Exact Analytical Solution for Bending Analysis of Functionally Graded Annular Sector Plates


1 Mechanical Engineering, Kerman Graduate University of Advanced Technology

2 Mechainical Engineering, Shahid Bahounar university of Kerman

3 Mechanical Engineering, Iran University of Science and Technology (IUS


In this article, an exact levy solution is presented for bending analysis of a functionally graded (FG) annular sector plate. The governing equilibrium equations are obtained based on the classical plate theory. Introducing an analytical method for the first time, the three coupled governing equilibrium equations are replaced by an independent equation in term of transverse deflection. This equation which is a forth-order partial differential equation is similar to the governing equilibrium equation of a homogeneous isotropic annular sector plate. Using an equivalent flexural rigidity, the solutions of FG annular sector plates can be easily extracted from equation of homogeneous annular plates. Finally, the effects of the exponents of the power functions, aspect ratio, inner to outer radius ratio and boundary conditions on the mechanical behavior of a functionally graded annular sector plate are discussed.