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Abstract   The transient motion and the heat transfer of a viscous incompressible flow contained 
between two vertically eccentric spheres maintained at different temperatures and rotating about a 
common axis with different angular velocities is numerically considered when the angular velocities 
are an arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat 
transfer characteristics are presented for the various cases including exponential and sinusoidal 
angular velocities. Interesting effect of long delays in heat transfer of large portions of the fluid in the 
annulus is observed because of the angular velocities of the corresponding spheres. As the 
eccentricity increases and the gap between the spheres decreases, the coriolis forces and convection 
heat transfer effect in the narrower portion increase. 
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گذرای يک سيال لزج تراکم ناپذير بين دو کره خارج از مرکز که در دماهای  جريان و انتقال گرمایچكيده       

باشند را به  متفاوت بوده و در حال چرخش در حول يک محور مشترک با سرعت های زاويه ای متفاوت می
الگوی جريان و توزيع دما  .باشند یسرعت های زاويه ای تابع زمان م. دهيم صورت عددی مورد مطالعه قرار می

و مشخصه های انتقال گرما برای وضعيت های متفاوتی از قبيل سرعت های زاويه ای نمايی و سينوسی ارايه 
تاخير در انتقال گرما در قسمت بزرگی از ناحيه بين دو کره به خاطر اين سرعت های زاويه ای . شده اند

رج از مرکزی دو کره و کاهش فاصله بين دو کره نيروهای جذب به همچنين ضمن افزايش خا. شود مشاهده می
 .يابد مرکز و اثر انتقال گرمای جابجايی در قسمت باريکتر افزايش می

 
 

1. INTRODUCTION 
 
The transient motion of an incompressible viscous 
flow and its heat transfer in a rotating spherical 
annuli is considered numerically when the spheres 
are vertically eccentric and their angular velocities 
about a common axis of rotation may be 
arbitrarily-prescribed as functions of time. Such 
motions may be described in terms of a pair of 
coupled non-linear partial differential equations 
in three independent variables and the energy 
equation is linear when velocity field is known. 
     Available theoretical work concerning such 
problems is primarily of a boundary-layer or 

singular-perturbation character considered by 
Howarth [1], Proudman [2], Lord, et al [3], Fox 
[4], Greenspan [5], Carrier [6] and Stewartson [7]. 
The first numerical study of time-dependent 
viscous flow between two rotating spheres has 
been presented by Pearson,et al [8] in which the 
cases of one (or both) spheres is given an 
impulsive change in angular velocity starting from 
a state of either rest or uniform rotation. Munson, 
et al [9] have considered the case of steady motion 
of a viscous fluid between concentric rotating 
spheres using perturbation techniques for small 
values of Reynolds number and a Legendre 
polynomial expansion for larger values of 
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Figure 1. Geometry of eccentric rotating spheres. 

Reynolds numbers. Thermal convection in rotating 
spherical annuli has been considered by Douglass, 
et al [10] in which the steady forced convection of 
a viscous fluid contained between two concentric 
spheres which are maintained at different 
temperatures and rotate about a common axis with 
different angular velocities is studied. Approximate 
solutions to the governing equations are obtained 
in terms of a regular perturbation solution valid for 
small Reynolds number and a modified Galerkian 
solution for moderate Reynolds numbers. Viscous 
dissipation is neglected in their study and all fluid 
properties are assumed constant. A study of 
viscous flow in oscillatory spherical annuli has 
been done by Munson, et al [11] in which a 
perturbation solution valid for slow oscillation 
rates is presented and compared with experimental 
results. Another interesting work is the study of the 
axially symmetric motion of an incompressible 
viscous fluid between two concentric rotating 
spheres done by Gagliardi, et al [12]. This work 
involves study of the steady state and transient 
motion of a system consisting of an 
incompressible, Newtonian fluid in an annulus 
between two concentric, rotating, rigid spheres. 
The primary purpose of their research is to study 
the use of an approximate analytical method for 
analyzing the transient motion of the fluid in the 
annulus and spheres which started suddenly due to 
the action of prescribed torques and also the study 
by Yang, et al [13] and the finite element study by 
Ni, et al [14]. These problems include the case 
where one or both spheres rotate with prescribed 
constant angular velocities and the case in which 
one sphere rotates due to the action of an applied 
constant or impulsive torque. The most recent 
undertakings regarding spherical annuli are 
similarity solution in the study of flow and heat 
transfer between two rotating spheres with constant 
angular velocities by Jabari Moghadam, et al 
[15] and numerical study of flow and heat 
transfer between two rotating spheres by Jabari 
Moghadam, et al [16] which considers the time-
dependency of the angular velocities. 
     The study of transient motion and heat transfer 
of an incompressible viscous fluid filling the 
annuli of two vertically eccentric spheres rotating 
with any prescribed function of time angular 
velocity has not been considered in the literature. 
In the present study a numerical solution of 

unsteady momentum and energy equations is 
presented for viscous flow between two vertically 
eccentric rotating spheres maintained at different 
temperatures which are rotating with time-
dependent angular velocities. Results for some 
time-dependent rotation functions including 
exponential and sinusoidal angular velocities are 
presented when the outer sphere initially starts 
rotating with a constant angular velocity and the 
inner sphere starts rotating with a prescribed time-
dependent function. Such a rotating containers are 
used in engineering designs like centrifuges and 
fluid gyroscopes and also are important in 
geophysics. 
 
 
 

2. PROBLEM FORMULATION 
 
The geometry of the spherical annulus considered 
is indicated in Figure 1. The vertical eccentricity of 
the outer sphere is measured by the distance e . If 
the outer sphere is placed above the central 
position, e  has a positive value, otherwise e  is 
negative. Origin of the spherical coordinate system 
is based on the inner sphere center and the 
characteristic radius of the outer sphere, ′

0R , 
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is a function of θ . A Newtonian, viscous, 
incompressible fluid fills the gap between the inner 
and outer spheres which are of radii iR  and oR  
and with constant surface temperatures iT  and oT  
and rotate about a common axis with angular 
ve loc i t ies  iΩ  and  oΩ ,  respec t ive ly .  The  
components of velocity in directions r , θ , and φ  
are rv , θv , and φv , respectively. These velocity 

components for incompressible flow and in 
meridian plane satisfy the continuity equation and 
are related to stream function ψ  and angular 
momentum function Ω  in the following manner: 
 

θ
θψ=

sin2rrv , 
θ

ψ−
=θ

sinr
rv , 

θ

Ω
=φ

sinr
v  (1) 

 
Since the flow is assumed to be independent of the 
longitude, φ , the non-dimensional Navier-Stokes 
equations and energy equation can be written in 
terms of the stream function and the angular 
velocity function as follows: 
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In which the non-dimensional quantities Reynolds 

number ( Re ), Prandtl number ( Pr ), Peclet number 
( Pe ), and Eckert number ( Ek ) are defined as: 
 

ν

ω
=

2
oroRe , αν= /Pr , 

α

ω
==

2
oroPr.RePe , 

)iToT(Pc
oEk
−

νω
=  (5) 

 
The following non-dimensional parameters have 
been used in the above equations and then the 
asterisks have been omitted: 
 

ott ω=∗ , 
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o
3
or ω

ψ
=∗ψ , 

o
2
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Ω
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T
−
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In which or  and oω  are reference values. The 
non-dimensional boundary and initial conditions 
for the above governing equations are: 
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Figure 2. A typical mesh grid. 

Where, 
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These governing equations along with the related 
boundary and initial conditions are solved 
numerically in the next section. 
 
 
 

3. COMPUTATIONAL PROCEDURE 
 
The two equations governing the fluid motion 
show that each is describing the behavior of one of 
the dependent variables Ω  and ψ . On the other 
hand, these two equations are coupled only through 
nonlinear terms. To solve the problem, the 
momentum equations were discretized by the 
finite-difference method and implicit-explicit 
schemes. Because of the known velocity field, the 
energy equation is linear and is solved keeping all 
its terms. In each time step (n + 1), the value of the 
dependent variables are guessed from their values 
at previous time steps (n), (n-1), and (n-2) and after 
using them in difference equations and repeating 
this, until obtaining the desired convergence, will 
lead to the corrected values at this time step. This 
procedure is applied for the next time step. 
     The flow field considered is covered with a 
regular mesh, see Figure 2. To solve the system of 
linear difference equations, a tri-diagonal method 
algorithm is used in both directions r  and θ , 
Press, et al [17]. Direct substitution of previous 
values of dependent variables by new calculated 
values can cause calculation un-stability in general. 
To overcome this problem, a weighting procedure 
is used in which the optimum weighting factor 
depends on Reynolds number. The mesh size used 
in numerical solution for equator of the circle is 40 
x 20 or 50 x 25. A mesh independence study has 
been demonstrated in Figures 3 and 4. In this 
mesh-study, the conditions of flow and heat 
transfer fields are: Re = 10, Pr = 10, Ek = 0, and 

ioΩ  = 0. As it can be seen, the difference between 
the contours of ψ  function for the coarse grid 
(case (a), with mesh size 25*12) and the fine grid 
(case (b) with mesh size 40*20) is almost large 
(about 12 %), but the difference between case (c) 

(with grid size 45*25) and case (d) (with grid size 
50*25) is really negligible (less than 0.03 %). 
Hence the numerical solution is mesh-independent 
for cases c or d and even b. For the results 
presented in our solution, a 50*25 mesh grid has 
been selected though a 40*20 mesh would have 
been fine. The mesh sizes mentioned above are in 
θ  x r  directions. The contours of temperature has 
also been drawn for mesh sizes from case (a), 
25*12 to case (d), 50*25 in Figure 4. In this case 
no significant differences between these cases can 
be seen and that is because the energy equation is 
linear and its solution has much less complexities 
compared with momentum equation. 
     In this work the sphere angular velocity has 
been considered a function of time and to apply 
this time-function to the program, at the beginning 
of each time step the average of that time step has 
been calculated and used for the sphere angular 
velocity function. Therefore, for each considered 
time step the sphere velocity is defined and 
sectionally continuous. To verify the validity of the 
numerical procedure used in this work, the 
numerical results of research studies such as Ref. 
[8-10], see Table 1, has been reproduced for the 
case of 0e =  with the same flow parameters. These 
results which are very close to our results obtained 
in these references are shown in Figure 5. 
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Figure 3. Contours of stream function for various mesh-size grid. 

4. PRESENTATION OF RESULTS 
 
If the bounding spherical surfaces were stationary, 
there would be no fluid motion and the temperature 
distribution would simply be conduction 
distribution. Any rotation of the bounding spheres 
sets up a primary flow (ω) around the axis 
of rotation. This relative motion induces an 
unbalanced centrifugal force field which drives the 
secondary flows (ψ) in the meridian plane. Thus, if 
the bounding spheres are of unequal temperatures, 
this secondary flow produces forced convection 
within the annulus, resulting in a temperature 

distribution which is different from the pure 
conduction distribution. The relative magnitudes of 
the secondary flow and forced convection effects 
depend upon the parameters involved, including 
those concerning the geometry and dynamics of 
the flow such as Ωio = Ωi/Ωo, Rio = Ri/Ro, 
eccentricity, Prandtl number and Reynolds 
number. These secondary flows known as vortex 
have clockwise or counterclockwise motion (in 
first quadrant and vice-versa in fourth quadrant) 
depending upon whether the outer sphere or the 
inner sphere is dominant, as far as the secondary 
flow is concerned. To have a better understanding 
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Figure 4. Contours of stream function for various mesh-size grid. 

of the effect of secondary flows on temperature 
distribution, the contours of (T-Tc) are also 
presented in this study which show the difference 
between actual temperature and the pure 
conduction case. Here, Tc depends only on r. The 
flow and temperature fields are symmetric with 
respect to the rotation axis and also the equator 
plane if the spheres are concentric. But when the 
spheres are eccentric then the flow and temperature 
fields are only symmetric with respect to the axis 
of rotation. The cases considered here include 
time-dependent angular velocities which are 

exponential and sinusoidal. Results for velocity 
and temperature fields are presented for cases 
when the outer sphere is rotating with a constant 
angular velocity and the inner sphere starts rotating 
with the prescribed function of time angular 
velocities. These presentations are only at some 
selected time values. 
     The velocity fields for the particular case of 
inner sphere angular velocity, Ωio = -exp (1-t), and 
outer sphere rotating with constant angular velocity 
are presented in Figures 6 and 7 for Reynolds 
number Re  = 1000 and 1.0e =  at selected time 
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TABLE 1. Results of References [8-10] for Re = 50, Ωio = -3, and Pr = 10. 
 

T ω 104ψ Contour Number 

0.06 -2.76 -19 1 

0.12 -2.6 -17 2 

0.18 -2.2 -15 3 

0.26 -2 -13.5 4 

0.3 -1.78 -11.5 5 

0.38 -1.55 -10 6 

0.44 -1.2 -7.8 7 

0.51 -1.05 -6 8 

0.57 -0.77 -4 9 

0.63 -0.52 -2.1 10 

0.68 -0.22 -2.8 11 

0.76 0.01 1.6 12 

0.82 0.26 3.5 13 

0.88 0.52 5.4 14 

0.94 0.77 7.3 15 

 

values. At the beginning when the vortices (ψ 
contours) are formed, it is seen that the annulus 
space is under the effect of both spheres which are 
dominating the flow field. 
     A clockwise vortex close to outer sphere and a 
counterclockwise vortex close to the inner sphere 
(both in first quadrant) are formed, Figure 6a,b. 
The size and the direction of these vortices are 
different in fourth quadrant because of the 
eccentricity. This factor also causes the vortices in 
first quadrant to penetrate into the fourth quadrant 
and compress the vortices in this region. As the 
inner angular velocity decreases with time, its 
effect on the secondary flow diminishes. During 
this time the clockwise vortex grows considerably 
and after some time there is only one big 

counterclockwise vortex which indicates that the 
outer sphere is dominating the flow. As it is seen 
from Figures 6c,d the flow pattern tends towards 
the situation that the inner sphere is stationary, as 
one expects. Contours of ω for different time 
values are shown in Figure 7. Since the Reynolds 
number is large these contours get closer to inner 
sphere at the equator. In fact for large Reynolds 
numbers (approximately larger than Re = 300), this 
secondary flow causes a considerable change in 
peripheral velocity (primary flow velocity profile). 
In general, the fluid particles in the vicinity of the 
equator move towards the inner sphere and return 
towards the axis of rotation. As a result a 
secondary distribution of peripherial velocity 
forms which affects the flow in meridian plane 
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Figure 5. Velocity and temperature distribution for Re = 50, 
Pr = 10, Ek = 0 and Ωio= -3 at t = 55.01. 

again. As time advances and if the Reynolds 
number is large, in the corner region between the 
outer sphere and equator line the angular velocity 
contours move inwards and those contours in the 
vicinity of axis of rotation move outwards. This 
effect can be described by considering the 
distribution of angular momentum. The rotation of 
the outer sphere provides a certain amount of 
angular momentum for the system that by flow in 
meridian plane and by coriolis forces and nonlinear 

advection is redistributed. The fact that the total 
angular momentum of the azimuthal flow must be 
conserved by upward and downward moving fluid 
shows that the rotation of the upward moving 
elements of fluid (near pole) slow down and 
rotation of the downward moving elements of fluid 
(near equator) speeds up. The coriolis forces are 
bigger in lower hemisphere compared to upper 
hemisphere because of the eccentricity. 
     The contours of T and (T-Tc) for the inner 
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Figure 6. Contours of ψ for Re = 1000, Ωio= -exp(1-t), e = 0.1. 

angular velocity of )t1exp(io −−=Ω , Re  = 1000, 
Pr  = 10, and Ek  = 0 are shown in Figures 8 and 9 
for the case of 1.0e = . At the outset when both 
spheres dominate the flow, the diffusion of heat 
from the outer sphere into the field takes place 
approximately in a steady manner but as the 
rotation effect of the inner sphere becomes weak, 
the field temperature grows considerably from the 

vicinity of the equator and affects the whole field. 
This phenomenon is more visible in the lower 
hemisphere. 
     As far as ( cTT − ) contours, it is seen that at the 
beginning, the flow is forming, the difference 
between the actual temperature and the pure 
conduction temperature can be seen only in the 
region near the outer sphere but as time passes this 
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Figure 7. Contours of ω for Re = 1000, Ωio= -exp (1-t), e = 0.1. 

difference becomes larger because of convection. 
It is obvious that this difference shows itself in the 
form of positive and negative numbers. The 
contours near the pole are negative and the 
contours near the equator are positive. This is 
because the clockwise flow which is formed by the 
rotation of the outer sphere would transfer the heat 
of this sphere into the field and towards the equator 

and the inner sphere. 
     On the contrary, as it moves along the inner 
sphere and rotation axis, it transfers the inner 
sphere coldness towards the outer sphere and the 
pole. As a result, in the vicinity of the pole there 
are temperatures which are lower than pure 
conduction case and in the vicinity of the equator 
there are temperatures which are higher than pure 



IJE Transactions A: Basics Vol. 21, No. 3, September 2008 - 305 

 
 
 

0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

15 0.938
14 0.875
13 0.813
12 0.750
11 0.688
10 0.625
9 0.563
8 0.500
7 0.438
6 0.375
5 0.313
4 0.250
3 0.188
2 0.125
1 0.063

T

t=0.61

           
0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

15 0.938
14 0.875
13 0.813
12 0.750
11 0.688
10 0.625
9 0.563
8 0.500
7 0.438
6 0.375
5 0.313
4 0.250
3 0.188
2 0.125
1 0.063

T

t=1.41

 
                                           (a)                                                                                        (b) 
 

0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

15 0.936
14 0.872
13 0.808
12 0.743
11 0.679
10 0.615
9 0.551
8 0.487
7 0.423
6 0.358
5 0.294
4 0.230
3 0.166
2 0.102
1 0.038

T

t=15.85

           
0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

15 0.937
14 0.875
13 0.812
12 0.750
11 0.687
10 0.624
9 0.562
8 0.499
7 0.437
6 0.374
5 0.311
4 0.249
3 0.186
2 0.124
1 0.061

T

t=63.37

 
                                           (c)                                                                                        (d) 
 

Figure 8. Contours of T for Re = 1000, Pr = 10, Ek = 0, Ωio= -exp (1-t), e = 0.1. 

conduction case. Again this difference is more 
visible in lower hemisphere. As evidenced in 
Figure 8, it is interesting to note that the angular 
velocities of spheres can cause long delays in heat 
transfer of the fluid in large areas of the annulus 
around the poles. 
     Figures 10 and 11 present the T and (T-Tc) 
contours for the same conditions as in Figures 8 
and 9 except for Pr = 1. As it is seen in this case, 

the heat diffuses faster because the heat diffusion 
mechanism by conduction is stronger than the 
diffusion of heat by convection and also as the 
inner sphere rotates, a counterclockwise vortex is 
formed which curbs the heat convection and its 
transfer to the field. Therefore, when the Prandtl 
number is lower, then the temperature field grows 
faster. This can be seen in Figure 11 where the 
contours are steadier. Note that this diffusion of 
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Figure 9. Contours of (T-Tc) for Re = 1000, Pr=10, Ek = 0, Ωio= -exp (1-t), e = 0.1. 

heat is more visible in lower hemisphere. The 
difference between Figures 12 and 13 compare to 
Figures 10 and 11 is in the Eckert number. Eckert 
number is related to viscous dissipations which are 
the gradients of velocity that show their effect as a 
source of heat in energy equation. This source, in 
fact, expresses the conversion of kinetic energy to 
heat energy which causes the temperature of the 

flow field to rise. This effect (gradients of velocity) 
is seen in Figure 12 in which the temperature field 
has more expansion compare to Figure 10. 
Looking at Figures 13 and 11, this difference is 
much clearer. 
     These velocity gradients are the reason for the 
difference between the actual temperature and the 
case of pure conduction and can be seen better at 
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Figure 10. Contours of T for Re = 1000, Pr = 1, Ek = 0, Ωio = -exp (1-t), e = 0.1. 

the vicinity of inner sphere in Figures 13a,b 
compare to Figures 11a,b. Also, as it is expected, 
the temperatures are higher when the dissipation 
terms are not omitted, such as in Ref. 10 and for 
the case of e = 0. 
     Figures 14-15 have been drawn for inner 
angular velocity, )t

2
(sin2io
π

=Ω  for Re = 1000, Pr 

= 10, Ek = 0, for the case of e = 0.1 and in two 

consecutive periods (second and third) for the sine 
function. As known, the sine function oscillates 
between-1 and 1. In these figures the second and 
third periods after the sinusoidal movement have 
been considered. Inner sphere angular velocity in 
Figures 14a-h is approximately Ωio = 0.0314, 
1.998, -0.0314, -1.998, 0.0314, 1.998, -0.0314, and 
-1.998, respectively. The time values selected in 
these figures are when the inner sphere velocity 
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Figure 11. Contours of (T-Tc) for Re = 1000, Pr = 1, Ek = 0, Ωio = -exp (1-t), e = 0.1. 

has come to an important change, meaning that it 
has been considered immediately after a change of 
acceleration. 
     For example, for the time value between the 
case (a) and just before the case (b) the inner 
sphere acceleration is positive and the time value at 
(b) is the starting point of negative acceleration for 
this sphere. As it is seen from Figure 15, the 

angular velocity of the fluid elements in the 
vicinity of the inner sphere is also dependent on 
the past accelerations. This is because the inner 
sphere has a sinusoidal oscillation and, for 
example, at t  = 4.01 when the inner sphere 
velocity is 0.0314 (a small positive value) but it is 
seen that the fluid elements in its boundaries have 
negative angular velocity because in the one quart 
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Figure 12. Contours of T for Re = 1000, Pr = 1, Ek = 0.001, Ωio= -exp (1-t), e = 0.1. 

of the previous period the inner sphere has 
negative angular velocity. Therefore, as the outer 
sphere containing a constant velocity has a 
continuous and steady effect on the entire flow 
field, the inner sphere having an oscillating 
velocity between-2 and 2 (periodic acceleration of 
positive and negative) induces an unsteady and 
oscillatory type of effect on the layers in the 

vicinity of the inner sphere. Also, the effect of 
eccentricity clearly portrays the un-symmetric 
situation in these figures. 
     The vortex caused by inner sphere is 
considerably smaller in lower hemisphere in 
comparison to the upper hemisphere because of 
eccentricity which causes production of a bigger 
coriolis force in lower hemisphere. The T  and (T-
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Figure 13. Contours of (T-Tc) for Re = 1000, Pr = 1, Ek = 0.001, Ωio= -exp (1-t), e = 0.1. 

Tc) contours for the inner angular velocity of 

)t
2

(sin2io
π

=Ω  are depicted in Figures 16 and 17 

for Re = 1000, Pr = 10, and Ek = 0. Similar types 
of discussions as in Figures 8 and 9 apply here as 
well. Also the delay in heat transfer of the fluid in 
large portions of annulus can be seen in Figure 16. 

Again, the profiles show that because of the 
eccentricity the coriolis force in lower hemisphere 
is bigger than the upper hemisphere and therefore 
it worms up faster. 
     Figures 18 and 19 present the same kind of 
results as above but for the case when eccentricity 
is e = 0.05. 
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Figure 14. Contours of ψ for Re = 1000, Pr = 10, Ek = 0, Ωio = 2sin(πt/2), e = 0.1. 
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Figure 15. Contours of ω for Re = 1000, Pr = 10, Ek = 0, Ωio = 2sin(πt/2), e = 0.1. 
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Figure 16. Contours of T for Re = 1000, Pr = 10, Ek = 0, Ωio = 2sin(πt/2), e = 0.1. 
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Figure 17. Contours of (T-Tc) for Re = 1000, Pr = 10, Ek = 0, Ωio = 2sin(πt/2), e = 0.1. 
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Figure 18. Flow and heat transfer for Re = 1000, Pr = 10, Ek = 0, Ωio= -exp (1-t), e = 0.05. 
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Figure 19. Flow and heat transfer for Re = 1000, Pr = 10, Ek = 0, Ωio= 2sin(πt/2), e = 0.05. 

5. CONCLUSIONS 
 
A numerical study of flow and heat transfer of a 
viscous incompressible fluid within a rotating 
spherical annulus have been investigated when the 
spheres have time-dependent prescribed values of 
angular velocities. The characteristics of the flow 

and temperature fields are strongly dependent on 
the values of the various dimensionless parameters 
considered. The characteristics of angular velocity 
and temperature distribution for small Reynolds 
numbers are similar which is expected since it 
is a situation where there is a balance between 
convection and diffusion of momentum and heat. 
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At small Reynolds numbers the secondary flow or 
the vortices which cause forced convection, are 
small values and thus the effect of convectivity and 
therefore the intensity of their local heat transfer is 
not too different from the pure conduction. But for 
large Reynolds numbers some deviations are seen 
in angular velocity and temperature distributions 
which is an indication of the effect of secondary 
flow on the primary flow. Since we have 
considered the case with time-dependent angular 
velocities then the relative velocities of the spheres 
are functions of time. 
     Applying these angular velocities, shear layers 
are formed in the vicinity of the spheres which get 
thicker because of viscous diffusion effect and 
depending on the flow conditions one or two 
circulations are formed in meridian plane. 
Interesting effect of long delays in heat transfer of 
a large portion of the fluid in the annulus is 
observed because of the angular velocities of the 
corresponding spheres. As the eccentricity 
increases and the gap between the spheres 
decreases, the coriolis forces and convection heat 
transfer effect in the narrower portion increase. 
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