Comparison Final Velocity for Land Yacht with a Rigid Wing and Cloth Sail


1 Mechanical Engineering, Sharif University of Technology

2 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran


The powering requirement of a land yacht is one of the most important aspects of its design. In this respect the wind tunnel testing is an effective design tool. In fact, changing the parameters of the vehicle and testing the changes in the wind tunnel will give us a better understanding of the most efficient vehicle, and yet it is time consuming, expensive, and has inherent scaling errors. Another set of design tools are Computational Fluid Dynamics and parametric prediction. Computational Fluid Dynamics (CFD) codes are not yet wholly proven in its accuracy. Parametric prediction is the starting point for most engineering studies. It will be used to calculate the land yacht’s performance and provide a steady-state trim solution for the dynamic simulation. This tool is absolutely self validating. In present work, parametric prediction tool has been used for velocity prediction of a radio control land yacht with a rigid airfoil and cloth sail. The lift and drag coefficient of the rigid wing and cloth sail are obtained from the wind tunnel. The results show that the maximum velocity of the land yacht model with rigid wing is higher than cloth sail which occurs at 100 to 130 degree angle, courses.