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Abstract   There is a significant interaction between sizing a fleet of rail cars and its utilization. This 
paper presents a new multi-period mathematical model and a solution procedure to optimize the rail-
car fleet size and freight car allocation, wherein car demands, and travel times, are assumed to be 
deterministic, and unmet demands are backordered. This problem is considered NP-complete. In other 
words, the traditional exact optimization approaches cannot solve a real-life size problem of this kind 
in a reasonable time. To tackle this problem, an efficient meta-heuristic algorithm based on simulated 
annealing (SA) is proposed. This algorithm works efficiently on a neighborhood search within 
solution space and probable acceptance of inferior solutions to escape from being trapped in local 
optima. A number of numerical examples are solved to check for efficiency and validity of the 
proposed SA algorithm. We conclude that the proposed model and algorithm are useful to identify 
good strategies for the sizing of rail car fleets and allocation of related cars. 

 
Keywords   Multi-period model, Fleet sizing, Freight car allocation, Railroad transportation, 
Simulated Annealing 

 
در اين مقاله، يك مدل جديد چند . رابطه مهمي بين اندازه ناوگان و بهره وري از ناوگان وجود داردچكيده       

هاي باري را بهينه كند در  شود كه تعداد ناوگان مورد نياز و همچنين تخصيص واگن پريودي و روش حلي ارايه مي
چنين تقاضاهاي تامين نشده در انتهاي پريود زماني شود و هم حالي كه تقاضاها و زمان سفر بطور قطعي فرض مي

که حتي مدل يشنهادي در اندازه بالا و متوسط داراي پيچيدگي بوده، يک الگوريتم  ولي از آنجايي. نخواهيم داشت
يكي از كاراترين روش هاي حل است كه  SAالگوريتم . شود  براي حل آن توسعه داده مي (SA)شبيه سازي تبريد

 باشد همچنين از نقاط قوت اين الگوريتم اين است كه ن روي جستجو همسايگي در فضاهاي حل مياساس كار آ
براي تاييد . تواند از نقاط بهينه موضعي رهايي پيدا كرده و در جهت بهبود تابع هدف حركت نمايد به راحتي مي

ه هاي مختلف حل شده و مقدار تابع ارايه شده، مسايل گوناگوني با انداز SAعملکرد و کارايي الگوريتم پيشنهادي 
و الگوريتم حل پيشنهادي  شود كه اين مدل در انتها نتيجه گيري مي .گردد هدف و زمان محاسباتي مقايسه مي

 .استراتژي خوبي براي تعيين اندازه ناوگان و همچنين تخصيص واگن است
 

1. INTRODUCTION 
 
Transportation systems frequently contain fleets of 

vehicles that circulate a network to carry people or 
goods. The capacity of a transportation system is 
directly proportional to the number of available 



34 - Vol. 22, No. 1, February 2009 IJE Transactions A: Basics 

vehicles. Determining the optimal number of 
vehicles that satisfy a certain demand for a 
particular system, requires a tradeoff between the 
ownership costs of the vehicles, and the potential 
costs or penalties associated with unmet demands. 
Serving demands results in the relocation of rail-
cars. The consequent movement of rail-cars 
between various locations is often imbalanced, and 
this implies the need for optimal allocation of empty 
rail-cars over the network. Thus, the fleet of cars, 
which is available for service at any given time (and 
their locations), depends on the car redistribution 
strategy. The interaction between fleet sizing 
decisions and car distribution or utilization decisions 
is the main focus of this paper. 
     There is an increasing interest of investment in 
rail freight cars. The management of these systems 
is a very complex issue. Therefore, it has received 
the attention of both practitioners and researchers. 
Studies in this area can be categorized in two main 
directions: 1) determining an optimal fleet size. 2) 
allocating the available car capacity to various 
destinations, in order to calculate the required empty 
flows. The main goal of this paper is considering the 
simultaneous optimization of fleet sizing decisions 
and the car utilization. By having direct impact on 
the level of investment in capital resources, the 
potential benefits from improved utilization of cars 
is much greater than the reduced operating costs. 
     Transportation vehicles are expensive capital, 
and fleet sizing is an important issue for both 
researchers and service providers. Fleet sizing is 
related to overall service design [1], and there has 
been recent work related to trucking [2-4], and 
airline express package service [5] that emphasizes 
these connections. Fleet sizing is also important in 
material handling systems used for manufacturing 
operations [6,7]. Even more generally, sizing the 
fleet’s vehicle is a specific example of sizing a 
system for reusable resources. This task has been 
treated as non-dynamic for a long time, and 
formulated as a linear programming problem with 
known supply and demand, and the objective of 
maximizing revenue. These models are most often 
solved by using the standard simplex algorithm 
[8,9]. 
     Dejax, et al [10] surveyed models of fleet 
management and distribution of empty vehicles. 
Network flow models for empty vehicle 
distribution are presented on the allocation of 

empty vehicle, not on the fleet size decisions [11-
18]. Frantzeskakis, et al [19] considered the 
problem of fleet sizing and empty equipment 
redistribution from the standpoint of inventory 
theory and developed decentralized stock control 
policies for empty equipment; however, their focus 
is on utilization of a given vehicle fleet, not on 
fleet sizing decisions. Taxonomy of rail car fleet 
sizes by distinguishing between deterministic and 
stochastic models and dividing them into the sub 
problems of fully and partially loaded rail cars in 
transportation systems [20-27]. Therefore, it can be 
noticed that these studies followed constraints and 
more general objectives. 
     Literature related to vehicle fleet sizing has not 
specifically addressed the fleet sizing of rail-cars. 
Sherali, et al [28,29] proposed a time-space network 
representation of practical fleet sizing models for 
the automobile and railroad industries, concerned 
with the problem of shipping automobiles via 
railroad auto racks; however, it has very simple 
network structure and also has limitations 
stemming from its simplifying assumptions. 
Bojovic, et al [30] addressed the problem of 
determining an optimal number of rail-cars to 
satisfy demand by minimizing the total cost. This 
indirectly reflects fleet sizing concerns; but, their 
primary focus is on the allocation decisions. The 
proposed optimization model provides rail network 
information, such as yard capacity, unmet demands, 
and number of loaded and empty rail-car at any 
given time and location. Moreover, the optimum use 
of rail-cars for demands response in the length of 
the time periods is one of the main advantages of 
the proposed model. 
     The remaining of this paper is organized as 
follows: Section 2 presents an exact mathematical 
formulation of the given problem. In Section 3, a 
simulated annealing (SA) algorithm is proposed to 
solve the developed mathematical model and then a 
numerical example is presented. Section 4 describes 
the experiments of testing the convergence behavior 
of the solution procedure. Concluding remarks and 
future research directions are given in Section 5. 
 
 
 

2. MATHEMATICAL MODEL 
 
It is also assumed that the planning horizon (T) has 



IJE Transactions A: Basics Vol. 22, No. 1, February 2009 - 35 

been divided into discrete "decision periods" and 
using t to denote one such period. A set of rail 
network location is denoted by N which is divided 
into two subsets, N1 and N2, representing the 
number of origins and destinations points, 
respectively.  
 
2.1. Variables 
 

( )tX ij : Number of loaded cars dispatched from 

N1i∈  to N 2j∈  in period Tt∈ . 
(t)Y ji : Number of empty cars dispatched from 

N1i∈  to N 2j∈  in period Tt∈ . 
( )0V i : Number of cars initially allocated to 

origin N1i∈ . 
( )0VV j : Number of cars initially allocated to 

destination N 2j∈ . 
(t)V i : Number of cars present at origin N1i∈  

at the end of period Tt∈ . 
( )tVV j : Number of cars present at destination 

N 2j∈  at the end of period Tt∈ . 
( )tU ij : Unmet demand from N1i∈  to N 2j∈  in 

period Tt∈ . 
 
2.2. Input Data 
 
rij : Revenues per loaded car sent from N1i∈  

to N 2j∈ . 
lij : Cost of moving a loaded car from N1i∈  

to N 2j∈ . 
e ji : Cost of moving a empty car from Nj 2∈  

to N1i∈ . 
q : Cost per car per period to own or lease a 

car. 
hi : Cost of holding a car for one period at 

origin N1i∈ . 
w j : Cost of holding a car for one period at 

destination N 2j∈ . 
Pij : Penalty cost per period for one unit of 

unmet demand from N1i∈  to N 2j∈ . 

itSC : Yard capacity at origin yard N1i∈  at the 
end of period Tt∈ . 

jtSC : Yard capacity at destination yard N 2j∈  

at the end of period Tt∈ . 
 

( )tτ,αij : Proportion of loaded cars dispatched from 

N1i∈  to N 2j∈  in period Tt∈  which arrive in 
period Tt∈ , such that: 
 

( ) tj,i,1tτ,
tτ

ijα ∀=∑
<

 (1) 

 
( )tτ,β ji : Proportion of empty cars dispatched from 

N 2j∈  to N1i∈  in period Tt∈  which arrive in 
period Tt ∈ , such that: 
 

( ) tj,i,1tτ,
tτ

jiβ ∀=∑
<

 (2) 

 
( )td ij : Demand for transportation service between 

N1i∈  and N 2j∈  in period Tt∈ . 
     The model is formulated as follows: 
 
Max ϕ : 
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s.t. 
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( ) ( ) ti,tV it
j

X ij ∀≤∑  (7) 

 
( ) ( ) tj,tVV jt

i
Y ji ∀≤∑  (8) 

 
( ) ji,0TU ij ∀=  (9) 

 
( ) ( ) ( ) ti,itSC

j
tijXτjiY

j tτ
tτ,jiβ ∀≤∑+∑ ∑

<
 (10) 

 
( ) ( ) ( ) tj,jtSC

i
tjiYτijX

i tτ
tτ,ijα ∀≤∑+∑ ∑

<
 (11) 

 
( ) ( ) ( ) ( ) ( ) ,0tVV j,tV i,tU ij,tY ji,tX ij ≥  

Integer tj,i,∀  (12) 
 
The objective function (3) includes terms for 
revenues, direct transportation cost, ownership cost 
for cars per route, holding costs for idle cars, and 
penalty costs for unmet demand. Constraint (4) 
ensures that all demand is accounted for; unmet 
demand in period t must equal to unmet demand 
from the previous period plus new demand minus 
the loaded movements. Constraints (5) and (6) are 
conservation of flow constraints for cars at each 
location in each time period, which include the 
effects of deterministic travel times for car 
movements through α and β terms, representing the 
certain arrival times of cars at their destinations. 
Constraints (7) and (8) are balancing constraints 
for cars at each location in each period. Constraint 
(9) ensures that unmet demands become zero at the 
end of the planning horizon. 
     Constraint (10) estimated capacity of yard at a 
station with respect to the summation of the 
number of loaded and empty railcars also outbound 
of the railcars at original nodes of the network. 
Constraint (11) computes the summation of the 
number of the inbound loaded railcars and number 
of the outbound empty railcars reflecting the 
needed capacity at the destination rail yards. 
Constraint (12) ensures that Xij(t), Yji(t), Uij(t), Vi(t), 
and VVj(t) are always nonnegative and integer. 
 
 
 

3. PROPOSED SA ALGORITHM 
 
Simulated annealing (SA) was first introduced as an 

intriguing technique for optimizing functions of 
many variables (Kirkpatrick, et al [31]). Simulated 
annealing is a heuristic strategy that provides a means 
for optimization of NP complete problems: those for 
which an exponentially increasing number of steps 
are required to generate the/an exact answer. 
Although such a heuristic (logical) approach can't 
guarantee to produce the exact optimum, an 
acceptable optimum can be found in a reasonable 
time, while keeping the computational expense is 
dependent on low powers of the dimension of the 
problem. Simulated annealing is based on an analogy 
to the cooling the heated metals. 
     In any heated metal sample the probability of 
some cluster of atoms as a position, ri, exhibiting a 
specific energy state, E(ri), at some temperature T, 
is defined by the Boltzmann probability factor: 
 

( )( ) ( )[ ]Tk BriEexpriEP −=  (13) 
 
Where, k B  is Boltzmann's constant. As a metal is 
slowly cooled, atoms will fluctuate between 
relatively higher and lower energy levels and 
allowed to equilibrate at each temperature T. 
     The material will approach a ground state, a 
highly ordered form in which, there is very little 
probability for the existence of a high energy state 
throughout the material. Figure 1 provides a 
flowchart representation of the annealing 
algorithm. In standard iterative improvement 
methods, a series of trial point are generated until 
an improvement in the objective function is noted, 
in which case the trial point is accepted. However, 
this process only allows for downhill movements 
to be made over the domain. In order to generate 
the annealing behavior, a secondary criterion is 
added to the process. If the k-th trial point 
generates a large value of the objective function 
then the probability of accepting this trial point is 
determined using the Boltzmann probability 
distribution: 
 

[ ]CTΔφexpCTφ0φkexp

VV k,V k,U k,Y k,X kacceptP
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Where, ⎟
⎠
⎞⎜

⎝
⎛= VV k,V k,U k,Y k,X kφφk  and 0φ  

corresponds to the initial starting point. This 
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Figure 1. A flowchart representation of the annealing process. 

probability is compared with a randomly generated 
number over the range [0,1]. 
     If [ ]0..1P randomVV k,V k,U k,Y k,X kaccept ≥⎥⎦

⎤
⎢⎣
⎡ , 

then the trial point is accepted. This dependence on 
random numbers makes simulated annealing a 
stochastic method. 
 
3.1. Initial Temperature   In physical analogy, 
the initial temperature should be large enough to 
heat up the solid until all particles are randomly 
arranged in the liquid phase. This means that in the 

beginning, the temperature of the annealing 
process must be high enough to make sure that the 
system can be shifted to all possible states. By this 
property, the algorithm can find a solution that 
does not strongly depend upon the initial 
configuration. Since the probability to accept the 
worse solutions is exp(-Δφ/CT), the initial 
temperature T0 can be determined by means of the 
objective function transitions which would be 
accepted in the beginning of the annealing process 
with a probability P0. 
     Pilot runs are performed, and the mean benefit-
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Step 1: Select the initial temperature T0, cooling 
rate α, termination criterion π and Markov 
chain L. 

 Set (0,0)0Y,0X =⎟
⎠
⎞⎜

⎝
⎛ , 0k = , 0S = . 

Step 2: Compute ( )tV 0i , ( )tU0ij , ( )tVV 0 j , 0φ . 

 Set 1kk += , 0φ*φ = . 

Step 3: Determine the neighborhood ⎟
⎠
⎞⎜

⎝
⎛ kY,kX  

using perturbation. 
Step 4: If ( ) ( ) ( ) itSC

j
tijXτjiY

j tτ
tτ,jiβ ≤∑+∑ ∑

<
, 

( ) ( ) ( ) jtSC
i

tjiYτijX
i tτ

tτ,ijα ≤∑+∑ ∑
<

 

compute ( )tVV k j  and check feasibility of 

the solution through Step 5. 
 Else if Go to Step 3. 

Step 5: If ( ) ( )tkVV jt
j

jikY ≤∑  then compute 

( )tV k
i . 

 Else if Go to step 3. 
 If ( ) ( )tkV it

i
kX ij ≤∑  then compute 

( )tU kij   

 Else if Go to Step 3. 
 If ( ) 0tU kij ≥  then determine 

⎟
⎠
⎞⎜

⎝
⎛= VV k,V k,U k,Y k,X kφkφ  

 Else if Go to Step 3. 
Step 6: If 0*φkφΔφ ≥−=  or ( ) ( )CTΔφexp.rand −≤  

where ( ).rand  is a random number in the 
range of 0 and 1 then Set k = k + 1, S = S 
+ 1 and Go to Step 7. 

 Else if then Go to step 3. 

Step 7: kφ*φ = . 
Step 8: If SL ≥ then Reduce temperature by 

cooling rate α. 
 Else if Set 0=S  and Go to Step 3. 
Step 9: If termination condition π is reached then 

Go to Step 10. 
 Else if Go to Step 3. 

Step 10: Report *φ  and ⎟
⎠
⎞⎜

⎝
⎛ VV *,V*,U*,Y*,X * . 

increasing Δ  of the objective function increasing is 
then computed. In the calculation, T0 is calculated 
as follows: 
 

⎟
⎠
⎞⎜

⎝
⎛ −≈ P 1

0lnΔφT0  (15) 

 
3.2. Number of Iterations   Various 
implementations use various methods of random 
number generation (e.g., the Lehmer generator 
[32]). Repeating this iterative improvement many 
times at each value of the control parameter T, the 
methodical thermal rearrangement of atoms within 
a metal at temperature T is simulated [31]. In 
addition, the pseudo code of the developed SA is 
illustrated in Figure 2. 
     The annealing process transfers from one 
configuration to one of its neighbors with certain 
probability; this is equivalent to a Markov chain. 
Therefore, we should determine the number of 
iterations at each temperature. In our problem, L, 
the length of the k-th Markov chain, L, is a value 
that depends on the size of the problem. 
Alternatively it can be argued that a min number of 
transitions should be accepted at each temperature. 
 
3.3. Rules for Decreasing the Temperature   
For a certain value of temperature, the temperature 
is reduced when the numbers of transitions reach 
the upper bound of the Markov chain length. The 
control parameter, i.e. the reduction ratio of 
temperature, usually is chosen for small temperature 
changes. The Markov chain more easily leads to an 
equilibrium state if the temperature change is small. 
Hence, we use the decrement rule as follows: 
 

.0,1,2,3,..kT kαT 1k ==+  (16) 
 
The control parameter α, called cooling rate, is 
small; however, it is close to 1. It is normally 
between 0.85 and 0.99. 
 
3.4. Stopping Condition   The annealing process 
is terminated when the system is frozen, i.e. the value 
of the objective function of the solution does not 
improve after a certain number of consecutive Markov 
chain. Termination criterion is determined by: 
 
( ) ( ) ( )( ) εT0CTCTTV ≤−  (17) 

 
Figure 2. Pseudo code of the proposed SA. 
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( )TV : Variance of the accepted objective 
function value in temperature T. 

( )TC : Mean of the accepted objective function 
value in temperature T. 

( )T 0C : Mean of the accepted objective function 
value in initial temperature. 

ε : Positive small number. 
 
A run is ended if after a specified number of 
temperature decrements are made without any 
improvement in objective function, or if number of 
neighbors tested exceeds an iteration limit. 
 
 
 

4. NUMERICAL EXAMPLES 
 
The proposed new mathematical model has been 
tested on the example of a hypothetical network 
with four origins, four destinations on a 6-day 
planning horizon using the simulated annealing 
(SA) algorithm with starting temperature of 1000 
(see Equation 15), final temperature 0.05, cooling 
rate 0.99 (i.e., α = 0.99), and number of iterations 
per temperature 20 (i.e., L = 20). 
     Table 1 presents transportation demands for all 
days over the planning horizon and all origin-
destination combinations. Table 2 illustrates values 
of unit holding costs of cars at all stations. Table 3 
shows the input data on revenue per loaded car 
sent from i to j, cost of moving an empty car from i 
to j, penalty cost per period for one unit of unmet 
demand from i to j. The unit ownership cost for a 
car traveling between stations per unit time is 5 
(q = 5). The shunting yard capacity at all origins 
and destinations, at the end of period is 150 (Sit = 
150, Sjt = 150). A computer program has been 
developed using Visual Basic 6 and the obtained 
results have been summarized and are shown in 
Figure 3. The number of cars present at origin i at 
initial period (V1(1) = 266, V2(1) = 301, V3(1) = 
314, V4(1) = 272) have been determined after ten 
iterations. It has been concluded that a fleet 
consisting of 1153 (i.e., 266+301+314+272) cars is 
required for a proper functioning of the described 
system. 
 
4.1. Experimentation   The experiments are 
designed to test the convergence behavior of our 

solution procedure. As it is shown in Table 4, test 
problems are solved to check for the efficiency and 
validity of SA algorithm in comparison with the 
exact algorithm. We solved nine small-sized 
instances by lingo software using branch-and-
bound (B and B) method according to Table 4. 
Table 5 presents the computational results obtained 
on nine large-sized test problems with application 
dimensions. Consequently, the SA solution is 
compared with the upper bound (UB) solution. It is 
worthy noting that the average difference between 
the upper bound and the SA solution is nearly 11 
%, which is very satisfactory. 
     To analyze the sensitivity of the algorithm to 
the number of time periods, we fixed number of 
the network locations while increasing the number 
of time periods. The results are reported in Table 6 
and Figure 4. As it can is seen, the optimal total 
fleet size found in the range of 25 and 35 time 
periods (e.g. monthly planning). In order to 
analyze the sensitivity of the algorithm to the 
number of network locations, number of time 
periods is fixed while increasing the number of 
locations. Table 7 and Figure 5 show the 
associated results. 
 
4.2. Effect of the SA Parameters   Figure 6 
shows the objective function value of the solutions 
found at different stages of the SA algorithm for a 
moderate-sized example network of five origins, 
five destinations, and five time periods. At the 
initial stages, since the temperature is very high, 
the proposed SA algorithm accepts nearly all 
solutions. It acts as random search first, and the 
objective function value of the accepted solutions 
changes in wide range as seen in Figure 6. As the 
temperature decreases, the probability of accepting 
the worse solutions also decreases. Because of 
that, at later stages of the run, the search becomes 
greedy and only better solutions are accepted. 
     The parameter used in the proposed SA 
algorithm is the alpha (α) value, used to decrease 
the temperature of the system as in Equation 16. 
The higher its value, the slower the system cools 
down. The range of α is experimented between 
0.5 and 1. By increasing the alpha value, larger 
portion of the solution space can be searched, but 
run time gets longer. Figure 7, states that value 
0.99 performs better compared to the other values 
in the ranges from 0.5 to 0.99. 
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TABLE 1. Demand Scenarios for the Illustrative. 
 

Periods 
Origin Destination 

1 2 3 4 5 6 

1 1 17 12 21 27 27 29 
1 2 10 18 27 12 14 10 
1 3 10 13 14 10 15 16 
1 4 21 17 17 17 28 19 
2 1 18 16 29 26 29 15 
2 2 29 11 24 26 29 19 
2 3 16 25 17 25 11 13 
2 4 11 17 19 20 17 29 
3 1 10 14 10 28 12 15 
3 2 25 23 26 24 11 12 
3 3 25 22 13 18 21 24 
3 4 21 13 29 23 20 25 
4 1 26 15 13 27 12 11 
4 2 25 24 29 28 28 20 
4 3 20 23 19 12 10 25 
4 4 23 24 21 13 27 17 

 
 
 

TABLE 2. Holding Cost for the Illustrative. 
 

Origin hi ($) Destination wj ($) 

1 5 1 5 

2 5 2 5 

3 5 3 5 

4 5 4 5 
 
 
 

TABLE 3. Parameter Values for the Illustrative. 
 

Origin Destination lij ($) rij ($) eij ($) pij ($) 

1 1 3 110 4 2 

1 2 1 107 5 1 

2 1 3 117 5 2 

2 2 1 106 6 3 
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266 199 220 150 75 0 

301 0 

0 

0 

0 

0 

0 

0 
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Figure 3. Control actions (loaded and empty cars). 
 
 
 

TABLE 4. Comparison Results of the Simulated Annealing with the Exact Algorithm. 
 

FSb OFVa CPU Time 
Pro. N1  N 2  hT  

SA Optimal SA Optimal SA Optimal 
Gap 

1 2 2 3 315 315 16 820 16 831 1s 2s 0.0006 
2 2 2 4 178 166 20 430 20 450 3s 3s 0.0009 
3 2 2 5 196 192 25 613 25 633 3s 3s 0.0007 
4 2 2 6 190 182 32 053 32 151 3s 3s 0.003 
5 3 3 3 526 526 38 781 38 960 2s 2s 0.004 
6 3 3 4 580 580 49 821 50 122 3s 3s 0.006 
7 5 5 3 1760 1760 109 056 110 821 2s 2s 0.015 
8 4 4 3 1125 1125 69 651 70 128 3s 3s 0.006 
9 4 4 4 935 893 99 163 101 920 5s 5s 0.02 

Objective Function Valuea, Fleet Sizeb          Mean Gap 
= 0.006 
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TABLE 5. Computational Results for Real-Life Dimension Size Problems. 
 

OFVa 
Pro. N1  N 2  hT  ET

d FSb DT
c DFS T  

SA Upper 
Bound 

CPU 
Time 
(Sec.) 

Gap 

1 20 20 7 18 411 36 012 54 423 0.66 3 743 121 4 177 590 27 0.104 

2 7 7 30 24 321 4531 28 852 0.16 1 703 963 1 893 292 20 0.1 

3 30 30 5 20 884 66 923 87 807 0.76 6 732 798 7 564 941 38 0.11 

4 40 40 6 56 766 130 461 187 227 0.70 14 791 230 16 751109 43 0.117 

5 25 25 10 71 505 50 422 121 927 0.41 8 993 439 10 127746 74 0.112 

6 50 50 5 58 563 185 144 243 707 0.76 19 371 162 21 987698 74 0.119 

7 15 15 15 50 159 16 034 66 193 0.24 4 655 921 5 225 500 35 0.109 

8 5 5 90 40 640 3462 44 102 0.07 1 942 631 2 165 697 43 0.103 

9 15 15 20 67 507 14 818 82 325 0.18 5 437 689 6 109 762 42 0.11 

Objective Function Valuea, Fleet Sizeb, Sum of 
the Demandsc Total Empty Carsd 

          Mean Gap 
= 0.11 

 
 
 

TABLE 6. Computational Results for the Sensitivity Analysis of the Time Periods. 
 

Pro. N1  N 2  T FSa DTb ETc DFS T  DE TT  

1 5 5 10 750 1000 250 0.75 0.25 

2 5 5 15 1000 2770 1770 0.36 0.64 

3 5 5 20 1126 4000 2874 0.28 0.72 

4 5 5 25 720 3229 2509 0.22 0.78 

5 5 5 30 1300 6000 4700 0.21 0.79 

6 5 5 35 1730 7000 5270 0.24 0.76 

7 5 5 40 2120 7900 5780 0.26 0.74 

8 5 5 45 2435 8500 6065 0.28 0.72 

9 5 5 50 3165 10 000 6835 0.31 0.68 
 

aFleet Size, bSum of the Demands, cTotal Empty Cars. 
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Figure 4. Sensitivity analysis of FS/DT with respect to the change in the number of time periods. 
 
 
 

TABLE 7. Computational Results for the Sensitivity Analysis of the Number of the Network Locations. 
 

Pro. N1  N 2  T FSa DTb ETc DFS T  DE TT  

1 2 2 4 200 271 71 0.74 0.26 

2 3 3 4 598 692 94 0.86 0.14 

3 4 4 4 960 1279 319 0.75 0.25 

4 5 5 4 1320 1928 608 0.68 0.32 

5 6 6 4 1858 2866 1008 0.64 0.36 

6 7 7 4 2293 3915 1622 0.58 0.42 

7 8 8 4 2940 5098 2158 0.57 0.43 
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Figure 5. Sensitivity analysis of DTFS , DTET  with respect to the change in number of network locations. 
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Figure 6. Convergence indicator in improving the solutions. 
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Figure 7. Effect of parameter α on the OFV. 
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Figure 8. Effect of parameter L on the OFV. 

Number of accepted solutions to decrease the 
temperature (L: Accepted to Decrease) is the third 
parameter used. If this value is small, then the SA 
algorithm converges faster. Values assigned to this 
parameter had a range from 10 to 150 in our 
experiments. As Figure 8 denotes, although the 
value of L does not have much effect on the quality 
of results, the value 10 gives slightly better results 
than the others. 
 
 
 

5. CONCLUSION 
 
We presented a new formulation and a solution 
procedure to optimize the fleet size and freight car 
allocation wherein car demands and travel times 
were assumed to be deterministic and unmet 
demands were backordered. We assumed that unmet 
demands become zero at the end of the planning 
horizon, i.e., the car demands would be totally 
responded through the horizon. We believe that our 
model is able to support all following features: 
 
• The model provides rail network 

information such as yard capacity, unmet 
demands, and number of loaded and empty 
rail-cars at any given time and location. 

• The optimal use of empty rail-cars for 
responded demand, during the time periods 
of summarizing this model and decreased 
car purchasing costs. 

 
Numerical examples in small sizes show that the 
exact solution for the given problem is capable of 
reporting solutions in a fair amount of CPU time; 
however, it was unable to solve the problem in 
medium and large-sized instances. To tackle this 
problem, a simulated annealing (SA) algorithm is 
proposed to solve the presented model. The 
algorithm worked efficiently on a neighborhood 
search within the solution space, acceptance 
probability, and inferior solutions to escape from 
trap (i.e., local optimal solution). Numerical 
examples were solved to check the efficiency and 
validity of the proposed SA algorithm. We 
concluded that the model was useful in identifying 
good strategies to size rail car fleets and allocation 
of the freight cars. A primary direction for further 
research is the extension of the current model to a 
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stochastic formulation wherein car demands and 
travel times are assumed to be stochastic. The 
second direction for further research is to create a 
multi-objective optimization model for rail-car 
fleet sizing. 
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