E2) of the 
Equation 18, so we have 
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The ΔP(sk) represents the change in the operational 
probability of kth unit due to its updating. Here, we 
have the following three cases to define this change 
in probability as: 
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Hence for the energy change, we have 
 

0)
i

New
is(PikW >∑  

 
Then E2 will always be positive 
 
Case 2.   If )old

ks(P)new
ks(P = , Then we have 

     0)S(P k =Δ  and again E2 will not be negative 
quantity. 
 
Case 3.   Is )new

ks(P  < )old
ks(P , then in the 

extreme change of probability we have: 
 

ΔP(sk) = )new
ks(P - )old

ks(P  = 0-1= -1 
 
and for the other changes we have: 
 

ΔP(sk)= )new
ks(P - )old

ks(P  < 0 
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Hence, for the energy change we have: 
 

0)
i

New
is(PikW <∑  

 
Thus, E2 will become positive quantity. 
     Therefore, on the basis of these three cases we 
have from the Equation 18: 
 

2E1EE −−=Δ  in every case. 
 
So the change in energy will always decrease or 
remain the same. Then, the network leads towards 
the global energy minimum at the lowest temperature 
i.e. T ≈ 0. There are the possibilities of other 
minimum energy state also, but the maximum 
reliability of the network will obtain only when the 
network occupies the global minimum energy 
state. The implementation details of the experiment 
and algorithm steps of the procedure have been 
defined in the following subsections. 
 
 
 

4. IMPLEMENTATION OF THE 
EXPERIMENT 

 
In this implementation two experiments were run. 
The first experiment was with a network of 3 
nodes and the second experiment with 5 nodes. 
The nodes (Components in a network) are subjected 
to random failure, so a specific probability of their 
activation or failure is associated with each node. 
The weights between nodes are assumed to be 
symmetric. The various parameters used in these 
experiments are described in following tables: 
     In each experiment the network is processed 
several times, firstly with randomly generated 
weights (free run) and secondly with calculated 
weights (clamped run). 
     Various parameters and the initial values against 
them are discussed in Table 1-3, are used in free run. 
Activation value for all the nodes in the network 

can be calculated ∑
=

θ−=
N

1j
ijijsw]i[asx  for all i: 

     Then, the probability of firing the node is 
calculated as: 
 

T/)iix(
exp1

1)
ix

1(P
θ−−

+
=  

TABLE 1. Parameters used for Free Run. 
 

Parameters Values 

Temperature (T) 0.5 

Threshold (θ) 0.0 

Initial Weights Randomly Generated 

State Probability 0.125 

Transition Probability 0.0 

 
 
 
TABLE 2. Parameters used for Clamped Run. 
 

Parameters Values 

Temperature (T) 0.5 

Threshold (θ) 0.0 

Initial Weights Calculated 

State Probability 0.125 

Transition Probability 0.0 

 
 
 
TABLE 3. Parameters used for Boltzmann Learning. 
 

Parameters Values 

Boltzmann Learning Rate (η) 0.1 

Average of the Product of Output 
When  

Network is Running Clamped )ijP( +  

Averageo the Product of Output  

When Network is Running Freely )ijP( −  
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Transition probability of a node can be given as : 
 

N

)
ix

1(P
]j[]i[trpb =  (20) 

 

Here, N is the number of nodes in the network. 
Using Equation 20 the probability of self transition 
can be calculated as [ ]]j[]i[trpb1− . We continue 
to calculate these transition probabilities for all the 
states in the network until the first thermal equilibrium 
is achieved. After achieving the first thermal 
equilibrium at the initial Temperature (T), the 
temperature is reduced from T = 0.5 to T = 0.41, the 
same process is repeated until second thermal 
equilibrium is achieved. We continue this process of 
achieving thermal equilibrium for T = 0.32, 0.23, 0.14 
and 0.05. At T = 0.05, we obtain the stable states. 
     Now we perform the same process of simulation 
annealing with clamped data, i.e. the network is 
run with specified initial weights and these weights 
are updated as per the Boltzmann’s learning rule 
as: 
 

)f
ijpc

ijp(
T

w −
η

=Δ  (21) 
 
This process keeps updating the weights until they 
become stable. 
      We start with following initial weights to train 
the neural network: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

00000.046000.048000.0
46000.000000.047000.0
48000.047000.000000.0

W  

 
Further these weights are updated using Equation 21 
to: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

00000.0569398.370602.
569398.00000.0579398.
370602.579398.00000.0

 

 
and finally converges to: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.00000000.57659800.3634020-
0.57659800.00000000.5865980
0.3634020-0.58659800.0000000

 

 
The algorithm steps of the above discussed method 

can be given as: 
 
Begin 
 
1. Select a network of n nodes  
2. Set T = 0.5 
3. Repeat 
4. Generate random weights and assign 

them to the communication links 
5. Repeat  
6. Repeat  
7. Calculate state probabilities until they 

become constant 
8. Anneal the network until T < = 0.05 
9. Clamp the network with calculated 

weights 
10. Repeat 
11. Repeat annealing the network 
12. Calculate state probabilities until they 

become constant 
13. Until T < = 0.05//Finding Out Stable 

States 
14. Calculate Energy of each component 

in the network using proposed model 
 

ijw)js(P)
i j

is(P
2
1

js
i j

isijw
2
1

]state[E

∑ ∑−>><∑ ∑ <

=

 

 
15. Find out the state with maximum 

probability 
16. If it is the same state with minimum 

energy then 
17. Print “it is a stable state”//calculate 

the modification in Weights using 
Boltzmann learning law 

18. )f
ijpc

ijp(
T

w −
η

=Δ  

19. If (i=j) then 
20. wc[i][j] = 0: 
21. Else 
22. Wc[i][j] = wc[i][j] + wΔ : 
23. Until weight becomes constant 
24. Until (n=2n) 
25. End. 
 
 
 

5. RESULTS AND DISCUSSION 
 
As discussed earlier, we have performed experiments 
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on two types of the networks: a network with three 
nodes and another with five nodes. The probabilities 
and energies at various thermal equilibriums are 
given in table number 5.1 and 5.2 (for a 3 node 
network). For a 5 nodes network we have the values 
for 32 states. 
 
5.1. Discussion   This table represents the 
probabilities of different states at various thermal 
equilibriums. From the values (probabilities of 
states) in the table we observe that the value of the 
state which are reliable are increasing as we anneal 
the network slowly (in our case such states are 011 
and 111) where as the value of probability for rest 
of the states (unreliable) are decreasing to zero. 
This is the representation that these states cannot 
be reliable. Figure 1 is the pictorial representation of 
the Table 4. From this we can observe that in a 
network of three nodes we have two states (011 
and 111) having the highest probabilities and 
hence are the reliable states among all eight states. 
 
5.1.1. Energy of states at different temperature   
Energy landscape throughout the experiments 
represents the status of stability or instability. 
When the energy of a network with 3 nodes is 
calculated using proposed model, we obtain the 
following values given in Table 5: 
     Table 5-8 contains the energy values of the 
different states in a three node network. From the 
values of the table we observe that the states 011, 
110, and 111 have least energy values. Among 
these three states we have 011 and 111 as reliable 
states and 111 as most reliable state as it has global 
minimum energy. The state 110 has false minima 
of the energy. From the graph 4.2 we observe that 
at temperature T = 0.05 the energy of the states 

011, 110 and 111 have lowest energy among all 
other states. These states are assumed to be the 
reliable states, but from Figure 1 we observe that 
there are only two reliable states having the 
maximum probabilities. So states 011 and 111 are 
the reliable states, out of which only 111 the most 
reliable state of the network is because it has the 
lowest energy among all the energy states i.e. the 
global minimum. Thus, the network will be settled 
at the 111 for the given condition. 
     So, the three nodes network architecture will 
have the most reliable state when all its nodes are 
in up states and the strength of the links are 
0.5865980,-0.3634020 and 0.5765980 between 
first and second node, second and third node and 
third and first node respectively as shown in 
Figure 3. 
     Let us justify the converged weights those turn 
the network into a reliable network. At T = 0.05, 
the energy of the state 111 with these weights is 
minimum as shown and discussed in Figure 2. As 
discussed already in Section 4 these weights are 
obtained from initial weights after processing 
Boltzman’s learning rule and remains constant. 
 
5.1.2. Comparison of performance with 
combinatorial approach   Let us compare the 
results of this approach with the conventional 
combinatorial approaches for that we consider a 
network of type hypercube H6 with 26 = 64 nodes 
and 25.6 = 192 edges. Following table gives the 
performance of the network as follows: 
     This table depicts that when the probability of 
being up of the nodes and edges is highest then the 
reliability of the network is also highest. Our 
proposed algorithm is employing the neural network 
optimization approach, which gives an alternate 
method for calculating the network reliability of 
the network. In our method we have a certainty of 
having at least one state as most reliable state. 
     In the network of three nodes we have obtained 
such reliable state in which all nodes are in up 
states and the weights are adjusted accordingly to 
make it most reliable state. 
     In the network of five nodes we have obtained 
such reliable state in which all nodes are in up 
states and the weights are adjusted accordingly to 
make it most reliable state. 
 
5.2. Discussion   From the Figure 4 we can observe  
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TABLE 4. Stationary Probabilities Distribution of States at Different Temperatures. 
 

T = 0.5 0.084 0.0839 0.0839 0.211 0.0839 0.0321 0.215 0.206 

T = 0.41 0.0835 0.103 0.0641 0.255 0.0828 0.0631 0.102 0.25 

T = 0.32 0.0692 0.088 0.0504 0.293 0.0687 0.0496 0.0871 0.286 

T = 0.23 0.0485 0.0642 0.0328 0.361 0.0478 0.0319 0.063 0.348 

T = 0.14 0.0172 0.0237 0.0108 0.465 0.0169 0.0102 0.0231 0.434 

T = 0.05 0.000051 0.000073 0.000032 0.547 0.000049 0.000028 0.000068 0.448 

 
 
 

TABLE 5. Stationary Probabilities Distribution of States at Different Temperatures. 
 

T = 0.5 -0.1125 -0.19706 -0.08664 -0.69185 -0.2887 0.370602 -1.35759 -1.55638 

T = 0.41 -0.1125 -0.20862 -0.07706 -0.71804 -0.31205 0.090236 -1.05543 -1.310019

T = 0.32 -0.1125 -0.21136 -0.06159 -0.75639 -0.32231 0.128726 -1.01249 -1.35469 

T = 0.23 -0.1125 -0.22179 0.036342 -0.81256 -0.32481 0.19432 -1.20874 -1.40249 

T = 0.14 -0.1125 -0.2284 -0.00168 -0.88277 -0.30786 0.305403 -1.30469 -1.047231

T = 0.05 -0.1125 -0.22999 0.014954 -0.91541 -0.28993 0.369909 -1.35392 -1.549469

 
 
 

TABLE 6. Reliabilty of Network at a Specified Node and Edge Probability. 
 

Pv 0.7 0.8 0.9 0.95 0.95 0.95 0.95 0.99 

Pe 0.7 0.8 0.9 0.95 0.96 0.97 0.98 0.99 

R 0.2061 0.3871 0.6482 0.8136 0.8494 0.8818 0.9227 0.9605 
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that in a network of five nodes the probabilities of 
different states at different temperatures. The 
probabilities of most of the states are close to zero, 
which represents the unreliable states of the 
network. But at T = 0.05 the states 11100, 10100 
and 11111 have maximum probabilities and hence 
may represent reliable states but out of which only 
11111 is the most reliable state of the network. 
     Let us discuss the behavior of a five node 
network. We started with random initial weights. 
After the learning these weights get converged as 
shown into the Figure 5. 
     A network with 5 nodes may be in any one of 
the 25 = 32 states. But when the nodes are in up 
states and the links have converged weights then at 
T=0.05, the energy of the state 11111 is minimum. 
As discussed already in Section 4 these weights are 
obtained from initial weights after processing 
Boltzman’s learning rule and remains constant. 
 
 
 

6. CONCLUSION 
 
From the above said discussions we can conclude 
that the network reliability can be estimated using 

Neural Optimization tools like Hopfield model, 
Simulation Annealing and Boltzmann Learning. This 
new approach of estimating the network reliability 
provides a wider range of output as compared to 
the existing models. Our proposed model when 
compared with the existing model [20] the following 
similarities and dissimilarities can observe: 
 
1. Both models are developed for a network 

having unreliable node and communication 
link, i.e. at any instant of time any component 
or any link of the network can be failed. 

2. The previous model is based on the up and 
down probabilities of the different component 
in the network and our proposed model 
based on the average value of the output 
(probability density function) of the different 
components. 

3. We proposed a model based on simulation 
annealing whereas the previous model of 
estimating the reliability of a network based 
upon combinatorial approach. 

4. The proposed model specifies the reliability 
of the network as well as the different 
reliable states, whereas the previous model 
gives only the reliability of the network. 

TABLE 7. Reliability of a Network of three Nodes using Neural Optimization at T = 0.05. 
 

State Probability Energy Reliability 

000 0.000000 -0.112500 Poor 

001 0.000000 -0.229992 Poor 

010 0.000000 0.014954 Poor 

011 0.0050430 -0.915406 Next reliable 

100 0.000000 -0.289928 Poor 

101 0.000004 0.369909 Poor 

110 0.000004 -1.353917 False Minima 

111 0.994950 -1.549464 Highest 
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TABLE 8. Reliability of a Network of Five Nodes using Neural Optimization at T = 0.05. 
 

State Probability Energy Reliability 

00000 0.000000 0.000000 Poor 

00001 0.000000 -1.000000 Poor 

00010 0.000000 -1.000000 Poor 

00011 0.000000 -4.200000 Poor 

00100 0.000000 -1.000000 Poor 

00101 0.000000 -3.700000 Poor 

00110 0.000000 -3.400000 Poor 

00111 0.000000 -8.300000 False Minima 

01000 .000000 -1.000000 Poor 

01001 0.000000 -3.500000 Poor 

01010 0.000000 -4.600000 Third Reliable 

01011 0.000000 -9.496200 False Minima 

01100 0.000000 -4.365400 Poor 

01101 0.000000 -8.696200 False Minima 

01110 0.000000 -9.496200 False Minima 

01111 0.000000 -16.092400 False Minima 

10000 0.000000 -1.000000 Poor 

10001 0.000000 -4.265400 Poor 

10010 0.000000 -4.265400 Poor 

10011 0.000000 -9.796200 Second Reliable 

10100 0.000000 -4.086600 Poor 

10101 0.000000 -9.359800 False Minima 

10110 0.000000 -9.059800 False Minima 

10111 0.000000 -16.719600 False Minima 

11000 0.000000 -3.786600 Poor 

11001 0.000000 -8.859800 False Minima 

11010 0.000000 -9.959800 False minima 

11011 0.056666 -17.419600 False Minima 

11100 0.000000 -9.359800 False Minima 

11101 0.000000 -16.319600 False Minima 

11110 0.000196 -17.119600 False Minima 

11111 0.943138 -26.466000 Highest  
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Figure 2. Energy of states at different temperature (for a 3 node network). 
 
 
 

 
 

Figure 3. Network architecture for the most reliable stable state for three nodes. 
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Figure 4. Probabilities of states (for a network with 5 nodes). 

 
 
 

 
 

Figure 5. Network architecture for the most reliable stable state for 5 nodes. 
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5. The main drawback of the combinatorial 
approach is its complexity, as the size of the 
network increases the complexity also 
increases exponentially. But proposed model 
overcomes this drawback of existing model 
and reduces the complexity. 

 
We have the following observations for the 
proposed approach: 
 
1. Minimum energy states represent the reliable 

states of the network 
2. We can obtain more than one global minimum 

energy states, but out of these states, only 
one state with lowest energy will be the 
most reliable state of the network, which 
ensures successful communication. 

3. Rest of the states, with lower energy (or 
higher probability), are the cases of false 
energy minima in the network, which can 
not be avoided. 

4. In any case of failure of any component or 
communication links in the network, the 
network will settle to the most reliable state 
(state with least global energy) of the 
network for successful communication. 

 
We have considered a network of three nodes and 
five nodes, the future work can be extended for a 
network with more nodes. The researchers may 
extend this work to calculate the upper bound and 
the lower bound of the network reliability using 
neural network as a tool. 
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