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Abstract   This paper considers the economic lot and delivery scheduling problem in a two-echelon 
supply chains, where a single supplier produces multiple components on a flexible flow line (FFL) 
and delivers them directly to an assembly facility (AF). The objective is to determine a cyclic 
schedule that minimizes the sum of transportation, setup and inventory holding costs per unit time 
without shortage. We have developed a new mixed zero-one nonlinear mathematical model for the 
problem. Due to the difficulty of obtaining the optimal solution, especially in the instances of medium 
and large-sized problems, two meta-heuristic algorithms (HGA and SA) are proposed and evaluated 
over randomly generated problems. Computational results indicate that the proposed HGA 
outperforms the SA algorithm with respect to both the solution quality and computation times 
especially in large-size problems. 
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 در يک زنجيرة تأمين دو سطحي ای اقتصادیه توليد و تحويل انباشته بندی زمانمسئلة در اين مقاله، چكيده       

کننده چندين محصول را در يک سيستم توليد جريان خطی  در اين زنجيره، يک تأمين. گيرد مورد بررسی قرار مي
 هدف تعيين يک زمان. دهد تحويل می) مشتري( به يک مونتاژگر "ير توليد کرده و آنها را مستقيماپذ انعطاف

ها در واحد  اندازی و نگهداری موجودی نقل، راه و  های حمل که مجموع هزينهبندی سيکلی به نحوي است 
يک مدل رياضی غيرخطی ترکيبی صفر و يک برای مسئلة فوق . زمان بدون بروز کمبود موجودی حداقل شود

با توجه به پيچيدگی حل اين مدل در مسائل با مقياس متوسط و بزرگ، دو الگوريتم . توسعه داده شده است
طراحی شده است و بر تعدادی مسئله نمونه تست ) سازی تبريد الگوريتم ژنتيک ترکيبی و شبيه(ق ابتکاری فو

 برتری الگوريتم ژنتيک طراحی شده را هم به لحاظ ، عددییاه نتايج بدست آمده از آزمايش. گرديده است
 .رساند ی تبريد به اثبات میساز های حاصله و هم زمان محاسباتی موردنياز بر الگوريتم شبيه کيفيت جواب

 
 

1. INTRODUCTION 
 
Increasing global competition forces all members 
of supply chains to optimize their activities to 
achieve higher level of customer satisfaction. One 
of the main issues in supply chains is the efficient 

and effective management of material flow [1]. In 
this regard, a smooth and cost-efficient production 
and also components delivery between adjacent 
parties of a supply chain often depends on selecting 
appropriate lot-size, production and delivery 
schedules. 
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One of the most famous lot-sizing problems is the 
economic lot-scheduling problem (ELSP). 
Original ELSP concerns with lot sizing and 
scheduling of several items in a single stage 
production facility, so that corresponding 
demands are met without shortage, and the 
average inventory and setup costs per unit time 
are minimized [2]. Researches on the ELSP have 
usually focused on cyclic schedules (i.e., 
schedules that are repeated periodically) with 
three scheduling policies: common cycle, basic 
period and time varying lot size approaches. 
Several authors have extended the classical ELSP 
to more general systems such as single stage 
systems with parallel machines, flow shop, and 
job shop systems [3-5]. 
     The economic lot and delivery scheduling 
problem (ELDSP) is an extension of ELSP into a 
two-stage supply chain environment, where a 
supplier produces several items for an assembly 
facility and delivers them directly. Hahm, et al [6] 
introduced the single item ELDSP, and then 
extended it to multiple items case through two 
other research works. In the first paper [7], they 
used the common cycle for all components and 
assumed that the time between deliveries is equal 
to the duration of the common production cycle. 
In the second one [8], they assumed that multiple 
deliveries within a global production cycle are 
allowed (i.e., the nested schedule case). Khouja 
[9] considered ELDSP for a supplier that uses a 
volume flexible production system where 
component quality depends on both lot sizes and 
unit production times and developed an algorithm 
to solve the problem. Jensen, et al [10] developed 
an optimal polynomial time algorithm for ELDSP 
under common cycle approach. Vergara, et al [11] 
extended ELDSP to multiple supplier, multiple 
components supply chain and proposed an 
evolutionary algorithm (EA) to obtain an optimal, 
or near optimal, synchronized delivery cycle time 
and suppliers’ component sequences. 
     In all above works, it is assumed that the 
planning horizon is infinite and the production 
system of supplier(s) as a single production line or 
machine. However, these assumptions considerably 
reduce the usefulness of the proposed contributions, 
because in practice, planning horizons and 
production systems are often finite and multi-
stage [4]. 

Literature review in finite horizon case reveals 
that there are few contributions. Ouenniche, et al 
[4] studied the finite horizon ELSP in job shops 
under common cycle approach and developed an 
optimal solution method to solve the problem. In 
another research work, Ouenniche, et al [12] 
considered this problem using the multiple cycle 
approach, and developed an efficient heuristic 
method to obtain a near optimal solution. 
Recently, Torabi, et al [13] presented a new 
model for the finite horizon ELSP in flexible job 
shops (i.e. job shop systems with parallel 
machines at least at one stage) under the common 
cycle approach, and developed an optimal 
solution method for this problem. Moreover, 
Torabi, et al [3] studied the finite horizon ELDSP 
in flexible flow lines with identical parallel 
machines and sequence-independent setup 
times/costs at each stage under the common cycle 
approach. They proposed an efficient hybrid 
genetic algorithm to obtain near optimal (or 
ideally optimal) solutions for the problem. 
     In this paper, we extend our previous research 
work [3] and study the finite horizon ELDSP in 
flexible flow lines with unrelated parallel machines 
(i.e., machines with different characteristics such 
as production rates and/or setup times), and 
sequence-dependent setup times/costs at each 
stage. The objective is to determine a cyclic 
schedule that minimizes the sum of transportation, 
setup and inventory holding costs per unit time in 
the supply chain without any stock-outs. 
     To solve the problem, the common cycle 
strategy is used for all components. That is, at 
each production cycle, one lot of each component 
at each stage is produced. Also, it is required that 
the planning horizon is an integer multiple (F) of 
the common cycle length (T). We have developed 
a new mixed zero-one nonlinear program whose 
optimal solution determines simultaneously the 
optimal assignment of components to machines at 
stages with multiple parallel machines, the 
optimal sequence of components on each machine 
at each stage, the optimal lot sizes and the optimal 
production and delivery schedule for each 
production run. 
     The rest of the paper is outlined as follows. 
Problem assumptions, notations and mathematical 
formulation are presented in Section 2. The 
proposed HGA and SA algorithms are introduced 
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in Sections 3 and 4, respectively. In Section 
5, numerical experiments and corresponding 
computational results are shown. Finally, Section 6 
is devoted to some concluding remarks. 
 
 
 

2. PROBLEM FORMULATION 
 
2.1. Problem Assumptions   The following 
assumptions are considered for the problem 
formulation: 
 
• The lots of each component are of equal size 

at different stages. 
• Machines at stages, with multiple parallel 

machines that can be identical (in all 
characteristics such as production rates and 
setup times/costs) or non-identical 
(unrelated), but at least one stage must have 
unrelated parallel machines. 

• Machines of different stages are 
continuously available and each machine 
can only process one component at a time. 

• At stages with parallel machines, each 
component is processed entirely on one 
machine. 

• The structure of setup times and costs at the 
supplier are sequence dependent. 

• The production sequence on each machine at 
each stage is unique and is determined by 
the solution method. 

• The supplier incurs linear inventory holding 
costs on semi-finished components. 

• Both the supplier and the assembler incur 
linear holding costs on end components. 

• Lot splitting and pre-emption are not 
allowed. 

• There are unlimited buffers between adjacent 
stages. 

• Total capacities of different stages are 
sufficient to meet the demands; thus there 
exists at least one feasible schedule. 

• Zero switch rule is used which means the 
production of each component at each cycle 
begins when its inventory level reaches zero. 

 
2.2. Model Notations   The notations used for 
the problem formulation are defined as follows: 

2.2.1. Parameters 
 
n Number of components 
m Number of work centers (stages) 
i, u Component indices 
j Stage index 
mj Number of parallel machines at stage j 

(may be unrelated or identical) 
Mkj K-th machine at stage j 
di Demand rate of component i 
pikj Production rate of component i on 

machine k at stage j 
ptikj Processing time for a lot of 

component i on machine k at stage j 
(ptikj = di.T/pikj) 

siukj Setup time from component i to 
component u on machine k at stage j 

sciukj Setup cost from component i to 
component u on machine k at stage j 

hij Holding cost per unit of component i 
per unit time between stages j and j + 1 

hi Holding cost per unit of final 
component i per unit time (both at the 
supplier and at the assembler) 

A Transportation cost per delivery 
H Planning horizon length 
M A large real number 
 
2.2.2. Decision variables 
 
σkj Production sequence vector at 

machine Mkj 
nkj Number of components assigned to 

machine Mkj 
T Common production and delivery 

cycle length 
Qi Production lot size of component i at 

different stages (Qi = di.T) 
F The number of production cycles over 

the planning horizon 
bij Process beginning time of component i 

at stage j (after related setup operation) 
 
It is noted that at stages with only one machine 
the value of mj and index k would be only one. 
Since after processing each component at each 
stage, there would be a value added for the 
component, values of hij parameters will be non-
decreasing. In other words, we have: hi,j-1 < hij; i = 
1, …, n, j = 2, …, m-1. 
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2.3. Objective Function   The objective of the 
problem (Problem P) is to minimize the average of 
transportation, setup, work-in-process and end 
component inventory holding costs per unit time. 
The average delivery cost per unit time is A/T. The 
setup cost expression consists of two parts: the first 
part computes the setup cost of the first component 
which comes after the last assigned component to 
Mkj. The second part computes the setup costs of 
the subsequent products which are dependent on 
the processing sequence on Mkj. This expression 
would be as follow: 
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The inventory holding costs are incurred at both 
the supplier and the assembler. The inventory level 
for final component i at each cycle at the AF have 
a simple saw tooth form. Therefore, the average 
inventory of component i per unit time at the AF is 
(1/T) {(diT).T/2} and then the total average 
holding cost per unit time at the AF would be: 
(1/2) (∑i dihiT). 
     Two types of inventories are considered for the 
supplier: WIP inventory and finished product 
inventory. Figures 1 and 2 show the evolution of 
WIP inventory of component i between two 
successive stages j-1 and j, and the inventory level 
of final component i, respectively. 
     From Figure 1 it is obvious that the average 
WIP inventory of component i between two 
successive stages j-1 and j per unit time is: 
 

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∑
−

=
∑
= −

−−−−

⎪
⎩

⎪
⎨

⎧
+∑

−

=
∑
= −

−=−

1jm

1k

n

1 1jik,p
1jk,ix

Tid1ji,bijb

Tid
1jm

1k

n

1 1jik,p
1jk,ix

2

2T2
id

T
1

1ji,I

l

l

l

l

 

⎟
⎟
⎟

⎠

⎞
∑
−

=
∑
= −

−−

⎜
⎜
⎜

⎝

⎛

−−∑
=

∑
=

+

=
⎪
⎭

⎪
⎬

⎫
∑
=

∑
=

1jm

1k

n

1 1jik,2p
1jk,ix

Tid

1ji,b
jm

1k

n

1 ikj2p
kjix

Tidijbid

jm

1k

n

1 ikjp
kjix

2

2T2
id

l

l

l

l

l

l

 (2) 

 
Therefore, the total WIP holding cost for all 
components per unit time at the supplier is: 
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From Figure 2, the average inventory of final 
component i per unit time would be: 
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Thus, the total inventory holding cost for all final 
components per unit time is: 
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Figure 1. WIP inventory between stages j-1 and j. 
 
 
 

 
Td i  . 

time 

imI

imb ∑∑
= =

+
mm

k

n

ikmkmiiim pxTdb
1 1

.
l

l
T

 
 

Figure 2. Final product inventory. 

Therefore, the total cost per unit time (i.e. 
objective function of Problem P) would be: 
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2.4. Proposed Mathematical Model   A mixed 
zero-one nonlinear model, Problem P, has been 
developed to solve the problem which is presented 
in Figure 3. 
     Constraints (8) state that no component can be 
processed before it is completed at the previous 
stage. Constraints (9) show that no product can be 
processed before the completion of its predecessor 
in the related production sequence (σkj). 
Constraints (10) secure that each product has a 
unique position in the sequence of one machine at 
each stage and Constraints (11) show that at each 
position of each machine, there is at most one 
component; because for each machine, it may be 
assigned less than n components. Constraints (12) 
state that one component can be assigned at one 
position of each machine; if another product is to 
be assigned at the previous position of this 
machine. 
     Constraints (13) show that if component i is the 
first component in the sequence of one machine at 
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Figure 3. Mathematical model of problem P. 

stage j, it’s processing cannot get started before 
setting up the corresponding machine. 

Constraints (14) assures the resulting schedule is 
cyclic so that the process completion time for each 
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component at the final stage is less than or equal to 
the cycle time. Constraint (15) implies that the 
planning horizon H is an integer multiple of 
common cycle T. Constraints (16) show that F is 
an integer greater than or equal to one. Finally, 
Constraints (17) indicate the type of variables. 
     It is noteworthy that finding the optimal 
solution of the original ELSP and consequently the 
ELDSP (i.e., considering a single machine with 
sequence-independent setup times/costs as 
supplier’s production system) is known to be quite 
difficult due to the NP-hardness of the problem 
[14]. In this paper, we deal with an extended 
version of the ELDSP where supplier’s production 
system is assumed to be a flexible flow line with 
unrelated parallel machines and sequence-
dependent setup times/costs at each stage. 
Therefore, it is obvious that our generalized 
problem is definitely NP-Hard. This issue itself 
justify applying the heuristic or meta-heuristic 
approaches instead of optimal ones for the 
problem. In this paper, we develop two meta-
heuristics i.e., a hybrid genetic algorithm (HGA) 
and a simulated annealing (SA) algorithm, and 
provide corresponding numerical results. 
 
 
 

3. PROPOSED HYBRID GENETIC 
ALGORITHM 

 
Genetic algorithms (GAs) have been proved to be 
highly successful in solving combinatorial 
optimization problems where the search space is 
highly unstructured or the standard techniques like 
the branch and bound method fail to provide 
efficient solutions. This intelligent stochastic 
optimization technique is based on the mechanism 
of natural selection and genetics. To improve the 
solution quality of GA and to overcome the 
problem of converging to local optima, various 
strategies of hybridization have been suggested to 
improve the performance of the simple GA [15-
17]. Usually, in a typical HGA, a neighbourhood 
search (NS) heuristic, acts as a local improver into 
a basic GA loop. 
 
3.1. Chromosome Representation   Component 
sequences have been used for chromosome 
representation. For example, in a five components 

problem a chromosome could be [13245]. Such a 
vector by itself does not specify the complete 
solution for a discrete part of the problem. Thus, 
we need to develop an appropriate procedure to 
construct a complete discrete solution for every 
given permutation vector (i.e., determining the 
sequence vectors σkj). So, we have developed a 
simple heuristic approach to construct the complete 
discrete solution from a given permutation (for 
example V) in Figure 4. This heuristic is presented 
at following. 
     The basic idea behind this heuristic is to use the 
costs of our problem to construct a complete 
discrete solution from a known vector V. The 
products based on vector V and their dependent 
setup costs are assigned to machines of each stage 
then those are arranged in a non-decreasing order 
of their process completion times. These make 
fewer setup costs, flow time of products and 
consequently holding costs. 
 
3.2. Initial Population Generation   Several 
simple and effective constructive heuristics have 
been used to find good initial permutation vectors. 
Five constructive heuristics, i.e., the CDS 
(Campbell, Dudek, and Smith [18]) heuristic, the 
SPT heuristic, the LPT heuristic, the WSPT 
heuristic, and the HY heuristic [7], have been used. 
To apply the above heuristics it is required to 
estimate the processing time of each component at 
each stage. So, the following equation has been 
used: 
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Through utilizing the above heuristics, we can 
obtain at most 5 m-1 different permutation 
vectors. If the initial population size generated by 
the above heuristics is greater than the tuned 
population size (in our algorithm, n), we can 
delete the worst excessive vectors (in terms of 
corresponding fitness values). Otherwise, the 
remaining distinct permutation vectors can be 
generated randomly. 
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for j = 1 to m 
    if mj = 1; σ1j = V 

 else 
   while V ≠ ∅ 

        u = first component at V. 
        for k = 1 to mj 

         if σkj =∅; SC(k) = min (sciukj) i = 1,…, n, i ≠ u, i ∈ V (product i' is result of this minimum) 
         else; SC(k) = scu′ukj. u′ is the last component which previously assigned to σkj. 
         end 

        end 
        min_SC = min {SC} k = 1,…, mj. 
        if min_SC is related to a machine with empty sequence vector (σkj); 

       assign components i' and u to that sequence vector and delete them from V. 
        else; assign component u at the end of σkj. Delete component u from V. 
        end 
end 

     end 
     V = non-decreasing order of components completion times at stage j. 
end 
 

Figure 4. Pseudo code for constructing a complete discrete solution. 

3.3. Fitness Evaluation Function   In order to 
mimic the natural process of survival of the fittest, 
a fitness value via a fitness evaluation function is 
assigned to each member of the population. In our 
problem, the fitness value of each chromosome has 
been obtained by solving the corresponding NLP 
model (Problem P1) presented in Figure 5. Note 
that the chromosomes with a lower cost imply the 
better solutions. 
     Problem P1 is derived from problem P by 
substituting xiℓkj values by corresponding ones. 
Also, σkj(i) indicates the i-th component on 
sequence vector of Mkj. This problem can be 
solved by the following iterative procedure: 
 
3.3.1. Iterative step   Let F = 1, and solve the 
corresponding linear program. 
 
3.3.2. Iterative step   Increase F by 1 and solve 
the corresponding linear program for this new 
value of F. If this model has no feasible solution, 
stop; else, if the objective function for current 
value of F (ZF) is less than this value for previous 
F (Z), then set Z = ZF and T* = H/F, and go to the 
next iteration. 

3.4. Parent Selection   The tournament 
selection approach has been adopted for choosing 
some parents [15]. It randomly chooses two 
individuals from the parent pool, and then 
chooses the fittest one if a random generated 
value (r) is smaller than a pre-set probability 
value ϕ (0.5 < ϕ < 1). Otherwise, the other one is 
chosen. The unselected individual is returned to 
the parent pool, and can be chosen again as a 
parent. This process is repeated until the mating 
pool is filled. We have also used the spouse 
duplication method to duplicate and to select pairs 
of chromosomes as a parent to undergo the 
crossover operation [19]. 
 
3.5. Crossover Operator   The main purpose of 
the crossover operator is to exchange information 
between randomly selected parent chromosomes 
with the aim of producing better offspring. Based 
on the permutation representation of solutions, 
several crossover operators have been suggested  
[20,21,3]. In this problem, we have used the 
similar job 2-point order crossover (SJ2OX) 
operator based on our initial experiments. This 
crossover operator works as follows: 
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Figure 5. The NLP model for a given discrete solution. 

First both selected parents are examined on a 
position-by-position basis and the similar building 
blocks of jobs are directly copied to the offspring. 
Then, two random cut points are drawn and the 
section between these points at each parent is 
directly copied to one of the offspring. Finally, the 
missing elements of each offspring are copied in the 
relative order of the other parent so as to maintain 
feasibility in the job permutation. Figure 6 
represents a sample of this crossover operator. 
 
3.6. Mutation Operator   Mutation is a 
background operator that produces spontaneous 
random changes in the various chromosomes in 

order to implement diversification strategy. A 
simple way to achieve mutation is to alter one or 
more genes. There are several mutation operators 
for permutations such as swapping, inversion, 
insertion and shift mutation [15]. In our HGA, the 
swapping operator has been selected based on our 
initial tests as a mutation operator. Figure 7 
represents a sample of this mutation operator. 
 
3.7. Local Improvement Procedure   Our 
local improvement procedure is based on an 
iterative neighborhood search (NS) so that within 
successive interchanges, a given offspring is 
replaced with an elite (dominating) neighbor. 



152 - Vol. 21, No. 2, June 2008 IJE Transactions A: Basics 
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1 10 2 5 8 3 7 9 4 6

1 2 5 8 9 4 

1 3 5 2 9 4 
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1 10 2 5 8 3 7 9 4 6

1 5 9 4

1 5 9 4
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Offspring 1 
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1 6 2 5 8 3 7 9 4 10
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Offspring 2
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1 10 2 5 8 3 7 9 4 6Parent 2  
 

Figure 6. Illustration of SJ2OX operator 
 
 
 

Offspring 

2 3 5 6 1 4 7 

2 3 4 6 1 5 7

Parent 

 
 

Figure 7. Illustration of swapping. 

Among many definitions of NS [5,16], we have 
adopted the insertion neighborhood procedure. By 
this neighborhood structure, first two random 
positions are selected (say x < y), then the 
component x is removed and inserted at the initial 
position of y, and components between x and y are 
shifted by one unit to the left. Figure 8 shows an 
example of this NS. 
 
3.8. Population Replacement   Chromosomes 
for the next generation are selected from the 
enlarged population. After the generation of 
offspring via main GA operators (i.e., crossover 
and mutation) and improvement using the 
neighbourhood search procedure, the improved 
offspring are added to the current population. 
Then, n better chromosomes are chosen as the new 
population from the enlarged population, where n 
is the population size. 
 
3.9. Termination Criteria   The termination 
criterion determines when GA will stop. In our 

implementation we stop when pre-determined 
number of generations, max_gen, has been executed 
or when the algorithm has run for max_nonimprove 
generations without improvement. 
 
 
 

4. PROPOSED SIMULATED ANNEALING 
ALGORITHM 

 
SA is a random neighborhood search technique. A 
standard SA procedure starts by generating an 
initial solution. At each stage (temperature), the 
new solution taken from the neighborhood of the 
current solution is accepted as a new solution when 
it has a lower or equal cost; otherwise it is accepted 
with a probability depending on the difference 
between the current and new solution, and the 
current temperature. This temperature is reduced 
periodically with a temperature reduction scheme, 
so that it moves gradually from a relatively high 
value to near zero. 
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7 3 6 1 4 5 4 

Parent 
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Figure 8. Illustration of SJ2OX operator. 

4.1. Initial Solution Generation   The quality 
of the initial solution has a major effect on the 
efficiency of a SA algorithm. Also, the solution 
space searched by HGA must be agreed with the 
solution space searched by SA until these two 
proposed meta-heuristics can fairly be compared 
with each other. Therefore, the initial solution of the 
SA is selected through the best solution generated 
by the approaches presented in Section 3.1. 
 
4.2. Evaluation Function   To determine the 
quality of each discrete solution, the NLP model 
presented in Figure 5 has been applied. 
 
4.3. Neighborhood Structure   Based on 
results of initial experiments, the insertion operator 
has been used in the implementation of the SA. An 
example of this operator has been shown in Figure 8. 
 
4.4. Candidate List   To improve the quality of 
the final solution, on the best out of these four 
candidate solutions has been selected: (1) the best 
solution in the annealing processes so far, ∗

GS , (2) 

the best solution at the specific temperature T, ∗
TS , 

(3) the current solution at the specific temperature 

T, 0
TS , (4) and a randomly generated solution at 

the specific temperature T, R
TS . 

 
4.5. Temperature Reduction Mechanism   
We have used linear cooling strategy: Tnew = Told × 
α, which α is the cooling rate. 
 
4.6. Termination Criteria   To increase search 
speed of the SA algorithm, we have considered 
three termination criteria. The first condition can 
terminate the algorithm, and the two other 

conditions can terminate the search process of the 
algorithm in a specific temperature. 
 
Condition 1.   If the temperature reaches a final 
predetermined temperature, the algorithm is 
terminated. 
 
Condition 2.   If the number of times that the best 

solution at a specific temperature, ∗
TS , is replaced 

with the better solution, reaches a pre-set number, 
NT, the search of the algorithm at that temperature 
is terminated. 
 
Condition 3.   If the number of iterations at a 
specific temperature exceeds a pre-set number, 
Imax, the search process at that temperature is 
terminated. 
     The steps of proposed SA algorithm are stated 
below: 
 
Step 1.   Initialization step 
 
1.1. set the parameters such as, T, Tf, cooling 

rate α, NT, Imax. 
1.2. obtain initial solution ST

0 (from Section 4.3) 
and set SG

* = ST
* = ST

0. 
1.3. set numI = 0, numT = 0. 
 
Step 2.   Iteration step 
 
2.1. while (T > Tf) 
2.1.1. while (numI < Imax) and (numT < NT) 
2.1.1.1. select a neighbor solution, ST

1 
(Sections 4.3 and 4.4) 

2.1.1.2. compute Δ = f(ST
1) – f(ST

0). 
2.1.1.3. if Δ ≤ 0, set ST

0 = ST
1. 

2.1.1.3.1. compute Δ = f(ST
1) – f(ST

*). 
2.1.1.3.2. if Δ ≤ 0, set ST

* = ST
1 and numT = 

numT + 1. 
2.1.1.3.2.1. compute Δ = f(ST

*) – f(SG
*). 

2.1.1.3.2.2. if Δ ≤ 0, set SG
* = ST

*. 
2.1.1.4. else if Δ > 0, select a random variable 

X ~ U (0,1); 
if e-Δ/T > X, set ST

0 = ST
1. 

2.1.1.5. set numI = numI +1. 
2.1.2. set T = T × α and numT = 0, numI = 0. 
 
Step 3.   Return the solution found for SG

*. 
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5. COMPUTATIONAL EXPERIMENTS 
 
To evaluate the efficiency of the proposed 
algorithms, in terms of the solution quality and the 
required computation time, some experiments have 
been conducted. All of the experimental tests have 
been implemented on a personal computer with an 
Intel Pentium IV 1800 MHz CPU and all of the 
proposed algorithms have been coded with 
MATLAB 6.5. Moreover, Lingo 8.0 has been used 
to solve the mixed zero-one non-linear models. 
     Parameters of the proposed HGA after initial 
tests have been adjusted as: population size: 
pop_size = n, maximum number of generations: 
max_gen = m × n, maximum number of generations 
without improvement: max_nonimprove = round 
(n/2), crossover probability: Pc = 0.8, mutation 
probability: Pm = 0.2, and the tournament selection 
parameter: ϕ = 0.7. 
     Moreover, parameters of the proposed SA 
after initial tests have been set as: initial 
temperature: T = 100, final temperature: Tf = 1, 
cooling rate: α = 0.9, number of times that the 
current solution at a specific temperature is 
replaced with better solution: NT = 3 or 5 
depending on the size of the problem, and number 
of iterations at a specific temperature: Imax = n. 
     The parameters for each problem instance have 
been randomly generated from the following 
uniform distributions: 
 
di ~ U(100, 1000), pikj ~ (5000, 15000), sikj ~ (0.01, 
0.25),  
 
hi1 ~ U (1, 10), A ~ U (10000, 20000) 
 
Because processing at each stage has a value added 
on components; hij values should be non-
decreasing with j. So, after random generation of 
hi1 for each component i from a uniform 
distribution between 1 and 10, other associated hij 
values are determined by adding a randomly 
generated number between [1,5] to hi,j-1. Also there 
could be a correlation between sciukj and siukj 
values. Therefore, for each randomly generated 
siukj, its corresponding sciukj parameter has been 
computed using the following equation: 
 
sciukj = 15000 × siukj + 1000 × U (0,1). 
 
Moreover, the numbers of parallel machines at 

each stage are randomly set to 1 or 2. To evaluate 
the performance of the solutions obtained via 
proposed algorithms, we have compared the total 
cost obtained by HGA and SA algorithms for each 
problem instance, with an associated lower bound 
(LB) in medium and large-size problems, and with 
the solution obtained by LINGO for the small size 
problems, respectively. We have calculated an 
index λ = (TC-LB)/LB where TC is the total cost 
of a problem instance obtained by each algorithm, 
and LB is the associated lower bound cost. This 
lower bound is obtained for each problem instance 
by eliminating the components assigning and 
sequencing constraints in problem P. 
     In our computational experiments, we have 
considered nine different problem sizes with 4, 5 
and 10 components, and 2, 3, 5 and 10 production 
stages. For each problem size, 20 problem 
instances have been randomly generated. To 
identify the superiority among the proposed 
algorithms, we have divided our problem instances 
into two parts: problem instances with 4 and 5 
components, 2 and 3 stages (small-sized 
problems), and with 5 and 10 components and 2, 5 
and 10 stages (medium and large-sized problems). 
For the small size problem instances, the solutions 
of HGA and SA have been compared with the 
Lingo’s solution. Moreover, for the medium and 
large size problem instances, the quality of 
solutions, CPU time and performance ratio λ 
obtained by the HGA and SA have been compared 
with each other. Table 1 shows the structure of the 
test problems. Table 2 represents the results for the 
small size problem instances, and Table 3 gives 
these results for medium and large size problem 
instances. 
     In summary, we have made the following 
observations from our numerical experiments: 
 
1. The results shown in Table 2 indicate which 

for the small size problem instances, the 
solutions obtained by the proposed HGA 
and SA are 67 and 62 times better than the 
Lingo’s solutions. Also, in average, the 
solutions quality obtained by the HGA and 
SA are 9.68 and 8.01 percent better than the 
solutions quality obtained by the Lingo, 
respectively. Moreover, the results shown in 
Table 2, indicate the superiority of proposed 
algorithms with respect to both CPU time  
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TABLE 1. Structure of the Test Problems. 
 

Problem Size 

Problem 
Set 

Number of 
Components 

Number of 
Stages 

Number of Machines at 
Each Stage 

Number of 
Integer 

Variables 

Total 
Number of 
Variables 

Number of 
Constraints 

Number of 
Nonlinear 

Constraints 

1 4 2 2-1 49 58 169 30 

2 4 3 2-1-1 65 78 229 42 

3 5 2 2-1 76 87 326 47 

4 5 3 1-1-2 101 117 441 67 

5 5 5 1-1-2-2-1 176 202 764 112 

6 5 10 1-1-2-1-2-2-1-2-1-2 376 427 1618 227 

7 10 2 2-1 301 322 2701 192 

8 10 5 2-1-1-2-1 701 752 6329 472 

9 10 10 2-2-1-1-2-1-2-1-1-2 1501 1602 13493 952 

 
 
 

TABLE 2. Results of the Small Size Test Problems. 
 

Problem 
Size 

(n×m) 

The Number of 
Times Which 

the HGA’s 
Solution was 

Better Than the 
Lingo’s Solution 

The Number of 
Times Which the 
SA’s Solution is 
Better Than the 

Lingo’s Solution 

The Average 
Percentage of 

Decrease in the 
Total Cost of 

HGA’s Solution 
Compared to 

Lingo’s Solution 
(%) 

The Average 
Percentage of 

Decrease in the 
Total Cost of SA’s 
Solution Compared 
to Lingo’s Solution 

(%) 

Average 
CPU Time 
for Lingo 

(In 
Seconds) 

Average 
CPU Time 
for HGA 

(In 
Seconds) 

Average 
CPU 

Time for 
SA (In 

Seconds)

4 × 2 16 14 6.94 5.62 2348.75 19.9 33.92 

4 × 3 17 16 10.42 8.6 4878.07 47.43 80.26 

5 × 2 16 15 8.27 6.95 4952.13 50.86 87.59 

5 × 3 18 17 13.12 10.9 8356.5 137.14 203.86 
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TABLE 3. Results of the Mdium and Large Size Test Problems. 
 

Problem Size 
(n×m) 

The Average 
Performance Ratio 

of the HGA (%) 

The Average 
Performance Ratio 

of the SA (%) 

The Average CPU 
Time of HGA (In 

Seconds) 

The Average CPU 
Time of SA (In 

Seconds) 

Comparison of the 
SA Versus HGA in

Percent (%) 

5 × 5 11.51 13.17 331.43 445.28 12.6 

5 × 10 15.7 18.84 1364.33 1748.23 16.66 

10 × 2 14.52 16.43 73.5 126.08 11.62 

10 × 5 23.65 29.11 595.01 767.06 18.75 

10 × 10 32.26 39.74 2384.99 4077.5 18.82 
 

          and the solution quality when compared to 
Lingo’s solutions. It is noted that Problem P 
is a mixed integer non-linear program 
(MINLP). So, in finding an optimal solution 
by Lingo 8.0 solver, the solver traps in a 
local optimal solution in most of the time 
even in small-sized problems. On the other 
hand, because of good ability of the 
proposed HGA and SA algorithms in both 
local and global search, in the majority of 
test problems, the solutions obtained by 
heuristic methods are better than the 
corresponding solution found by Lingo 8.0. 

2. For the medium and large size problem 
instances, performance ratio λ have been 
calculated and used as a measure to compare 
the proposed algorithms. In Table 3, we 
have compared the performance of the 
proposed algorithm with each other. The 
results indicate that the qualities of HGA’s 
solutions in average are 15.69 % better than 
the quality of SA’s solutions. 

3. As it is mentioned before, the permutations in 
HGA are converted to complete discrete 
solutions via a proposed heuristic (see Section 
3.1). This heuristic considers the setup costs, 
demand rates and the processing times when 
assigning and sequencing of components to 
machines. Computational results indicate 
which is an effective constructive heuristic in 
the context of the problem. 

6. CONCLUSION REMARKS 
 
In this paper, the common cycle approach has been 
used to solve the economic lot and delivery 
scheduling problem, in flexible flow lines with 
unrelated parallel machines, and sequence 
dependent setup times/costs over a finite horizon 
planning. First, a new mixed zero-one nonlinear 
model is developed to solve the problem to 
optimality. Providing an optimal solution is not a 
practical approach especially for medium and large 
size problems. Thus, two efficient meta-heuristic 
(HGA and SA) have been developed to obtain near 
optimal (or ideally optimal) solutions in a 
reasonable time. 
     In our HGA, the following approaches have 
been used for hybridization: incorporating simple 
and effective heuristics into initialization step of 
GA to generate a good initial population, 
developing a new simple heuristic to convert a 
permutation to a complete discrete solution, and 
incorporating an efficient neighborhood search 
method to the main GA loop of recombination and 
selection as a local optimizer. 
     Furthermore, in our SA, for improving the 
solution quality and efficiency of the algorithm, a 
specific candidate list for selecting a good 
neighbor has been developed. Also, to increase the 
searching speed, some additional termination 
criteria have been used. 
     Computational results indicate that due to non-
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linearity nature of the original Problem P, the 
quality of solutions generated by the heuristic 
methods are usually better than Lingo’s solutions 
even in small-sized problems. Moreover, when 
comparing two proposed HGA and SA algorithms, 
the HGA outperforms the SA algorithm with 
respect to both solution quality and computation 
time especially in large-size problem instances. 
     The problem considered here can be extended 
in different ways. Among them, we suggest the 
following ones as possible directions for further 
studies: 
     Considering the Problem P under multiple-cycle 
(i.e., basic period) cyclic approach and allowing 
the different items having different cycle times in 
order to find solutions with lower total cost. 
     Extending the current model to more complex 
supply chains, for example, a multiple supplier, 
multiple assembler case in which, each assembler 
could receive different items from different 
suppliers. 
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